Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T22:06:39.145Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  12 May 2020

Sanjay Singh
Affiliation:
Mizan - Tepi University, Ethopia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Guttation
Fundamentals and Applications
, pp. 159 - 184
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalybov, V. F., and Zholkevich, V. N.. 1979. ‘Isolation of actomyosin-like protein from sunflower roots.Doklady Akademii Nauk SSSR, 244: 12751277.Google Scholar
Abutalybov, V. F., and Zholkevich, V. N.. 1981. ‘Effect of Ca2+, Mg2+, Na+ on the activity of actomyosine-like ATPase isolated from sunflower roots.Phyziologia Rastenii, 28: 442.Google Scholar
Abutalybov, V. F., Shushanashvili, V. I., and Zholkevich, V. N.. 1980. ‘Isolation of actin-like protein from sunflower roots.Doklady Akademii Nauk SSSR, 252: 10231024.Google Scholar
Adler, C. L., Lock, J. A., and Fleet, R. W.. 2008. ‘Rainbows in the grass. II. Arbitrary diagonal incidence.Applied Optics, 47 (34): 214219.Google Scholar
Aegthe, C. 1951. ‘Uber die physiologische herkunft des pflanzennektars.Berichte der Schweizerischen Botanischen Gesellschaft, 61: 240277.Google Scholar
Ahmad, M., Hirz, M., Pichler, H., and Schwab, H.. 2014. ‘Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production.Applied Microbiology and Biotechnology, 98 (12): 53015317.CrossRefGoogle ScholarPubMed
Aki, T., Shigyo, M., Nakano, R., Yoneyama, T., and Yanagisawa, S.. 2008. ‘Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice.Plant & Cell Physiology, 49 (5): 767790.CrossRefGoogle ScholarPubMed
Albacete, A., Martinez-Andujar, C., Ghanem, M. E., et al. 2009. ‘Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato.Plant, Cell & Environment, 32 (7): 928938.CrossRefGoogle ScholarPubMed
Aldea, M., Hamilton, J. G., Resti, J. P., Zangerl, A. R., Berenbaum, M. R., and Elucia, E. H. D.. 2005. ‘Indirect effects of insect herbivory on leaf gas exchange in soybean.Plant, Cell & Environment, 28 (3): 402411.CrossRefGoogle Scholar
Aloni, R. 2001. ‘Foliar and axial aspects of vascular differentiation: hypotheses and evidence.Journal of Plant Growth Regulation, 20 (1): 2234.Google Scholar
Aloni, R. 2010. ‘The induction of vascular tissue by auxin.’ In Plant Hormones: Biosynthesis, Signal Transduction, Action, edited by Davies, P. J.. Dordrecht: Kluwer Academic Publishers, pp. 485506.CrossRefGoogle Scholar
Aloni, R., Langhans, M., Aloni, E., Dreieicher, E., and Ullrich, C. I.. 2005. ‘Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream.Journal of Experimental Botany, 56 (416): 15351544.Google Scholar
Aloni, R., Schwalm, K., Langhans, M., and Ullrich, C. I.. 2003. ‘Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis.Planta, 216 (5): 841853.CrossRefGoogle ScholarPubMed
Amasino, R. 2005. ‘1955: Kinetin arrives. The 50th anniversary of a new plant hormone.Plant Physiology, 138 (3): 11771184.Google Scholar
Ameziane, R., Bernhard, K., and Lightfoot, D. A.. 2000. ‘Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development.Plant and Soil, 221 (1): 4757.CrossRefGoogle Scholar
Anonymous. 2004. ‘Gummy stem blight of greenhouse cucumber.’ Crop Protection Factsheet, September. Canada: Ministry of Agriculture and Lands, British Columbia.Google Scholar
Anonymous. 2009. ‘Guttation water of no relevance for agricultural practice as a route of exposure to pesticide residues.’ Bayer Crop Science, Press release, February 16, Monheim, available at www.bayercropscience.com.Google Scholar
Arango, M., Gevaudant, F., Oufattole, M., and Boutry, M.. 2003. ‘The plasma membrane proton pump ATPase: the significance of gene subfamilies.Planta, 216 (3): 355365.CrossRefGoogle ScholarPubMed
Arens, K. 1934. ‘Die kutikulare exkretion des laublattes.Jahrbücher für Wissenschaftliche Botanik, 80: 248300.Google Scholar
Arisz, W. H., Helder, R. J., and Nie, R. V.. 1951. ‘Analysis of the exudation process in tomato plants.Journal of Experimental Botany, 2 (3): 257297.CrossRefGoogle Scholar
Arnold, A. 1952. ‘Uber den funktionsmechanismus der endodermiszellen der wurzeln.Protoplasma, 41 (2): 180211.CrossRefGoogle Scholar
Azad, A. K., Sawa, Y., Ishikawa, T., and Shibata, H.. 2009. ‘Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.Applied and Environmental Microbiology, 75 (9): 27922797.CrossRefGoogle ScholarPubMed
Azarkan, M., Wintjens, R., Looze, Y., and Baeyens-Volant, D.. 2004. ‘Detection of three wound-induced proteins in papaya latex.Phytochemistry, 65 (5): 525534.CrossRefGoogle ScholarPubMed
Baba, I. 1957. ‘Studies on the nutrition of the rice plant with special reference to nitrogen and silica: IV. On silica in the exudation and guttation sap.Japanese Journal of Crop Science, 25 (3): 139140.CrossRefGoogle Scholar
Bai, X., Zhu, J., Zhang, P., Wang, Y., Yang, L., and Zhang, L.. 2007. ‘Na+ and water uptake in relation to radial reflection coefficient of root in arrow leaf saltbush under salt stress.Journal of Integrative Plant Biology, 49 (9): 13341340.CrossRefGoogle Scholar
Bailey, D. W. 2004. ‘Management strategies for optimal grazing distribution and use of arid rangelands.’ Journal of Animal Science 82 (E-Suppl): E147E153.Google ScholarPubMed
Bain, S. M. 1902. ‘The action of copper on leaves with special reference to the injurious effects of fungicides on peach foliage; a physiological investigation.Tennessee Agricultural Experiment Station Bulletin, 15: 19108.Google Scholar
Bald, J. G. 1952. ‘Stomatal droplets and the penetration of leaves by plant pathogens.American Journal of Botany, 39 (2): 9799.CrossRefGoogle Scholar
Baluska, F. 2010. ‘Recent surprising similarities between plant cells and neurons.Plant Signaling & Behavior, 5 (2): 8789.Google Scholar
Baluska, F. 2015. Long-distance Systemic Signaling and Communication in Plants. Berlin: Springer.Google Scholar
Baluska, F., and Mancuso, S.. 2009. Signaling in Plants. Berlin: Springer.Google Scholar
Baluska, F., and Volkmann, D.. 2008. ‘Plant myosins: do they have roles in gravi- and mechanosensing?’ In The Plant Cytoskeleton: A Key Tool for Agro-biotechnology, edited by Blume, Y. B., Baird, V., Yemets, A. I., and Breviario, D.. Berlin: Springer, pp. 161172.Google Scholar
Baluska, F., Šamaj, J., Wojtaszek, P., Volkmann, D., and Menzel, D.. 2003. ‘Cytoskeleton–plasma membrane–cell wall continuum in plants. Emerging links revisited.Plant Physiology, 133 (2): 483491.CrossRefGoogle ScholarPubMed
Baluska, F., Volkmann, D., and Mancuso, S.. 2006. Communication in Plants: Neuronal Aspects of Plant Life. Berlin: Springer.CrossRefGoogle Scholar
Baranetzky, J. 1877. ‘Untersuchungen uber die Periodicitat des Blutens der Krautartigen Pf lanzen und deren Ursachen.Naturf. Ges. Abhandl. Halle, 13: 163.Google Scholar
Barbour, M., and Farquhar, G. D.. 2000. ‘Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves.Plant, Cell & Environment, 23 (5): 473485.CrossRefGoogle Scholar
Barrs, H. D. 1966. ‘Root pressure and leaf water potential.Science, 152 (3726): 12661268.CrossRefGoogle ScholarPubMed
Barzana, G., Aroca, R., Paz, J. A., Chaumont, F., et al. 2012. ‘Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions.Annals of Botany, 109: 10091017.CrossRefGoogle ScholarPubMed
Barzana, G., Aroca, R., Paz, J. A. S., et al. 2012. ‘Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions.Annals of Botany, 109 (5): 10091017.CrossRefGoogle ScholarPubMed
Bertrand, A., Robitaille, G., and Boutin, R.. 1995. ‘Growth and ABA responses of maple seedlings to aluminum.Tree Physiology, 15 (12): 775782.CrossRefGoogle Scholar
Beveridge, C. A. 2000. ‘Long distance signalling and a mutational analysis of branching in pea.Plant Growth Regulation 32 (2/3): 193203.CrossRefGoogle Scholar
Bienert, G. P., Bienert, M. D., Jahn, T. P., Boutry, M., and Chaumon, F.. 2011. ‘Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates.The Plant Journal, 66 (2): 306317.Google Scholar
Biles, C. L., and Abeles, F. B.. 1991. ‘Xylem sap proteins.Plant Physiology, 96 (2): 597601.CrossRefGoogle ScholarPubMed
Birch, A. N. E., Arpaia, S., Lovei, G. L., et al. 2004. ‘Selection procedure to study ecological impact of GM plants: a case study of Bt-maize in Kenya.’ 8th International Symposium on the Biosafety of Genetically Modified Organisms, Montpellier, France, pp. 3132.Google Scholar
Biswas, K., Yoshioka, K., Asanuma, K., et al. 2013. ‘Essential role of class II phosphatidylinositol-3-kinase-c2 in sphingosine 1-phosphate receptor-1-mediated signaling and migration in endothelial cells.The Journal of Biological Chemistry, 288 (4): 23252339.CrossRefGoogle Scholar
Blum, A. 2005. ‘Drought resistance, water-use efficiency, and yield potential: are they compatible, dissonant, or mutually exclusive?Australian Journal of Agricultural Research, 56 (11): 11591168.CrossRefGoogle Scholar
Bobik, K., Duby, G., Nizet, Y., et al. 2010. ‘Two widely expressed plasma membrane H+-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine.The Plant Journal, 62 (2): 291301.CrossRefGoogle ScholarPubMed
Bohm, J. 1893. ‘Capillaritat and saftsteigen.Berichte der Deutschen Botanischen Gesellschaft, 11 (3): 203212.Google Scholar
Bolle, C. 2004. ‘The role of GRAS proteins in plant signal transduction and development.Planta, 218 (5): 683692.CrossRefGoogle ScholarPubMed
Borisjuk, N. V., Sitailo, L., Adler, K., et al. 1998. ‘Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution.Planta, 206 (4): 504514.CrossRefGoogle ScholarPubMed
Borisjuk, N. V., Borisjuk, L. G., Logendra, S., Petersen, F., Gleba, Y., and Raskin, I.. 1999. ‘Production of recombinant proteins in plant root exudates.Nature Biotechnology, 17 (5): 466469.CrossRefGoogle ScholarPubMed
Borisova, T. A, Lazareva, N. P., and Zholkevich, V. N.. 1986. ‘On different cell membrane permeability of root systems to water solutes.Studia Biophysica, 111: 173176.Google Scholar
Bose, J. C. 1923. The Physiology of the Ascent of Sap. London: Longmans Green & Company.Google Scholar
Bose, J. C. 1927. Plant Autographs and their Revelations. London: Longmans Green & Company.CrossRefGoogle Scholar
Boyer, J. S. 1985. ‘Water transport.Annual Review of Plant Physiology, 36: 473516.CrossRefGoogle Scholar
Brandl, M. T., and Amundson, R.. 2008. ‘Leaf age as a risk factor in contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica.Applied and Environmental Microbiology, 74 (8): 22982306.CrossRefGoogle ScholarPubMed
Brauer, D., Tu, S., Hsu, A., and Patterson, D.. 1993. ‘Evidence for an indirect coupling mechanism for the nitrate-sensitive proton pump from corn root tonoplast membranes.Physiologia Plantarum, 89 (3): 588591.CrossRefGoogle Scholar
Bray, E. A. 2002. ‘Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome.Plant, Cell & Environment, 25 (2): 153161.CrossRefGoogle ScholarPubMed
Brencic, A., and Winans, S. C.. 2005. ‘Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria.Microbiology and Molecular Biology Reviews, 69 (1): 155194.CrossRefGoogle ScholarPubMed
Brew, M. N. R., Myer, O., Hersom, M. J., et al. 2011. ‘Water intake and factors affecting water intake of growing beef cattle.Livestock Science 140 (1/2/3): 297300.CrossRefGoogle Scholar
Britto, D. T., and Kronzucker, H. J.. 2006. ‘Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport.Trends in Plant Science, 11 (11): 529534.Google Scholar
Brodersen, C. R., and McElrone, A. J.. 2013. ‘Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants.Frontiers in Plant Science, 4: 198.CrossRefGoogle ScholarPubMed
Brodribb, T. J., and Holbrook, N. M.. 2006. ‘Declining hydraulic efficiency as transpiring leaves desiccate: two types of response.Plant, Cell & Environment, 29 (12): 22052215.CrossRefGoogle ScholarPubMed
Brodribb, T. J., Holbrook, N. M., and Hill, R. S.. 2005. ‘Seedling growth in conifers and angiosperms: impacts of contrasting xylem structure.Australian Journal of Botany 53: 749755.Google Scholar
Brotherson, J. D., and Feild, T. S.. 1987. ‘Tamarix: impacts of a successful weed.Rangelands, 9 (3): 110112.Google Scholar
Brouillet, L., Bertrand, C., Cuerrier, A., and Barabé, D.. 1987. ‘Les hydathodes des genres Begonia et Hillebrandia (Begoniaceae).Canadian Journal of Botany, 65 (1): 3452.CrossRefGoogle Scholar
Brown, A. H., Chapman, D. K., Heathcote, D. G., and Johnsson, A.. 1993. ‘A proposal to determine properties of the gravitropic response of plants in the absence of a complicating g-force (gthres).’ Final Report NASA Grant NAG 2-574. Philadelphia: Gravitational Plant Physiology Laboratory, University City Science Center, pp. 138.Google Scholar
Brown, G. D., and Lynch, J. J.. 1972. ‘Some aspects of the water balance of sheep at pasture when deprived of drinking water.Australian Journal of Agricultural Research, 23: 669684.CrossRefGoogle Scholar
Broyer, T. C. 1951. ‘Exudation studies on the water relations of plants.American Journal of Botany, 38 (3): 157162.CrossRefGoogle Scholar
Broyer, T. C., and Hoagland, D. R.. 1943. ‘Metabolic activities of roots and their bearing on the relation of upward movement of salts and water in plants.American Journal of Botany, 30 (4): 261273.CrossRefGoogle Scholar
Buch-Pedersen, M. J., and Palmgren, M. G.. 2003. ‘Mechanism of proton transport by plant plasma membrane proton ATPases.Journal of Plant Research, 116 (6): 507515.Google Scholar
Bugbee, B., and Koerner, G.. 2002. ‘Yield comparisons and unique characteristics of the dwarf wheat cultivar ‘USU-Apogee’ research: super dwarf cultivar studies: ‘Apogee’ wheat’, available at http://www.usu.edu/cpl/research_dwarf_wheat.htm [Verified on 20 November 2011].Google Scholar
Burdock, G. A. 2009. Fenaroli’s Handbook of Flavor Ingredients (6th ed.). California: CRC Press.Google Scholar
Burgerstein, A. 1887. ‘Materialien zu einer monographie betreffend die erscheinungen der transpiration der Pflanzen.Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien, 37: 691782.Google Scholar
Burgerstein, A. 1920. Die transpiration der pflanzen (Vol. 2). Jena: Gustav Fischer.Google Scholar
Burgess, S. S. O., and Dawson, T. E.. 2004. ‘The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration.Plant, Cell & Environment, 27 (8): 10231034.Google Scholar
Burkle, L., Cedzich, A., Dopke, C., et al. 2003. ‘Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis.The Plant Journal, 34 (1): 1326.CrossRefGoogle ScholarPubMed
Burow, G. B., Franks, C. D., and Xin, Z.. 2008. ‘Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular wax mutant) of sorghum.Crop Science, 48: 4148.CrossRefGoogle Scholar
Burow, G. B., Franks, C. D., Acosta-Martinez, V., and Xin, Z.. 2009. ‘Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.).’ Theoretical and Applied Genetics, 118: 423-431.CrossRefGoogle ScholarPubMed
Burow, G. B., Franks, C. D., and Xin, Z.. 2008. ‘Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular wax mutant) of sorghum.Crop Science, 48 (1): 4148.Google Scholar
Busch, D. E., and Smith, S. D.. 1993. ‘Effects of fire on water and salinity relationships of riparian woody taxa.Oecologia, 94 (2): 186194.CrossRefGoogle Scholar
Canny, M. J. 1995. ‘A new theory for the ascent of sap—cohesion supported by tissue pressure.Annals of Botany, 75 (4): 343357.CrossRefGoogle Scholar
Canny, M. J. 1997. ‘Vessel contents during transpiration—embolisms and refilling.American Journal of Botany, 84 (9): 12231230.Google Scholar
Canny, M. J. 1998. ‘Applications of the compensating pressure theory of water transport.American Journal of Botany, 85 (7): 897909.CrossRefGoogle ScholarPubMed
Canny, M. J. 2001. ‘Contributions to the debate on water transport.American Journal of Botany, 88 (1): 4346.CrossRefGoogle Scholar
Canny, M. J. 1990. ‘What becomes of the transpiration stream?New Phytologist, 114: 341368.CrossRefGoogle ScholarPubMed
Cantrill, L. C., Overall, R. L., and Goodwin, P. B.. 1999. ‘Cell-to-cell communication via plant endomembranes.Cell Biology International, 23 (10): 653661.CrossRefGoogle ScholarPubMed
Cao, K. F., Yang, S. J., Zhang, Y. J., and Brodribb, T. J.. 2012. ‘The maximum height of grasses is determined by roots.Ecology Letters, 15 (7): 666672.CrossRefGoogle ScholarPubMed
Carlton, W. M., Braun, E. J., and Gleason, M. L.. 1998. ‘Ingress of Clavibacter michiganensis subsp. michiganensis into tomato leaves through hydathodes.Phytopathology, 88 (6): 525529.CrossRefGoogle ScholarPubMed
Chaves, M. M., and Oliveira, M. M.. 2004. ‘Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture.Journal of Experimental Botany, 55 (407): 23652384.CrossRefGoogle ScholarPubMed
Chen, C., and Chen, Y.. 2005. ‘Study on laminar hydathodes of Ficus formosana (Moraceae). I. Morphology and ultrastructure.Botanical Bulletin of Academia Sinica, 46: 205215.Google Scholar
Chen, C., and Chen, Y. 2006. ‘Study on laminar hydathodes of Ficus formosana (Moraceae). II. Morphogenesis of hydathodes.Botanical Studies, 47: 279292.Google Scholar
Chen, C., and Chen, Y. 2007. ‘Study on laminar hydathodes of Ficus formosana (Moraceae). III. Salt injury of guttation on hydathodes.Botanical Studies, 48 (2): 215226.Google Scholar
Cherian, S., and Oliveira, M. M.. 2005. ‘Transgenic plants in phytoremediation: recent advances and new possibilities.Journal of the American Chemical Society, 39 (24): 93779390.Google ScholarPubMed
Choat, B., Jansen, S., Brodribb, T. J., et al. 2012. ‘Global convergence in the vulnerability of forests to drought.Nature, 491: 752755.CrossRefGoogle ScholarPubMed
Chupp, C. 1925. Manual of Vegetable Garden Diseases. New York, NY: MacMillan Company.Google Scholar
Cochard, H., Venisse, J., Barigah, T., et al. 2007. ‘Putative role of aquaporins in variable hydraulic conductance of leaves in response to light.Plant Physiology, 143 (1): 122133.Google Scholar
Comstock, J. P. 2002. ‘Hydraulic and chemical signaling in the control of stomatal conductance and transpiration.Journal of Experimental Botany, 53 (367): 195200.Google Scholar
Conrad, U., and Fiedler, U.. 1998. ‘Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production of physiological functions and pathogen activity.Plant Molecular Biology 38 (1/2): 101109.CrossRefGoogle ScholarPubMed
Crafts, A. S., and Broyer, T. C.. 1938. ‘Migration of salts and water into xylem of the roots of higher plants.American Journal of Botany, 25 (7): 529535.Google Scholar
Crawford, K. M., and Zambryski, P. C.. 1999. ‘Plasmodesmata signaling: many roles, sophisticated statutes.Current Opinion in Plant Biology, 2 (5): 382387.CrossRefGoogle ScholarPubMed
Curtis, J. D., and Lersten, N. R.. 1974. ‘Morphology, seasonal variation, and function of resin glands on buds and leaves of Populus deltoids (Salicaceae).American Journal of Botany, 61 (8): 835845.Google Scholar
Curtis, L. C. 1943. ‘Deleterious effects of guttated fluids on foliage.American Journal of Botany, 30 (10): 778781.Google Scholar
Curtis, L. C. 1944a. ‘The exudation of glutamine from lawn grass.Plant Physiology, 19 (1): 15.CrossRefGoogle ScholarPubMed
Curtis, L. C. 1944b. ‘The inf luence of guttation fluid on pesticides.Phytopathology, 34: 196205.Google Scholar
D’Aoust, M., Couture, M. M. J., Charland, N., et al. 2010. ‘The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic inf luenza.Plant Biotechnology Journal, 8 (5): 607619.Google Scholar
Dalbro, S. 1955. ‘Leaching of apple foliage by rain.14th International Horticultural Congress Scheveningen, Holland.Google Scholar
Dane, F., and Shaw, J. J.. 1993. ‘Growth of bioluminescent Xanthomonas-campestris pv. campestris in susceptible and resistant host plants.Molecular Plant-Microbe Interactions, 6 (6): 786789.Google Scholar
Daniel, T. W. 1949. ‘Coniferous root exudate.Plant Physiology, 24: 327330.CrossRefGoogle ScholarPubMed
Daniell, H., Khan, M. S., and Allison, L.. 2002. ‘Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology.Trends in Plant Science, 7 (2): 8491.Google Scholar
Daviere, J., and Achard, P.. 2013. ‘Gibberellin signaling in plants.Development, 140: 114751.Google Scholar
Davis, T. A. 1961. ‘High root pressure in palms.Nature, 192: 227228.CrossRefGoogle Scholar
Dawson, T. E. 1998. ‘Fog in the California redwood forest: ecosystem inputs and use by plants.Oecologia, 117 (4): 476484.Google Scholar
de Candolle, A. P. 1825. Prodromus Systematis Naturalis, Regni Vegetabilis. Parisii: Sumptibus Sociorum Treuttel et Würt, p. 483.Google Scholar
de Muynck, B., Navarre, C., and Boutry, M.. 2010. ‘Production of antibodies in plants: status after twenty years.Plant Biotechnology Journal, 8 (5): 529563.Google Scholar
de Saussure, N. 1804. Recherches Chimique Sur La Vegetation. Paris: Vue Nyon, pp. 264265.Google Scholar
Dieffenbach, H., Kramer, D., and Luettge, U.. 1980a. ‘Release of guttation fluid from passive hydathodes of intact barley plants. I. Structural and cytological aspects.Annals of Botany, 45 (4): 397401.CrossRefGoogle Scholar
Dieffenbach, H., Luettge, U., and Pitman, M. G.. 1980b. ‘Release of guttation fluid from passive hydathodes of intact barley plants. II. The effects ofabscisic acid and cytokinins.Annals of Botany, 45 (6): 703712.CrossRefGoogle Scholar
Ding, X. S., Boydston, C. M., and Nelson, R. S.. 2001. ‘Presence of Brome Mosaic virus in barley guttation fluid and its association with localized cell death response.Phytopathology, 91 (5): 440448.CrossRefGoogle ScholarPubMed
DiTomaso, J. M. 1998. ‘Impact, biology and ecology of salt cedar (Tamarix spp.) in the southwestern United States.Weed Technology, 12 (2): 236336.Google Scholar
Dixon, H. H. 1914. Transpiration and the Ascent of Sap. London: MacMillan & Company.Google Scholar
Dixon, H. H., and Dixon, G. J.. 1931. ‘The exudation of water from the leaf tips of Colocasia antiquorum.The Scientific Proceedings of the Royal Dublin Society, 20: 710.Google Scholar
Dixon, H. H., and Joly, J.. 1895. ‘On the ascent of sap.Philosophical Transcations of the Royal Society B (Biological Sciences), 186: 536576.Google Scholar
Dodd, I. C., Ngo, C., Turnbull, C. G., and Beveridge, C. A.. 2004. ‘Effects of nitrogen supply on xylem cytokinin delivery, transpiration and leaf expansion of pea genotypes differing in xylem-cytokinin concentration.Functional Plant Biology, 31 (9): 903911.Google Scholar
Dodd, I. C. 2013. ‘Abscisic acid and stomatal closure: a hydraulic conductance conundrum.New Phytologist, 197 (1): 68.CrossRefGoogle ScholarPubMed
Dodd, J. D., and O’Sullivan, K. T.. 2012. Form and Function in Plants. London: Literary Licensing, LLC.Google Scholar
Drake, P. M. W., Barbi, T., Sexton, A., et al. 2009. ‘Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco.FASEB Journal, 23 (10): 35813589.CrossRefGoogle ScholarPubMed
Drake, P. M. W., Chargelegue, D. M., Vine, N. D., van Dolleweerd, C. J., Obregon, P., and Ma, J. K. C.. 2003. ‘Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots.Plant Molecular Biology, 52 (1): 233241.CrossRefGoogle ScholarPubMed
Drennan, P., Goldsworthy, D., and Buswell, A.. 2009. ‘Marginal and laminar hydathode-like structures in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw.Flora- Morphology, Distribution, Functional Ecology of Plants, 204 (3): 210219.CrossRefGoogle Scholar
Duby, G., and Boutry, M.. 2009. ‘The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles.Pflügers ArchivEuropean Journal of Physiology, 457 (3): 645655.Google Scholar
Duby, G., Poreba, W., Piotrowiak, D., et al. 2009. ‘Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region.Journal of Biological Chemistry, 284 (7): 42134221.Google Scholar
Duchartre, P. 1859. ‘Recherches physiologiques, anatomiques, et organogeniques sur la colocase des anciens, Colocasia antiquorum.Schottish Annales des Sciences Naturelles Botanique, 12: 232279.Google Scholar
Duncan, K. W., Schemnitz, S. D., Suzuki, M., Homesley, Z., and Cardenas, M.. 1993. ‘Evaluation of saltcedar control- Pecos River, New Mexico.General Technical Report RM-226, USDA Forest Service Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado.Google Scholar
Dustmamatov, A. G., and Zholkevich, V. N.. 2008. ‘Effects of HgCl2 on principal parameters of exudation from maize detached root systems.Russian Journal of Plant Physiology, 55 (6): 814820.Google Scholar
Dustmamatov, A. G., Zholkevich, V. N., and Kuznetsov, V. V.. 2004. ‘Water pumping activity of the root system in the process of cross-adaptation of sunflower plants to hyperthermia and water deficiency.Russian Journal of Plant Physiology, 51 (6): 822826.CrossRefGoogle Scholar
Eaton, F. M. 1941. ‘Water uptake and root growth as influenced by inequalities in the concentration of the substrate.Plant Physiology, 16 (3): 545564.Google Scholar
Eaton, F. M. 1943. ‘The osmotic and vitalistic interpretations of exudation.American Journal of Botany, 30 (9): 663674.CrossRefGoogle Scholar
Elias, T. S., and Gelband, H.. 1977. ‘Morphology, anatomy, and relationship of extraf loral nectarines and hydathodes in two species of Impatiens (Balsaminaceae).Botanical Gazette, 138: 206212.CrossRefGoogle Scholar
Emberger, G. 2008. Available at www.messiah.edu/Oakes/fungi_on_wood/poroid fungi/species pages/Polyporus squamosus [Verified on 2 July 2010].Google Scholar
Endo, R. M. 1967. ‘The role of guttation fluid in fungal disease development.California Turfgrass Culture, 17: 1213.Google Scholar
Engel, H. 1939. ‘Das Verholten des Blatter bei Benetzung mit Wasser.Jahrbücher für Wissenschaftliche Botanik, 88: 816861.Google Scholar
Engel, H., and Friederichsen, U. I.. 1951. ‘Das licht als ursache periodischer guttationsschwankungen etiolierter haferkeimlinge.Planta, 39: 309337.CrossRefGoogle Scholar
Engel, H., and Friederichsen, U. I.. 1952. ‘Weitere untersuchungen über periodische guttation etiolierter haferkeimlinge.Planta, 40: 529549.Google Scholar
Engel, H., and Friederichsen, U. I.. 1954. ‘Periodische Guttation bei Zea mays.Planta, 44 (5): 459471.Google Scholar
Enns, L. C., Canny, M. J., and McCully, M. E.. 2000. ‘An investigation of the role of solutes in the xylem sap and in the xylem parenchyma as a source of root pressure.Protoplasma 211 (3/4): 183197.Google Scholar
Epel, B. L. 1994. ‘Plasmodesmata: composition, structure and trafficking.Plant Molecular Biology, 26: 13431356.Google Scholar
Esau, K. 2006. Anatomy of Seed Plants. Hoboken, New Jersey: John Wiley and Sons.Google Scholar
Eshel, M., and Beeckman, T.. 2013. Plant Roots: The Hidden Half (4th ed.). California: CRC Press.Google Scholar
Ewers, F. W., Cochard, H., and Tyree, M. T.. 1997. ‘A survey of root pressures in vines of a tropical lowland forest.Oecologia, 110: 191196.CrossRefGoogle ScholarPubMed
Fahn, A. 1979. Secretory Tissues in Plants. London: Academic Press.Google Scholar
Fahn, A. 1988. ‘Secretory tissues in vascular plants.New Phytologist, 108: 229257.Google Scholar
Fahn, A. 2000. ‘Structure and function of secretory cells.’ In: Hallahan, DL, Gray, JC, and Callow, JA (eds), Advances in Botanical Research Incorporating Advances in Plant Pathology (Vol. 31: plant trichomes). London: Academic Press, pp. 3775.Google Scholar
Feild, T. S., and Arens, N. C.. 2007. ‘The ecophysiology of early angiosperms.Plant, Cell & Environment, 30 (3): 291309.CrossRefGoogle ScholarPubMed
Feild, T. S., and Brodribb, T. J.. 2013. ‘Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks.New Phytologist, 199 (3): 720726.Google Scholar
Feild, T. S., Arens, N. C., and Dawson, T. E.. 2003. ‘The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages.International Journal of Plant Science 164 (S3): 129142.Google Scholar
Feild, T. S., Sage, T. L., Czerniak, C., and Iles, W. J. D.. 2005. ‘Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll.Plant, Cell & Environment, 28 (9): 11791190.Google Scholar
Fick, A. 1855. ‘Ueber Diffusion.Annalen der Physik, 170 (1): 5986.CrossRefGoogle Scholar
Fischer, R., and Emans, N.. 2000. ‘Molecular farming of pharmaceutical proteins.Transgenic Research, 9: 279299.Google Scholar
Fischer, R., and Schillberg, S.. 2004. Molecular Farming: Plant-made Pharmaceuticals and Technical Proteins. New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
Fischer, R., Stoger, E., Schillberg, S., Christou, P., and Twyman, R. M.. 2004. ‘Plant-based production of biopharmaceuticals.Current Opinion in Plant Biology, 7: 152158.Google Scholar
Fischer, R., Twyman, R. M., Hellwig, S., Drossard, J., and Schillberg, S.. 2007. ‘Facing the future with pharmaceuticals from plants.’ In: Xu, Z, Li, J, Xue, Y, and Yang, W (eds), Biotechnology and Sustainable Agriculture 2006 and Beyond. New York, NY: Springer, pp. 1332.Google Scholar
Fischer, S., Charara, N., Gerber, A., et al. 2012. ‘Transient recombinant protein expression in a human amniocyte cell line: the CAP-T® cell system.Biotechnology and Bioengineering, 109 (9): 22502261.Google Scholar
Fisher, J. B., Angeles, G., Ewers, F. W., and Lopez-Portillo, J.. 1997. ‘Survey of root pressure in tropical vines and woody species.International Journal of Plant Sciences, 158: 4450.CrossRefGoogle Scholar
Fisher, J. B., Angeles A., G., Ewers, F. W., and J. López-Portillo. 1997. ‘Survey of root pressure in tropical vines and woody species.International Journal of Plant Sciences, 158 (1): 4450.Google Scholar
Fletcher, A. T., and Mader, J. C.. 2007. ‘Hormone profiling by LC-QToF-MS/MS in dormant Macadamia integrifolia: correlations with abnormal vertical growth.Journal of Plant Growth Regulation, 26: 351361.CrossRefGoogle Scholar
Flood, M. G. 1919. ‘Exudation of water by Colocasia antiqualum.’ The Scientific Proceedings of the Royal Dublin Society, 15: 502.Google Scholar
Flowers, T. J. 2004. ‘Improving crop salt tolerance.Journal of Experimental Botany, 55 (396): 307319.CrossRefGoogle ScholarPubMed
French, C. J., and Elder, M.. 1999. ‘Virus particles in guttate and xylem of infected cucumber (Cucumis sativus L.).Annals of Applied Biology, 134 (1): 8187.Google Scholar
French, C. J., Elder, M., and Skelton, F.. 1993. ‘Recovering and identifying infectious plant viruses in guttation fluid.Hort Science, 28 (7): 746747.Google Scholar
Frey-Wyssling, A. 1941. ‘Die guttation als aligemeine erscheinung.Berichte der Schweizerischen Botanischen Gesellschaft, 51: 321325.Google Scholar
Fujii, Y., and Tanaka, N.. 1957. ‘Intensity of guttation in rice seedlings in relation to earliness or lateness of the variety.Japanese Journal of Crop Science, 25 (3): 131132.Google Scholar
Fukui, H., Fukui, R., and Alvarez, A. M.. 1996. ‘Role of indigenous leaf-inhabiting bacteria in suppression of anthurium blight.’ Phytopathology 86: S36S36.Google Scholar
Fukui, H., Fukui, R., and Alvarez, A. M.. 1999. ‘Suppression of bacterial blight by a bacterial community isolated from the guttation fluids of anthuriums.Applied and Environmental Microbiology, 65 (3): 10201028.Google Scholar
Galan, J. E., and Wolf-Watz, H.. 2006. ‘Protein delivery into eukaryotic cells by type III secretion machines.Nature, 444 (7119): 567573.Google Scholar
Gang, D. R., Wang, J., Dudareva, N., et al. 2001. ‘An investigation of the storage and biosynthesis of phenylpropenes in sweet basil.Plant Physiology, 125 (2): 539555.Google Scholar
Gareis, M., and Gareis, E.. 2007. ‘Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins ochratoxin A and B.Mycopathologia, 163 (4): 207214.CrossRefGoogle ScholarPubMed
Gaumann, E. 1938. ‘Uber die experimentelle auslosung der guttation.Berichte der Deutschen Botanischen Gesellschaft, 56: 396405.Google Scholar
Gaume, A., Komarnytsky, S., Borisjuk, N. V., and Raskin, I.. 2003. ‘Rhizosecretion of recombinant proteins from plant hairy roots.Plant Cell Reports, 21 (12): 11881193.Google Scholar
Gaxiola, R. A., Palmgren, M. G., and Schumacher, K.. 2007. ‘Plant proton pumps.FEBS Letters, 581 (12): 22042214.CrossRefGoogle ScholarPubMed
Gay, P. A., and Tuzun, S.. 2000. ‘Involvement of a novel peroxidase isozyme and lignification in hydathodes in resistance to black rot disease in cabbage.Canadian Journal of Botany, 78 (9): 11441149.Google Scholar
Georgiou, C. D., Patsoukis, N., Papapostolou, I., and Zervoudakis, G.. 2006. ‘Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress.Integrative & Comparative Biology, 46 (6): 691712.CrossRefGoogle ScholarPubMed
Gessner, F. 1941. ‘Untersuchungen über die beziehung zwischen wurzeldruck und atmung.Berichte der Deutschen Botanischen Gesellschaft, 59: 169173.Google Scholar
Ghosh, M., and Singh, S. P.. 2005. ‘A review on phytoremediation of heavy metals and utilization of its byproducts.Applied Ecology and Environmental Research, 3: 118.CrossRefGoogle Scholar
Giddings, G., Allison, G., Brooks, D., and Carter, A.. 2000. ‘Transgenic plants as factories for biopharmaceuticals.Nature Biotechnology, 18 (11): 11511155.CrossRefGoogle ScholarPubMed
Ginsburg, H., and Ginzburg, B. Z.. 1970. ‘Radial water and solute flows in roots of Zea mays L. I. water flows.Journal of Experimental Botany, 21: 580592.CrossRefGoogle Scholar
Ginsburg, H., and Ginzburg, B. Z.. 1971. ‘Evidence for active water transport in a corn root preparations.Journal of Membrane Biology, 4 (1): 2941.CrossRefGoogle Scholar
Glas, J. J., Schimmel, B. C. J., Alba, J. M., R. Escobar-Bravo, Schuurink, R. C., and Kant, M. R.. 2012. ‘Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores.International Journal of Molecular Sciences, 13 (12): 1707717103.CrossRefGoogle Scholar
Goatley, J. L., and Lewis, R. W.. 1966. ‘Composition of guttation fluid from rye, wheat, and barley seedlings.Plant Physiology, 41 (3): 373375.CrossRefGoogle ScholarPubMed
Godlewski, E. 1884. ‘Zur theorie de wasserbewegrang in den pflanzen.Jahrbücher für Wissenschaftliche Botanik, 15: 569630.Google Scholar
Gophna, U., Ron, E. Z., and Graur, D.. 2003. ‘Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events.Gene, 312: 151163.CrossRefGoogle ScholarPubMed
Gordon-Kamm, W. J., and Steponkus, P. L.. 1984. ‘The behaviour of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury.Protoplasma, 123 (2): 8394.CrossRefGoogle Scholar
Gottschalk, U. 2006. ‘Downstream processing in biomanufacturing: removing economic and technical bottlenecks.Bioforum Europe, 10: 2831.Google Scholar
Gottschalk, U. 2011. ‘Overview of downstream processing in the biomanufacturing industry.’ In Comprehensive Biotechnology (2nd ed.), edited by Moo-Young, M., Butler, M., Webb, C., et al. Oxford: Elsevier/Pergamon, pp. 669682.CrossRefGoogle Scholar
Govier, R. N., Brown, G. J. S., and Pate, J. S.. 1968. ‘Hemiparasitic nutrition in angiosperms II. Root haustoria and leaf glands of Odontites verna (Bell.) Dum. and their relevance to the abstraction of solutes from the host.New Phytologist, 67 (4): 963972.Google Scholar
Greenhill, Alec Walter, and Albert Charles Chibnall. 1934. ‘The exudation of glutamine from perennial rye-grass.Biochemical Journal, 28 (4): 14221427.Google Scholar
Grodzinskii, A. M. 2016. Allelopathy in the Life of Plants and Their Communities. Jodhpur, India: Scientific Publishers.Google Scholar
Grossenbacher, K. A. 1938. ‘Diurnal fluctuation in root pressure.Plant Physiology, 13 (4): 669676.Google Scholar
Grossenbacher, K. A.. 1939. ‘Autonomic cycle of rate of exudation of plants.American Journal of Botany, 26 (2): 107109.CrossRefGoogle Scholar
Grovel, O., Pouchus, Y. F., and Verbist, J. F.. 2003. ‘Accumulation of gliotoxin, a cytotoxic mycotoxin from Aspergillus fumigatus, in blue mussel (Mytilus edulis).Toxicon, 42 (3): 297300.Google Scholar
Grunwald, I., Rupprecht, I., Schuster, G., and Kloppstech, K.. 2003. ‘Identification of guttation fluid proteins: the presence of pathogenesis-related proteins in non-infected barley plants.Physiologia Plantarum, 119 (2): 192202.CrossRefGoogle Scholar
Guiry, M. D., and Guiry, G. M.. 2008. ‘Vaucheria: Algae Base.National University of Ireland, Galway: World-wide Electronic Publication. Accessed through World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=144303 on December 30, 2019.Google Scholar
Haberlandt, G. 1914. Physiological Plant Anatomy (English translation by Drummond M.). London: Macmillan & Company.Google Scholar
Haberlandt, G. 1924. Physiologische Pflanzenanatomie. Leipzig: Wilhelm Engelmann.Google Scholar
Hakkinen, S. T., Raven, N., Henquet, M., et al. 2014. ‘Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody.Biotechnology and Bioengineering, 111 (2): 336346.CrossRefGoogle ScholarPubMed
Hales, S. 1727. Vegetable Staticks, (or An Account of Some Statical Experiments on the Sap in Vegetables). London: Reprinted by Scientific Book Guild.Google Scholar
Harris, R. I. 1999. ‘Guttation- the basis of an assay for evaluating formulation behaviour in vivo.Pesticide Science, 55 (5): 582583.Google Scholar
Hassan, S, Keshavarz-Moore, E., Ma, J., and Thomas, C.. 2014. ‘Breakage of transgenic tobacco roots for monoclonal antibody release in an ultra-scale down shearing device.Biotechnology and Bioengineering, 111 (1): 196201.Google Scholar
Hayashi, T., Harada, A., Sakai, T., and Takagi, S.. 2006. ‘Ca2+ transient induced by extracellular changes in osmotic pressure in Arabidopsis leaves: differential involvement of cell wall-plasma membrane adhesion.Plant, Cell & Environment, 29 (4): 661672.Google Scholar
Hehle, V. K., Paul, M. J., Drake, P. M., Ma, J. K. C., and van Dolleweerd, C. J.. 2011. ‘Antibody degradation in tobacco plants: a predominantly apoplastic process.BMC Biotechnology, 128: 11.Google Scholar
Heimann, M. 1950. ‘Einfluß periodischer beleuchtung auf die guttationsrhythmik.Planta, 38 (2): 157195.Google Scholar
Heimann, M. 1952. ‘Die abhangigkeit des blutungsverlaufs von beleuchtung und blattzahl.Planta, 40: 377390.Google Scholar
Heinen, R. B., Ye, Q., and Chaumont, F.. 2009. ‘Role of aquaporins in leaf physiology.Journal of Experimental Botany, 60: 29712985.CrossRefGoogle ScholarPubMed
Hellwig, S., Drossard, J., Twyman, R. M., and Fischer, R.. 2004. ‘Plant cell cultures for the production of recombinant proteins.Nature Biotechnology, 22 (11): 14151422.Google Scholar
Heringa, J. W. 1971. ‘Guttation and dewdrops as contribution to some physiological disorders.Landbouwkd Tijdschr, 83: 7.Google Scholar
Hetherington, A. M., and Woodward, F. I.. 2003. ‘The role of stomata in sensing and driving environmental change.Nature, 424: 901908.Google Scholar
Heyl, J. G. 1933. ‘Der einflue von aubenlaktoren auf das bluten der pflanzen.Planta, 20: 294353.CrossRefGoogle Scholar
Hiatt, A., Cafferkey, R., and Bowdish, K.. 1989. ‘Production of antibodies in transgenic plants.Nature, 342 (6245): 7678.CrossRefGoogle ScholarPubMed
Hoagland, D. R. 1944. The Inorganic Nutrition of Plants. Massachusetts: Chronica Botanica Company.Google Scholar
Hoagland, D. R., and Broyer, T. C.. 1936. ‘General nature of the process of salt accumulation by roots with description of experimental methods.Plant Physiology, 11 (3): 471507.Google Scholar
Hoagland, D. R., and Broyer, T. C.. 1942. ‘Accumulation of salt and permeability in plant cells.The Journal of General Physiology, 25 (6): 865880.Google Scholar
Hoffmann, E. J., and Castle, S. J.. 2012. ‘Imidacloprid in melon guttation fluid: a potential mode of exposure for pest and beneficial organisms.Journal of Economic Entomology, 105 (1): 6771.Google Scholar
Hofmeister, W. 1862. ‘Uber Spannung, Ausflussmenge und Ausflussgeschwindigkeit von Saften lebender Pflanzen.Flora, 45: 97-108.Google Scholar
Hohn, K. 1951. ‘Beziehungen zwischen blutung und guttation bei zen mays.Planta, 39: 6574.Google Scholar
Holbrook, N. Michele, and Zwieniecki, M. A.. 1999. ‘Embolism repair and xylem tension: do we need a miracle?Plant Physiology, 120 (1): 710.Google Scholar
Holbrook, N. M., Ahrens, E. T., Burns, M. J., and Zwieniecki, M. A.. 2001. ‘In vivo observation of cavitation and embolism repair using magnetic resonance imaging (MRI).Plant Physiology, 126 (1): 2731.Google Scholar
Holland, M. A. 1997. ‘Occam’s razor applied to hormonology (are cytokinins produced by plants?).Plant Physiology, 115 (3): 865868.Google Scholar
Hone, K., and Vollenweider, G.. 1960. ‘Beziehungen zwischen transpiration, guttation und wachstum bei Avena sativa.’ Beitragezur Biologieder Pflanzen, 35: 4153.Google Scholar
Hose, E., Steudle, E., and Hartung, W.. 2000. ‘Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes.Planta, 211 (6): 874882.Google Scholar
House, C. R. 1974. Water Transport in Cells and Tissues. London: Edward Arnold.Google Scholar
House, C. R., and Findlay, N.. 1966. ‘Water transport in isolated maize roots.Journal of Experimental Botany, 17 (2): 344354.Google Scholar
Huber, B. 1956. Die Saftstrome Der Pflanzen. Berlin: Springer.Google Scholar
Hughes, R. N., and Brimblecombe, P. 1994. ‘Dew and guttation: formation and environmental significance.Agricultural and Forest Meteorology 67 (3/4): 173190.Google Scholar
Hugouvieux, V., Barber, C. E., and Daniels, M. J.. 1998. ‘Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: a system for studying early infection events in bacterial pathogenesis.Molecular Plant-Microbe Interactions, 11 (6): 537543.Google Scholar
Hutwimmer, S., Wang, H., Strasser, H., and Burgstaller, W.. 2010. ‘Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins.Mycologia, 102 (1): 110.Google Scholar
Ingham, G. 1950. ‘The mineral content of air and rain and its importance to agriculture.Journal of Agricultural Science 40 (1/2): 5561.Google Scholar
Isayenkov, S., Isner, J. C., and Maathuis, F. J. M.. 2010. ‘Vacuolar ion channels: roles in plant nutrition and signalling.FEBS Letters, 584 (10): 19821988.Google Scholar
Itai, C., and Vaadia, Y.. 1965. ‘Kinetin-like activity in root exudate of water-stressed sunflower plants.Physiologia Plantarum, 18 (4): 941944.Google Scholar
Itai, C., Richmond, A., and Vaadia, Y.. 1968. ‘The role of cytokinins during water and salinity stress.Israel Journal of Plant Sciences, 17: 187195.Google Scholar
Ivanoff, S. S. 1938. ‘Onion blight.Texas Agricultural Experiment Station, Fifty-first Annual Report, pp. 260261.Google Scholar
Ivanoff, S. S. 1941. ‘Chemical deposits on foliage of citrus and other plants and their possible relation to chlorosis and yield.Texas Agricultural Experiment Station, Fifty-fourth Annual Report, pp. 181182.Google Scholar
Ivanoff, S. S. 1944. ‘Guttation-salt injury on leaves of cantaloupe, pepper and onion.Phytopathology, 34 (4): 436437.Google Scholar
Ivanoff, S. S. 1960. ‘Types of injuries on cantaloupe leaves associated with guttation.Phytopathology, 50: 640.Google Scholar
Ivanoff, S. S. 1961. ‘Injuries on cantaloupe leaves associated with laminal guttation away from marginal hydathodes.Phytopathology, 51: 584585.Google Scholar
Ivanoff, S. S. 1963. ‘Guttation injuries of plants.Botanical Review, 29 (2): 202229.Google Scholar
Jackson, R. W. 2009. Plant Pathogenic Bacteria: Genomics and Molecular Biology. Norwich: Horizon Scientific Press.Google Scholar
Jaffe, M. J., Leopold, A. C., and Staples, R. A.. 2002. ‘Thigmo responses in plants and fungi.American Journal of Botany, 89 (3): 375382.Google Scholar
Jaradat, T. T., and Allen, R. D.. 1999. ‘Isolation of a novel cDNA encoding an auxin-induced basic helix–loop–helix transcription factor (Accession no. AF 165924) from cotton (Gossypium hirsutum L.).Plant Physiology, 121: 685686.Google Scholar
Jasinski, M., Ducos, E., Martinoia, E., and Boutry, M.. 2003. ‘The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis.Plant Physiology, 131 (3): 11691177.Google Scholar
Jennings, D. H. 1991. ‘The role of droplets in helping to maintain a constant growth rate of aerial hyphae.Mycological Research, 95 (7): 883884.Google Scholar
Jin, J., Panicker, D., Wang, Q., et al. 2014. ‘Next generation sequencing unravels the biosynthetic ability of Spearmint (Mentha spicata) peltate glandular trichomes through comparative transcriptomics.BMC Plant Biology, 14: 283292.Google Scholar
Johnson, J. 1936. ‘Relation of root pressure to plant disease.Science, 84 (2171): 135136.Google Scholar
Johnson, L. P. V. 1945. ‘Physiological studies on sap flow in the sugar maple (Acer saccharum Marsh.).Canadian Journal of Research, 23 (6): 192197.Google Scholar
Joshi, Y. C., Qadar, A., and Rana, R. S.. 1979. ‘Differential sodium and potassium accumulation related to sodicity tolerance in wheat.Indian Journal of Plant Physiology, 22 (3): 226230.Google Scholar
Kaldenhoff, R., Kai, L., and Uehlein, N.. 2014. ‘Aquaporins and membrane diffusion of CO2 in living organisms.Biochimicaet Biophysica Acta, 1840 (5): 15921595.Google Scholar
Kaldenhoff, R., Ribas-Carbo, M., Sans, J. F., Lovisolo, C., Heckwolf, M., and Uehlein, N.. 2008. ‘Aquaporins and plant water balance.Plant, Cell & Environment, 31 (5): 658666.Google Scholar
Karg, S. R., and Kallio, P. T.. 2009. ‘The production of biopharmaceuticals in plant systems.Biotechnology Advances, 27 (6): 879894.Google Scholar
Katou, K., Taura, T., and Furumoto, M.. 1987. ‘A model for water transport in the stele of plants roots.Protoplasma 140 (2/3): 123132.Google Scholar
Katsuhara, M., Hanba, Y. T., Shiratake, K., and Maeshima, M.. 2008. ‘Expanding roles of plant aquaporins in plasma membranes and cell organelles.Functional Plant Biology, 35 (1): 114.Google Scholar
Kaufmann, I., Schulze-Till, T., Schneider, H. U., Zimmermann, U., Jakob, P., and Wegner, L. H.. 2009. ‘Functional repair of embolized vessels in maize roots after temporal drought stress, as demonstrated by magnetic resonance imaging.New Phytologist, 184 (1): 245256.Google Scholar
Kaufmann, M. R., and Eckard, A. N.. 1971. ‘Evaluation of water stress control with polyethylene glycols by analysis of guttation.Plant Physiology, 47 (4): 453456.Google Scholar
Kerstetter, R. E., Zepp, R. G., and Carreira, L. H.. 1998. ‘Peroxidases in grass dew derived from guttation: possible role in polymerization of soil organic matter.Biogeochemistry, 42 (3): 311323.Google Scholar
Kieber, J. J., and Eric Schaller, G.. 2010. ‘The perception of cytokinin: a story of 50 years in the making.Plant Physiology, 154 (2): 487492.CrossRefGoogle Scholar
Kim, H. J., and Triplett, B. A.. 2001. ‘Cotton fiber growth in plants and in vitro: models for plant cell elongation and cell wall biogenesis.Plant Physiology, 127 (4): 13611366.Google Scholar
Kim, K., Kwon, S., Lee, H., Hur, Y., Bang, J., and Kwak, S.. 2003. ‘A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells.Plant Molecular Biology, 51 (6): 831838.Google Scholar
Kim, Y. X., and Steudle, E.. 2009. ‘Gating of aqùaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays.Journal of Experimental Botany, 60 (2): 547556.CrossRefGoogle ScholarPubMed
Kiran, R. 2014. Role of Guttation Fluid in the Spread of Bacterial Blight of Rice. Germany: LAMBERT Academic Publishing.Google Scholar
Kirchhoff, J., Raven, N., Boes, A., et al. 2012. ‘Monoclonal tobacco cell lines with enhanced recombinant protein yields can be generated from heterogeneous cell suspension cultures by flow sorting.Plant Biotechnology Journal, 10 (8): 936944.Google Scholar
Klein, R. 1913. ‘Uber machweis und vorkommen von nitraten und nitriten en pflanzen.Beihefte zum Botanischen Centralblatt, 19: 409452.Google Scholar
Klepper, B., and Kaufmann, M. R.. 1966. ‘Removal of salt from xylem sap by leaves and stems of guttating plants.Plant Physiology, 41 (10): 17431747.CrossRefGoogle ScholarPubMed
Knipfer, T., Das, D., and Steudle, E.. 2007. ‘During the measurements of root hydraulics with pressure probe, the contribution of unstirred layers is minimized in the pressure relaxation mode: comparison with pressure clamp and high pressure flow meter.Plant, Cell and Environment, 30: 845860.Google Scholar
Knipling, E. B. 1967. ‘Measurement of leaf water potential by the dye method.Ecology, 48 (6): 10381041.Google Scholar
Koegel-Knaber, I. 2002. ‘The macromolecular organic composition of plants and microbial residues as inputs to soil organic matters.Soil Biology & Biochemistry, 34 (2): 139162.Google Scholar
Koiwai, H., Nakaminami, K., Seo, M., Mitsuhashi, W., Toyomasu, T., and Koshiba, T.. 2004. ‘Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis.Plant Physiology, 134 (4): 16971707.Google Scholar
Komarnytsky, S., and Borisjuk, N. V.. 2012. ‘Plant-derived antibodies for academic, industrial, and therapeutic applications.’ In: Pathak, Y, and Benita, S (eds), Antibody-mediated Drug Delivery Systems: Concepts, Technology, and Applications (1st ed.). New York, NY: John Wiley & Sons.Google Scholar
Komarnytsky, S., Borisjuk, N. V., Borisjuk, L. G., Alam, M. Z., and Raskin, I.. 2000. ‘Production of recombinant proteins in tobacco guttation fluid.Plant Physiology, 124 (3): 927934.Google Scholar
Komarnytsky, S., Borisjuk, N. V., Yakoby, N., Garvey, A., and Raskin, I.. 2006. ‘Co-secretion of protease inhibitor stabilizes antibodies produced by plant roots.Plant Physiology, 141 (4): 11851193.Google Scholar
Komarnytsky, S., Gaume, A., Garvey, A., Borisjuk, N. V., and Raskin, I.. 2004. ‘A quick and efficient system for antibiotic-free expression of heterologous genes in tobacco roots.Plant Cell Reports, 22 (10): 765773.Google Scholar
Komis, G., Apostolakos, P., and Galatis, B.. 2002. ‘Hyperosmotic stress-induced actin filament reorganisaton in leaf cells of Chlorophyton comosum.Journal of Experimental Botany, 53 (375): 16991710.Google Scholar
Korolev, A. V., and Zholkevich, V. N.. 1990. ‘The effect of metabolic regulators on root pumping activity.Doklady Akademii Nauk SSSR, 310: 507511.Google Scholar
Kostman, T. A., Tarlyn, N. M., Loewus, F. A., and Franceschi, V. R.. 2001. ‘Biosynthesis of L-Ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts.Plant Physiology, 125 (2): 634640.Google Scholar
Koulman, A., Lane, G. A., Christensen, M. J., Fraser, K., and Tapper, B. A.. 2007. ‘Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses.Phytochemistry, 68 (3): 355360.Google Scholar
Kramer, P. J. 1939. ‘The forces concerned in the intake of water by transpiring plants.American Journal of Botany, 26 (10): 784791.Google Scholar
Kramer, P. J. 1945. ‘Absorption of water by plants.Botanical Review, 11 (6): 310355.Google Scholar
Kramer, P. J. 1949. Plant and Soil Water Relationships. New York, NY: McGraw-Hill.Google Scholar
Kramer, P. J., and Boyer, J. S.. 1995. Water Relations of Plants and Soils. California: Academic Press.Google Scholar
Kramer, P. J., and Currier, H. B.. 1950. ‘Water relations of plant cells and tissues.Annual Review of Plant Physiology, 1: 265284.Google Scholar
Krasil’nikov, N. A. 1961. ‘Interaction between soil microorganisms and plants.’ In Soil Microorganisms and Higher Plants. Moscow: Academy of Sciences of the USSR (Russian version), 1958. Published in English for The National Science Foundation, Washington, D.C. and The Department of Agriculture, USA by the Israel Program for Scientific Translations in 1961.Google Scholar
Krasnoff, S. B., Keresztes, I., Gillilan, R. E., et al. 2007. ‘Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae.Journal of Natural Products, 70 (12): 19191924.CrossRefGoogle Scholar
Kundt, W. 1998. ‘The heart of plants.Current Science, 75: 98102.Google Scholar
Kundt, W., and Gruber, E.. 2006. ‘The water circuit of the plants. Do plants have hearts?Quantitative Biology, 0603019: 119.Google Scholar
Kwak, J. M., Kim, S. A., Hong, S. W., and Nam, H. G.. 1997. ‘Evaluation of 515 expressed sequence tags obtained from guard cells of Brassica campestris.Planta, 202 (1): 917.Google Scholar
Lagarde, D., Basset, M., Lepetit, M., et al. 1996. ‘Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition.The Plant Journal, 9 (2): 195203.Google Scholar
Lal, R. 2001. ‘Soil degradation by erosion.Land Degradation & Development, 12 (6): 519539.Google Scholar
Lange, B. M., Mahmoud, S. S., Wildung, M. R., et al. 2011. ‘Improving peppermint essential oil yield and composition by metabolic engineering.Proceedings of the National Academy of Sciences of the United States of America, 108 (41): 1694416949.Google Scholar
Lauger, P. 1985. ‘Kinetics of ion channels and ion pumps.’ In: Pullman, A, Vasilescu, V, and Packer, L (eds), Water and Ions in Biological System. Bucharest: Union of Societies for Medical Sciences, pp. 451462.Google Scholar
Lausberg, T. 1935. ‘Quantitative untersuchungen uber die kuticulare excretion des laublettes.Jahrbucher fur Wissenschaftliche Botanik, 81: 769806.Google Scholar
Lazareva, N. P., Borisova, T. A., and Zholkevich, V. N.. 1986. ‘Auto-oscillatary nature of pumping activity of Zea mays L. root system.’ Doklady Akademii Nauk SSSR, 289: 761764.Google Scholar
Leakey, A. B. D., Scholes, J. D., and Press, M. C.. 2005. ‘Physiological and ecological significance of sunflecks for dipterocarp seedlings.Journal of Experimental Botany, 56 (411): 469482.Google Scholar
LeClerc, J. A., and Breazeale, J. F.. 1909. Plant food removed from growing plants by rain or dew. U.S. Department of Agriculture Yearbook, pp. 389402.Google Scholar
Lee, J. J., Woodward, A. W., and Chen, Z. J.. 2007. ‘Gene expression changes and early events in cotton fibre development.Annals of Botany, 100 (7): 13911401.Google Scholar
Lee, R. E. 2008. Phycology (4th ed.). Cambridge: Cambridge University Press.Google Scholar
Lehto, T., and Zwiazek, J. J.. 2011. ‘Ectomycorrhizas and water relations of trees: a review.Mycorrhiza, 21 (2): 7190.Google Scholar
Lemenih, M., and Kassa, H.. 2011. Opportunities and Challenges for Sustainable Production and Marketing of Gums and Resins in Ethiopia. Bogor, Indonesia: Center for International Forestry Research.Google Scholar
LeNoble, M. E., Spollen, W. G., and Sharp, R. E.. 2004. ‘Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression.Journal of Experimental Botany, 55 (395): 237245.Google Scholar
Lepeschkin, W. W. 1923. ‘Uber active und passive wasserdrusen und wasserspalten.Berichte der Deutschen Botanischen Gesellschaft, 41 (7): 298300.Google Scholar
Lersten, N. R., and Curtis, J. D.. 1982. ‘Hydathodes in Physocarpus (Rosaceae: Spiraeoideae).Canadian Journal of Botany, 60 (6): 850855.Google Scholar
Lersten, N. R., and Curtis, J. D.. 1985. ‘Distribution and anatomy of hydathodes in Asteraceae.Botanical Gazette, 146 (1): 106114.Google Scholar
Lersten, N. R., and Curtis, J. D.. 1991. ‘Laminar hydathodes in Urticaceae: survey of tribes and anatomical observation on Pilea pumila and Urtica dioica.Plant Systematics and Evolution 176 (3/4): 179203.Google Scholar
Lersten, N. R., and Curtis, J. D.. 1986. ‘Tubular cavities in white snakerrot, Eupatorium rugosum (Asteraceae).American Journal of Botany, 73 (7): 10161021.Google Scholar
Lersten, N. R., and Horner, H. T.. 2011. ‘Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae).Amercian Journal of Botany, 94: 111.Google Scholar
Lersten, N. R., and Peterson, W. H.. 1974. ‘Anatomy of hydathodes and pigment disks in leaves of Ficusdiversifolia (Moraceae).Botanical Journal of Linnaean Society, 68 (2): 109113.Google Scholar
Letham, D. S. 1994. ‘Cytokinins as phytohormones: sites of biosynthesis, translocation, and function of translocated cytokinin.’ In Cytokinins: Chemistry, Activity and Function, edited by Mok, D. W. S., and Mok, M. C.. Boca Raton, Florida: CRC Press, pp. 5780.Google Scholar
Levin, D. A. 1973. ‘The role of trichomes in plant defence.Quarterly Review of Biology, 48 (1): 315.Google Scholar
Levitt, J. 1956. ‘The physical nature of transpiration pulls.Plant Physiology, 31: 248250.Google Scholar
Lewis, R. W. 1962. ‘Guttation fluid: effects on growth of Claviceps purpurea in vitro.Science, 138 (3541): 690691.Google Scholar
Ling, N. X. Y., and Leung, D. W. M.. 2010. ‘Inf luence of sugars and light on rhizosecretion of -glucosidase and acid phosphatase during micropropagation of potato.Plant Cell, Tissue and Organ Culture 103 (2): 279-283.Google Scholar
Liu, Q., Parsons, A. J., Xue, H., et al. 2011. ‘Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content.Functional Ecology, 25 (4): 910920.Google Scholar
Lock, J. A., Adler, C. L., and Fleet, R. W.. 2008. ‘Rainbows in the grass. I. External-ref lection rainbows from pendant droplets.Applied Optics, 47 (34): 203213.Google Scholar
Logvenkov, S. A. 1993a. ‘On the guttation mechanism in plants.Biophysics, 38 (5): 865869.Google Scholar
Logvenkov, S. A. 1993b. ‘The guttation mechanism in plants.Biophysics, 38: 889894.Google Scholar
Lohani, A., Verma, A., Joshi, H., Yadav, N., and Karki, N.. 2014. ‘Nanotechnology-based cosmeceuticals.ISRN Dermatology, 2014: 114.Google Scholar
Long, W. C., Sweet, D. V., and Turkey, H. B.. 1956. ‘Loss of nutrients from plant foliage by leaching as indicated by radioisotopes.Science, 123 (3206): 10391040.Google Scholar
Loo, D. F., Zeuthen, T., Chandy, G., and Wright, E. M.. 1996. ‘Cotransport of water by the Na+/glucose cotransporter.Proceedings of the National Academy of Sciences of the United States of America, 93 (23): 1336713370.Google Scholar
Lucas, W. J. 1995. ‘Plasmodesmata: intercellular channels for macromolecular transport in plants.Current Opinion in Cell Biology, 7 (5): 673680.Google Scholar
Lundegardh, H. 1944. ‘Bleeding and sap movement.Arkiv for Botanik 31 A: 156.Google Scholar
Lundegardh, H. 1950. ‘The translocation of salts and water through wheat roots.Physiologia Plantarum, 3 (2): 103151.Google Scholar
Luo, W., and Goudriaan, J.. 2000. ‘Dew formation on rice under varying durations of nocturnal radiative loss.Agricultural and Forest Meteorology, 104 (4): 303313.Google Scholar
Lyalin, O. O., Ktitorova, I. N., Barmicheva, E. M., and Achmedov, N. I.. 1986. ‘Intercellular connections in submerged trichomes of Salvinia.Soviet Plant Physiology, 33: 432446.Google Scholar
Ma, H., Yanofsky, M. F., and Huang, H.. 1991. ‘Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G-protein alpha subunit.Gene, 107 (2): 189195.Google Scholar
Ma, H., Yanofsky, M. F., and Meyerowitz, E. M.. 1990. ‘Molecular cloning and characterization of GPA1, a G protein subunit gene from Arabidopsis thaliana.Proceedings of the National Academy of Sciences of the United States of America, 87 (10): 38213825.Google Scholar
Ma, J. K. C., Drake, P. M. W., and Christou, P.. 2003. ‘The production of recombinant pharmaceutical proteins in plants.Nature Reviews Genetics, 4 (10): 794805.Google Scholar
Ma, J. K. C., Barros, E., Bock, R., et al. 2005. ‘Molecular farming for new drugs and vaccines- current perspectives on the production of pharmaceuticals in transgenic plants.EMBO Reports, 6 (7): 593599.Google Scholar
Maeda, E., and Maeda, K.. 1987. ‘Ultrastructural studies of leaf hydathodes. I. Wheat (Triticum aestivum) leaf tips.Japanese Journal of Crop Sciences, 56 (4): 641651.Google Scholar
Maeda, E., and Maeda, K.. 1988. ‘Ultrastructural studies of leaf hydathodes. II. Rice (Oryza sativa) leaf tips.Japanese Journal of Crop Sciences, 57 (4): 733742.Google Scholar
Magwa, M. L. 1995. Investigation into the Enzymes of the Guttation Fluid of Plants. South Africa: University of Fort Hare.Google Scholar
Magwa, M. L., Lindner, W. A., and Brand, J. M.. 1993. ‘Guttation fluid peroxidases from Helianthus annuus.’ Phytochemistry, 32: 251253.Google Scholar
Mahdieh, M., Mostajeran, A., Horie, T., and Katsuhara, M.. 2008. ‘Drought stress alters water relations and expression of PIP-type aquaporin genes inNicotiana tabacum plants.Plant & Cell Physiology, 49 (5): 801813.Google Scholar
Mahmoud, S. S., and Croteau, R. B.. 2001. ‘Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase.Proceeding of the National Academy of Sciences of the United States of America, 98 (15): 89158920.Google Scholar
Mann, C. E. T. 1924. ‘The physiology of the nutrition of fruit trees.I. Annual Report of Long Ashton Agricultural and Horticultural Research Station, pp. 3045.Google Scholar
Mann, C. E. T., and Wallace, T.. 1925. ‘The effect of leaching with cold water on the foliage of apple.Journal of Pomology and Horticultural Science, 4 (3): 146161.Google Scholar
Marloth, R. 1887. ‘Zur bedeutung der salz abscheidenden drusen der tama racineen.Berichte der Deutschen Botanischen Gesellschaft, 5: 319324.Google Scholar
Marschner, H. 1995. Mineral Nutrition of Higher Plants. London: Academic Press.Google Scholar
Martin, C. E., and von Willert, D. J.. 2000. ‘Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in Southern Africa.Plant Biology, 2 (2): 229242.Google Scholar
Matsumoto, T., Lian, H., Su, W., et al. 2009. ‘Role of theaquaporin PIP1 subfamily in the chilling tolerance of rice.Plant and Cell Physiology, 50 (2): 216229.Google Scholar
Mattsson, M., Herrmann, B., David, M. B., et al. 2009. ‘Temporal variability in bioassays of the stomatal ammonia compensation point in relation to plant and soil nitrogen parameters in intensively managed grassland.Biogeosciences, 6 (2): 171179.Google Scholar
Maurel, C, Verdoucq, L., Luu, D. T., and Santoni, V.. 2008. ‘Plant aquaporins: membrane channels with multiple integrated functions.Annual Review of Plant Biology, 59: 595624.Google Scholar
Mauseth, J. D. 1988. Plant Anatomy. Menlo Park, CA: The Benjamin/Cummings Publication Company.Google Scholar
McCulloh, K. A., Meinzer, F. C., Sperry, J. S., et al. 2011. ‘Comparative hydraulic architecture of tropical tree species representing a range of successional status and wood density.Oecologia, 167 (1): 2737.Google Scholar
McDowell, N., Pockman, W. T., Allen, C. D., et al. 2008. ‘Mechanisms of plant survival and mortality during drought. Why do some plants survive while others succumb to drought?New Phytologist, 178 (4): 719739.Google Scholar
Mcintyre, G. I. 1994. ‘The role of transpiration in phototropism of the Avena coleoptile: evidence of stomatal control of the phototropic response.Australian Journal of Plant Physiology, 21 (3): 359375.Google Scholar
McKenzie, M. J., Mett, V., Reynolds, P. H. S., Jameson, P. E.. 1998. ‘Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter.Plant Physiology, 116 (3): 969977.Google Scholar
McNear, D. H., Jr., Peltier, E., Everhart, J., et al. 2005. ‘Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale.Environmental Science & Technology, 39 (7): 22102218.Google Scholar
Meagher, R. B., and Heaton, A. C.. 2005. ‘Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.Journal of Industrial Microbiology and Biotechnology 32 (11/12): 502513.Google Scholar
Meidner, H. 1977. ‘Sap exudation via the epidermis of leaves.Journal of Experimental Botany, 28 (6): 14081416.Google Scholar
Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S. Y.. 2006. ‘Plant stomata function in innate immunity against bacterial invasion.Cell, 126 (5): 969980.Google Scholar
Merlot, S., Leonhardt, N., Fenzi, F., et al. 2007. ‘Constitutive activation of a plasma membrane H(+)-ATPase prevents abscisic acid-mediated stomatal closure.EMBO Journal, 26 (13): 32163226.Google Scholar
Meyer, R. C., Yuan, J. T., Afzal, J., et al. 2006. ‘Identification of Gsr1: a locus inferred to regulate gene expression in response to exogenous glutamine.Euphytica, 151 (3): 291302.Google Scholar
Michaud, L. G. 1854. Biographie Universelle Ancienne Et Moderne (1843)- Tome 1. Paris: A. Thoisnier Desplaces.Google Scholar
Miele, L. 1997. ‘Plants as bioreactors for biopharmaceuticals: regulatory considerations.Trends in Biotechnology, 15 (2): 4550.Google Scholar
Mihucz, V. G., Tatar, E., Virag, I., Cseh, E., Fodor, F., and Zaray, G.. 2005. ‘Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.).Analytical & Bioanalytical Chemistry, 383 (3): 461466.Google Scholar
Milburn, J. A. 1979. Water Flow in Plants. London: Longman.Google Scholar
Miret, J. A., and Munne-Bosch, S.. 2014. ‘Plant amino acid-derived vitamins: biosynthesis and function.Amino Acids, 46 (4): 809824.CrossRefGoogle ScholarPubMed
Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., et al. 2006. ‘Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis.Proceedings of the National Academy of Sciences of the United States of America, 103 (44): 1659816603.Google Scholar
Mizuno, N., Takahashi, A., Wagatsuma, T., Mizuno, T., and Obata, H.. 2002. ‘Chemical composition of guttation fluid and leaves of Petasites japonicus var giganteus and Polygonum cuspidatum growing on ultramafic soil.Soil Science & Plant Nutrition, 48 (3): 451453.Google Scholar
Mizuno, N., Nosaka, S., Mizuno, T., Horie, K., and Obata, H.. 2003. ‘Distribution of Ni and Zn in the leaves to Thlaspi japonicum growing on ultramafic soil.Soil Science & Plant Nutrition, 49 (1): 9397.Google Scholar
Molisch, H. 1916. ‘Beitrage zur mikrochemie der pflanze. Nr. 2: uber orangefarbige hydathoden bei Ficus javanica.Berichte der Deutschen Botanischen Gesellschaft, 34: 6669.Google Scholar
Monshausen, G. B., and Haswell, E. S.. 2013. ‘A force of nature: molecular mechanisms of mechanoperception in plants.Journal of Experimental Botany, 64 (15): 46634680.Google Scholar
Morris, S. E., Turnbull, C. G. N., Murfet, I. C., and Beveridge, C. A.. 2001. ‘Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal.Plant Physiology, 126 (3): 12051213.Google Scholar
Morse, W. J. 1920. ‘Some observations upon the effect of borax in fertilizers.Maine Agricultural Experiment Station Research Bulletin 288. Orono: Maine Agricultural Experiment Station.Google Scholar
Morth, J. P., Pedersen, B. P., Buch-Pedersen, M. J., et al. 2011. ‘A structural overview of the plasma membrane Na+, K+-ATPase and H+ -ATPase ion pumps.Nature Reviews of Molecular Cell Biology, 12: 6070.Google Scholar
Mortlock, C. 1952. ‘The structure and development of the hydathodes of Ranunculus fluitans Lam.New Phytologist, 51 (2): 129138.Google Scholar
Mozhaeva, L. V., and Bulycheva, E. M.. 1971. ‘Properties of a contractile protein isolated from pumpkin roots.Izvestija Timirjazevskoj Sel ’skochozjajstvennoj Akademii, 2: 39.Google Scholar
Mozhaeva, L. V., and Pil’shchikova, N. V.. 1972. ‘On the nature of pumping water process by plant roots.Izvestija Timirjazevskoj Sel ’skochozjajstvennoj Akademii, 3: 315.Google Scholar
Mozhaeva, L. V., and Pil’shchikova, N. V.. 1978. ‘Relationship between root pressure constituents and root water pumping rate.Doklady Akademii Nauk SSSR, 239: 10051008.Google Scholar
Mozhaeva, L. V., Pil’shchikova, N. V., and Kuzina, V. I.. 1979. ‘Study on the nature of the motive force of plant exudation with the use of chemical effects.Izvestija Timirjazevskoj Sel ’skochozjajstvennoj Akademii, 9: 39.Google Scholar
Muller, D., and Leyser, O.. 2011. ‘Auxin, cytokinin and the control of shoot branching.Annals of Botany, 107 (7): 12031212.Google Scholar
Munch, E. 1930. Die Stoftbewegungen in Der Pflanze. Jena: Fischer.Google Scholar
Mungur, R., Glass, A. D. M., Goodenow, D. B., and Lightfoot, D. A.. 2005. ‘Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene.Journal of Biomedicine and Biotechnology, 2005 (2): 198214.Google Scholar
Munnecke, D. E., and Chandler, P. A.. 1957. ‘A leaf spot of Philodendron related to stomatal exudation and to temperature.Phytopathology, 47 (5): 299303.Google Scholar
Munns, R., and Tester, M.. 2008. ‘Mechanisms of salinity tolerance.Annual Review of Plant Biology, 59: 651681.Google Scholar
Munns, R., Passioura, J. B., Guo, J., Chazen, O., and Cramer, G. R.. 2000. ‘Water relations and leaf expansion: importance of time scale.Journal of Experimental Botany, 51 (350): 14951504.Google Scholar
Nagai, M., Ohnishi, M., Uehara, T., et al. 2013. ‘Ion gradients in xylem exudate and guttation fluid related to tissue ion levels along primary leaves of barley.Plant, Cell & Environment, 36 (10): 18261837.Google Scholar
Nambaru, E., and Marion-Poll, A.. 2005. ‘Abscisic acid biosyntheisis and catabolism.Annual Review of Plant Biology, 56: 165185.Google Scholar
Nardini, A. L., Gullo, M. A., and Salleo, S.. 2011. ‘Refilling embolized xylem conduits:is it a matter of phloem unloading?Plant Science 180: 604611.Google Scholar
Necmi, P. 2005. ‘Investigation of monthly variation in some plant-nutrient contents of guttation fluid samples taken from dieffenbachia plants.Journal of Plant Nutrition, 28 (8): 13751382.Google Scholar
Niittyla, T., Fuglsang, A. T., Palmgren, M. G., Frommer, W. B., and Schulze, W. X.. 2007. ‘Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis.Molecular & Cellular Proteomics, 6 (10): 17111726.Google Scholar
Ninkovic, V., and Baluska, F.. 2010. Plant Communication from Ecological Perspective. Berlin: Springer.Google Scholar
Nishizawa, N., and Mori, S.. 1977. ‘Invagination of plasmalemma: its role in the absorption of macromolecules in rice roots.Plant & Cell Physiology, 18: 767782.Google Scholar
Nishizawa, N., and Mori, S.. 1978. ‘Endocytosis (heterophagy) in plant cells: involvement of ER and ER-derived vesicles.Plant & Cell Physiology, 19 (5): 717730.Google Scholar
Nobbe, F., and Siegert, T.. 1864. Beitrage zur Pflanzencultur in wassrigen Nahrstoff losungen. Land Ever-State Journal 6: 1945.Google Scholar
Nobel, P. S. 2005. Physicochemical and Environmental Plant Physiology (3rd ed.). Amsterdam: Elsevier.Google Scholar
Noda, T., and Kaku, H.. 1999. ‘Growth of Xanthomonas oryzae pv. oryzae in plants and in guttation fluid of rice.Annals of the Phytopathological Society of Japan, 65 (1): 914,Google Scholar
Nolte, S. A., Young, B. G., Mungur, R., and Lightfoot, D. A.. 2004. ‘The glutamate dehydrogenase gene gdhA increased the resistance of tobacco to glufosinate.Weed Research, 44 (4): 335339.Google Scholar
Oertli, J. J. 1966. ‘Active water transport in plants.Physiologia Plantarum, 19 (3): 809817.Google Scholar
Oertli, J. J. 1986. ‘Gains of water potential in plants.Studia Biophysica, 115: 95103.Google Scholar
Ogura, T. 1958. ‘Studies on upland rice plants. V. On bleeding and guttation of seedlings.Japanese Journal of Crop Science, 27: 5557.Google Scholar
Ogura, Y. 1972. Comparative Anatomy of Vegetative Organs of the Pteridophytes. Berlin: Gebruder Borntraeger.Google Scholar
O’Leary, J. W. 1966. ‘Leaf resistance to guttation.Plant Physiology, 41: 20.Google Scholar
Oparka, K. J., Prior, D. A. M., and Harris, N.. 1990. ‘Osmotic induction of fluid-phase endocytosis in onion epidermis cells.Planta, 180 (4): 555561.Google Scholar
Ozaki, K., and Tai, K.. 1962. ‘Nitrogen metabolism of paddy rice at heading: II. Nitrogenous constituents of guttation from the ear of boot stage.Soil Science and Plant Nutrition, 8: 150152.Google Scholar
Paleg, L. G. 1965. ‘Physiological effects of gibberellins.Annual Review of Plant Physiology, 16: 291322.Google Scholar
Palladin, V. I. 1926. Plant Physiology (3rd ed.). New York, NY: Blakiston’s Son & Company.Google Scholar
Palmgren, M. G. 2001. ‘H+-ATPases: powerhouses for nutrient uptake.Annual Review of Plant Physiology and Plant Molecular Biology, 52: 817845.Google Scholar
Pal’zkill, D. A., and Tibbitts, T. W.. 1977. ‘Evidence that root pressure flow is required for calcium transport to head leaves of cabbage.Plant Physiology, 60 (6): 854856.Google Scholar
Passioura, J. B., and Angus, J. F.. 2010. ‘Improving productivity of crops in water-limited environments.Advances in Agronomy, 106: 3775.Google Scholar
Passioura, J. B., and Tanner, C. B.. 1985. ‘Oscillations in apparent hydraulic conductance of cotton plants.Australian Journal of Plant Physiology, 12 (5): 455461.Google Scholar
Pathak, R. R., Ahmad, A., Lochab, S., and Raghuram, N.. 2008. ‘Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement.Current Science, 94 (11): 13941403.Google Scholar
Pavilinova, E. 1926. ‘Physiological significance of guttation.Bulletin de I’ lnstitut de Rccherchcs Biologiqueset de la Station Biologique, 4: 471478.Google Scholar
Pazoutova, S., Rehacek, Z., and Pokorny, V.. 1978. ‘Microcycle speculation in the Claviceps purpurea.Folia Microbiologica, 23 (5): 376378.Google Scholar
Pedersen, B. P., Buch-Pedersen, M. J., Morth, J. P., Palmgren, M. G., and Nissen, P.. 2007. ‘Crystal structure of the plasma membrane proton pump.Nature, 450: 11111114.Google Scholar
Pedersen, O. 1993. ‘Long-distance water transport in aquatic plants.Plant Physiology, 103: 13691375.Google Scholar
Pedersen, O. 1994. ‘Acropetal water transport in submerged plants.Botanica Acta l07 (2): 6165.Google Scholar
Pedersen, O. 1998. ‘The nature of water transport in aquatic plants.’ In: Pedersen, O (ed), Freshwater Biology. New Jersey: Blackwell Publishing, pp. 196207.Google Scholar
Pedersen, O., and Sand-Jensen, K.. 1993. ‘Water transport in submerged macrophytes.Aquatic Botany, 44 (4): 385406.Google Scholar
Pedersen, O., and Sand-Jensen, K.. 1997. ‘Transpiration does not control growth and nutrient supply in the amphibious plant, Mentha aquatica.Plant, Cell & Environment, 20 (1): 117123.Google Scholar
Pedersen, O., Jørgensen, L. B., and Sand-Jense, K.. 1997. ‘Through-flow of water in leaves of a submerged plant is inf luenced by the apical opening.Planta, 202 (1): 4350.Google Scholar
Peterson, K. M., Rychel, A. L., and Torii, K. U.. 2010. ‘Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development.The Plant Cell, 22 (2): 296306.Google Scholar
Pickard, W. F. 2003a. ‘The riddle of root pressure. I. Putting Maxwell’s demon to rest.Functional Plant Biology, 30 (2): 121134.Google Scholar
Pickard, W. F. 2003b. ‘The riddle of root pressure. II. Root exudation at extreme osmolalities.Functional Plant Biology, 30 (2): 135141.Google Scholar
Piette, A. S., Derua, R., Waelkens, E., Boutry, M., and Duby, G.. 2011. ‘A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins.Journal of Biological Chemistry, 286 (21): 1847418482.Google Scholar
Pilanali, N. 2005. ‘Investigation of monthly variation in some plant-nutrient contents of guttation fluid samples taken from Dieffenbachia plants.Journal of Plant Nutrition, 28 (5): 13751382.Google Scholar
Pillitteri, L. J., Bogenschutz, N. L., and Torii, K. U.. 2008. ‘The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.Plant & Cell Physiology, 49 (6): 934943.Google Scholar
Pilon-Smits, E. 2005. ‘Phytoremediation.Annual Review of Plant Biology, 56: 1539.Google Scholar
Pilot, G., Stransky, H., Bushey, D. F., Pratelli, R., Ludewig, U., Wingate, V. P. M., and Frommer, W. B.. 2004. ‘Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves.The Plant Cell, 16 (7): 18271840.Google Scholar
Plumb, R. C., and Bridgman, W. B.. 1972. ‘Ascent of sap in trees.Science, 179 (4039): 12481250.Google Scholar
Priestley, J. H. 1920. ‘Further observations upon the mechanism of root pressure.New Phytologist, 21: 210220.Google Scholar
Quanzhi, Z., Erming, G., Pisheng, H., and Qihong, L.. 1999. ‘Relation between bleeding potential in neck of spike and source-sink quality of rice.Scientia Agricultura Sinica, 32: 101106.Google Scholar
Raghuram, N., Pathak, R. R., and Sharma, P.. 2006. ‘Signalling and the molecular aspects of N-use efficiency in higher plants.’ In Biotechnological Approaches to Improve Nitrogen Use Efficiency in Plants, edited by Singh, R. P., and Jaiswal, P. K.. Texas: Studium Press LLC, pp. 1940.Google Scholar
Rajaratnam, J. A. 1972. ‘The distribution and mobility of boron within the oil palm, Elaeis guineensis L. II. The fate of applied boron.Annals of Botany, 36 (2): 299306.Google Scholar
Raleigh, G. J. 1946a. ‘The effect of various ions on guttation of the tomato.Plant Physiology, 21 (2): 194200.Google Scholar
Raleigh, G. J. 1946b. ‘Glutamine from ryegrass.Science, 103 (2668): 206207.Google Scholar
Rao, Y. P., and Srivastava, D. N.. 1970. ‘Application of phages in investigation of epidemiology of bacterial blight disease of rice.Proceedings of the Indian National Science Academy, 37 (5): 314321.Google Scholar
Raper, K. B., and Thom, C.. 1949. A Manual of the Penicillia. Baltimore: Williams and Wilkins.Google Scholar
Raskin, I., Ribnicky, D. M., Komarnytsky, S., et al. 2002. ‘Plants and human health in the twenty-first century.Trends in Biotechnology, 20 (12): 522530.Google Scholar
Raven, J. A. 1996. ‘Into the voids: the distribution, function, development and maintenance of gas spaces in plants.Annals of Botany, 78 (2): 137142.Google Scholar
Raven, N., Rasche, S., Kühn, C., et al. 2015. ‘Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.Biotechnology and Bioengineering, 112 (2): 308321.Google Scholar
Regalado, A. P., Pinheiro, C., Vidal, S., et al. 2000. ‘The Lupinus albus class-III chitinase gene, if3, is constitutively expressed in vegatative organs and developing seeds.Planta, 210 (4): 543550.Google Scholar
Renner, O. 1915. ‘Die wasserversorgung der pflanzen.Handworterbuch der naturwissenschaften, 10: 538557.Google Scholar
Richards, K. 2004. ‘Observation and simulation of dew in rural and urban environments.Progress in Physical Geography, 28 (1): 7694.Google Scholar
Riedell, W. E., and Schmid, W. E.. 1987. ‘Diuron decreases light-stimulated potassium translocation to shoots of barley seedlings.Journal of Plant Nutrition, 10 (1): 2532.Google Scholar
Roberts, E., and Lindow, S.. 2014. ‘Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microf lora.The ISME Journal, 8 (2): 359368.Google Scholar
Robesonj, P., Barlettar, G., and Curtiss, R.. 1983. ‘Expression of a streptococcus mutansglucosyltransferase gene in Escherichia coli.Journal of Bacteriology, 153 (1): 211221.Google Scholar
Romantschuk, M. 1992. ‘Attachment of plant pathogenic bacteria to plant surfaces.Annual Review of Phytopathology, 30: 225243.Google Scholar
Rosene, H. F. 1941. ‘Control of water transport in local root regions of attached and isolated roots by means of the osmotic pressure of the external solution.American Journal of Botany, 28 (5): 402410.Google Scholar
Rost, T. L. 1969. ‘Vascular pattern and hydathodes in leaves of Crassula argentea (Crassulaceae).Botanical Gazette, 130 (4): 267270.Google Scholar
Royer, D. L., and Wilf, P.. 2006. ‘Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy.International Journal of Plant Science, 167 (1): 1118.Google Scholar
Ryan, R. P., Vorholter, F., Potnis, N., et al. 2011. ‘Pathogenomics of Xanthomonas: understanding bacterium–plant interactions.Nature Reviews Microbiology, 9 (5): 344355.Google Scholar
Rybicki, E. P. 2009. ‘Third international conference on plant-based vaccines and antibodies.Expert Review of Vaccines, 8 (9): 11511155.Google Scholar
Sabinin, D. A. 1925. ‘On the root system as an osmotic apparatus.Bulletin de I’ ln- stitut de RccherchcsBiologiqueset (Molaton), 4 (2): 129136.Google Scholar
Sahu, P. K., Patel, T. S., Sahu, P., Singh, S., Tirkey, P., and Sharma, D.. 2014. ‘Molecular farming: a biotechnological approach in agriculture for production of useful metabolites.International Journal of Research in Biotechnology and Biochemistry, 4 (2): 2330.Google Scholar
Salisbury, F. B., and Ross, C. W.. 1992. Plant Physiology (4th ed.). Belmont: Wadsworth Publishing Company.Google Scholar
Samson, R. A., and Gams, W.. 1984. ‘The taxonomic situation in the hyphomycete genera Penicillium, Aspergillus and Fusarium.Antonie Van Leeuwenhoek 50 (5/6): 815824.Google Scholar
Sattelmacher, B. 2001. ‘Tansley review no. 22– The apoplast and its significance for plant mineral nutrition.New Phytologist, 149 (2): 167192.Google Scholar
Schillberg, S., Fischer, R., and Emans, N.. 2003. ‘Molecular farming of recombinant antibodies in plants.Cellular and Molecular Life Sciences, 60 (3): 433445.Google Scholar
Schillberg, S., Raven, N., Fischer, R., Twyman, R. M., and Schiermeyer, A.. 2013. ‘Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures.Current Pharmaceutical Design, 19 (31): 55315542.Google Scholar
Schmidt, A. C., Steier, S., and Otto, M.. 2009. ‘Evaluation of the arsenic binding capacity of plant proteins under conditions of protein extraction for gel electrophoretic analysis.Talanta, 77 (5): 18301836.Google Scholar
Schmidt, O., and Czeschlik, D.. 2006. Wood and Tree Fungi. Berlin: Springer .Google Scholar
Schmolke, A., Kearns, B., and O’Neill, B.. 2018. ‘Plant guttation water as a potential route for pesticide exposure in honey bees: a review of recent literature.Apidologie, 49: 637646.Google Scholar
Schmülling, T. 2002. ‘New insights into the functions of cytokinins in plant development.Journal of Plant Growth Regulation, 21 (1): 4049.Google ScholarPubMed
Schoelz, J. E., Harries, P. A., and Nelson, R. S.. 2011. ‘Intracellular transport of plant viruses: finding the door out of the cell.Molecular Plant, 4 (5): 813831.Google Scholar
Scholander, P. S., Bradstreet, E., Hemmingsen, E., and Hammel, H. T.. 1965. ‘Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants.Science, 148 (3668): 339346.Google Scholar
Schulte, P. J., Gibson, A. C., and Nobel, P. S. . 1989. ‘Water flow in vessels with simple or compound perforation plates.Annals of Botany, 64 (2): 171178.Google Scholar
Schultz, H. R., and Mathews, M. A.. 1997. ‘High vapour pressure deficit exacerbates xylem cavitation and photoinhibition in shade-grown Piper auritum HB & K during prolonged sunflecks. I. Dynamics of plant water relations.Oecologia, 110 (3): 312319.Google Scholar
Schwenke, H., and Wagner, E.. 1992. ‘A new concept of root exudation.Plant, Cell & Environment, 15 (3): 289299.Google Scholar
Scofield, G. N., Aoki, N., Hirose, T., Takano, M., Jenkins, C. L., and Furbank, R. T.. 2007a. ‘The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants.Journal of Experimental Botany, 58 (3): 483495.Google Scholar
Scofield, G. N., Hirose, T., Aoki, N., and Furbank, R. T.. 2007b. ‘Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice.Journal of Experimental Botany, 58 (12): 31553169.Google Scholar
Scott, J. N., Untereiner, W. A., Wong, B., Straus, N. A., and Malloch, D. . 2004. ‘Genotypic variation in Penicilliumchysogenum from indoor environments.Mycologia, 96 (5): 10951105.Google Scholar
Secchi, F., and Zwieniecki, M. A.. 2011. ‘Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling.Plant, Cell & Environment, 34 (3): 514524.Google Scholar
Selmar, D., Irandoost, Z., and Wray, V.. 1996. ‘Dhurrin-6’-glucoside, a cyanogenic diglucoside from Sorghum bicolor.Phytochemistry, 43 (3): 569572.Google Scholar
Shabala, S. N., Shabala, S., Cuin, T. A., et al. 2010. ‘Xylem ionic relations and salinity tolerance in barley.The Plant Journal, 61 (5): 839853.Google Scholar
Shabala, S. N., Pang, J., Zhou, M., et al. 2009. ‘Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants.Plant, Cell & Environment, 32 (2): 194207.Google Scholar
Shackel, K. A., Polito, V. S., and Ahmadi, H.. 1991. ‘Maintenance of turgor by rapid sealing of puncture wounds in leaf epidermal cells.Plant Physiology, 97 (3): 907912.Google Scholar
Sharabani, G., Manulis-Sasson, S., Borenstein, M., et al. 2012. ‘The significance of guttation in the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato greenhouses.Plant Pathology, 62 (3): 578586.Google Scholar
Shardakov, S. 1928. ‘The physiological significance of guttation.Bulletin de I’ ln-stitut de RccherchcsBiologiqueset de la Station Biologique, 6: 193208.Google Scholar
Sharp, R. E, LeNoble, M. E., Else, M. A., Thorne, E. T., and Gherardi, F.. 2000. ‘Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene.Journal of Experimental Botany, 51: 15751584.Google Scholar
Sharp, R. E., and LeNoble, M. E.. 2002. ‘ABA, ethylene and the control of shoot and root growth under water stress.Journal of Experimental Botany, 53 (366): 3337.Google Scholar
Shawki, M. A., Titera, D., Kazda, J., Kohoutkova, J., and Taborsky, V.. 2006. ‘Toxicity to honeybees of water guttation and dew collected from winter rape treated with Nurelle D.Plant Protection Science –Prague, 42 (1): 914.Google Scholar
Shepherd, R. W., and Wagner, G. J.. 2007. ‘Phylloplane proteins: emerging defences at the aerial frontline?Trends in Plant Science, 12 (5): 5156.Google Scholar
Shepherd, R. W., and Wagner, G. J.. 2012. Fungi and Leaf Surfaces, in Biocomplexity of Plant-fungal Interactions. Oxford: Wiley-Blackwell.Google Scholar
Shepherd, V. A. 2012. ‘At the roots of plant neurobiology: a brief history of the biophysical research of J.C. Bose.Science and Culture 78: 196210.Google Scholar
Sheridan, C. 2010. ‘Fresh from the biologic pipeline-2009.Nature Biotechnology, 28 (4): 307310.Google Scholar
Shibagaki, N., Rose, A., McDermott, J. P., et al. 2002. ‘Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots.The Plant Journal, 29: 475486.Google Scholar
Siewers, V., Smedsgaard, J., and Tudzynski, P.. 2004. ‘The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea.Applied and Environmental Microbiology, 70 (7): 38683876.Google Scholar
Sijmons, P. C., Dekker, B. M. M., Schrammeijer, B., Verwoerd, T. C., van den Elzen, P. J. M., and Hoekema, A.. 1990. ‘Production of correctly processed human serum albumin in transgenic plants.Biotechnology (NY), 8: 217221.Google Scholar
Singh, G., and Singh, T. N.. 1989. ‘Root-mediated water transport to the shoot of rice.Current Science, 58: 11341138.Google Scholar
Singh, S. 2004. ‘Effect of water stress on physiology, yield and productivity of rice (Oryza sativa L.) cultivars.’ PhD diss., Dr R. M. L. Avadh University, Faizabad, Uttar Pradesh, India.Google Scholar
Singh, S. 2013. ‘Guttation: path, principles and functions.Australian Journal of Botany, 61 (7): 497515.Google Scholar
Singh, S. 2014a. ‘Guttation: new insights into agricultural implications.Advances in Agronomy, 128: 97135.Google Scholar
Singh, S. 2014b. ‘Guttation: quantification, microbiology and implications for phytopathology.Progress in Botany, 75: 187214.Google Scholar
Singh, S. 2016a. ‘Guttation: mechanism, momentum and modulation.Botanical Review, 82 (2): 149182.Google Scholar
Singh, S. 2016b. ‘Root pressure: getting to the root of pressure.Progress in Botany, 77: 105150.Google Scholar
Singh, S., and Singh, T. N.. 2013. ‘Guttation: chemistry, crop husbandry and molecular farming.Phytochemistry Reviews, 12 (1): 147172.Google Scholar
Singh, S., Chauhan, J. S., and Singh, T. N. TN. 2008. ‘Guttation: a potential yield enhancing trait in rice.Current Science, 95 (4): 455456.Google Scholar
Singh, S., Chauhan, J. S., and Singh, T. N. TN. 2009a. ‘Guttation in rice: occurrence, regulation and significance in varietal improvement.Journal of Crop Improvement, 23 (4): 351365.Google Scholar
Singh, S., Chauhan, J. S., and Singh, T. N. TN. 2009b. ‘Water transport in crop plants with special reference to rice: key to crop production under global water crisis.Journal of Crop Improvement, 23 (2): 194212.Google Scholar
Skene, K. G. M. 1967. ‘Gibberellin-like substances in root exudate of Vitis vinifera.Planta, 74 (3): 250262.Google Scholar
Skoog, F, Broyer, T. C., and Grossenbacher, K. A.. 1938. ‘Effects of auxin on rates, periodicity an osmotic relations in exudation.American Journal of Botany, 25 (10): 749759.Google Scholar
Slewinski, T. L., Meeley, R., and Braun, D. M.. 2009. ‘Sucrose transporter1 functions in phloem loading in maize leaves.Journal of Experimental Botany, 60 (3): 881892.Google Scholar
Slusarenko, A. J., Fraser, R. S. S., and van Loon, L. C.. 2002. Mechanisms of Resistance to Plant Diseases. Berlin: Springer.Google Scholar
Smart, L. B., Vojdani, F., Maeshima, M., and Wilkins, T. A.. 1998. ‘Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated.Plant Physiology, 116 (4): 15391549.Google Scholar
Smith, C. M. 1923. ‘Excretions from leaves as a factor in arsenical injury to plants.Journal of Agricultural Research, 26: 191194.Google Scholar
Smith, E. F. 1898. ‘Some bacterial diseases of truck crops.Transactions of the Peninsula Horticultural Society, XI Annual Session, pp. 142147.Google Scholar
Smith, F. A., Smith, S. E., and Timonen, S.. 2003. ‘Mycorrhizas.’ In: Kroon, Hde, and Visser, EJW (eds), Root ecology. Berlin: Springer, pp 257295.Google Scholar
Smith, M. N., and Olien, C. R.. 1978. ‘Pathological factors affecting survival of winter barley following controlled freeze tests.Phytopathology, 68: 773777.Google Scholar
Smith, S. E., and Read, D. J.. 2008. Mycorrhizal Symbiosis (3rd ed.). Oxford: Academic Press and Elsevier.Google Scholar
Soares, N. C., Francisco, R., Vielba, J. M., Ricardo, C. P., and Jackson, P. A.. 2009. ‘Associating wound-related changes in the apoplast proteome of Medicago with early steps in the ROS signal-transduction pathway.Journal of Proteome Research, 8 (5): 22982309.Google Scholar
Soejima, H., Sugiyama, T., and Ishihara, K.. 1995. ‘Changes in the chlorophyll contents of leaves and in levels of cytokinins in root exudates during ripening of rice cultivars Nipponbare and Akenohoshi.Plant & Cell Physiology, 36 (6): 11051114.Google Scholar
Sopory, S. K. 2012. Signal Transduction in Plants. New York, NY: Springer.Google Scholar
Southworth, D. 2012. Biocomplexity of Plant-fungal Interactions. New Jersey: Wiley.Google Scholar
Sparrow, P. A. C., Irwin, J. A., Dale, P. J., Twyman, R. M., and Ma, J. K.. 2007. ‘Pharma-planta: road testing the developing regulatory guidelines for plant-made pharmaceuticals.Transgenic Research, 16 (2): 147161.Google Scholar
Sperlich, A. 1939. ‘Exkretionsgewebe.’ In: Linsbauer, K (ed), Handbuch der pflanzenanatomie (Vol. 4). Berlin: Das Trophische Parenchym.Google Scholar
Sperry, J. S. 1983. ‘Observations on the structure and function of hydathodes in Blechnum lehmannii.American Fern Journal, 73 (3): 6572.Google Scholar
Sperry, J. S. 2011. ‘Hydraulics of vasular water transport.’ In: Wojtaszek, P (ed), Signalling and Communication in Plants: Mechanical Integration of Plant Cells and Plants. Berlin: Springer, pp. 303327.Google Scholar
Sperry, J. S., Nichols, K. L., Sullivan, J. E. M., and Eastlack, S. E.. 1994. ‘Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska.Ecology, 75 (6): 17361752.Google Scholar
Spok, A., Twyman, R. M., Fischer, R., Ma, J. K., and Sparrow, P. A.. 2008. ‘Evolution of a regulatory framework for pharmaceuticals derived from genetically modified plants.Trends in Biotechnology, 26 (9): 506517.Google Scholar
Spollen, W. G., LeNoble, M. E., Samuels, T. D., Bernstein, N., and Sharp, R. E.. 2000. ‘Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production.Plant Physiology, 122 (3): 967976.Google Scholar
Squires, E. J. 2010. Applied Animal Endocrinology. Oxfordshire: CABI.Google Scholar
Stahlberg, R., and Cosgrove, D. J.. 1997. ‘Mannitol inhibits growth of intact cucumber but not pea seedlings by mechanically collapsing the root pressure.Plant, Cell & Environment, 20 (9): 11351144.Google Scholar
Staiger, C., Baluska, F., Volkmann, D., and Barlow, P. W.. 2000. Actin: A Dynamic Framework for Multiple Plant Cell Functions. Berlin: Springer.Google Scholar
Steudle, E. 1993. ‘Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell, tissue and organ level.’ In Water Deficits: Plant Responses From Cell to Community, edited by Smith, J. A. C., and Griffiths, H.. Oxford: Bios Scientific Publishers Ltd., pp. 536.Google Scholar
Steudle, E. 1994. ‘The regulation of plant water at the cell, tissue, and organ level: role of active processes and compartmentation.’ In Flux Control in Biological System: From Enzymes to Populations and Ecosystems, edited by Schulze, E. D.. California: Academic Press, pp. 237299.Google Scholar
Steudle, E. 2000. ‘Water uptake by roots: effects of water deficit.Journal of Experimental Botany, 51 (350): 15311542.Google Scholar
Steudle, E. 2001. ‘The cohesion-tension mechanism and the acquisition of water by plant roots.Annual Review of Plant Physiology and Plant Molecular Biology, 52: 84775.Google Scholar
Steudle, E, Oren, R., and Schulze, E. D.. 1987. ‘Water transport in maize roots: measurements of hydraulic conductivity, solute permeability, and ref lection coefficients of excised roots using the root pressure probe.Plant Physiology, 84 (4): 12201232.Google Scholar
Stocking, C. R. 1945. ‘The calculation of tensions in Cucurbita pepo.American Journal of Botany, 32 (3): 126134.Google Scholar
Stocking, C. R. 1956a. ‘Guttation and bleeding.’ In: Ruhland, W (ed), Encyclopedia of Plant Physiology. Berlin: Springer, pp. 489502.Google Scholar
Stocking, C. R. 1956b. ‘Root pressure.’ In: Ruhland, W (ed), Handbuch Der Pflazenphysiologie. Berlin: Springer, pp. 581595.Google Scholar
Stokes, A. 1954. ‘Uptake and translocation of griseofulvin by wheat seedlings.Plant and Soil, 5 (2): 132142.Google Scholar
Stoll, M. 2000. ‘Effects of partial root-zone drying on grapevine physiology and fruit quality.’ PhD thesis, University of Adelaide, SA, Australia.Google Scholar
Stoll, M., Loveys, B., and Dry, P.. 2000. ‘Hormonal changes induced by partial root-zone drying of irrigated grapevine.Journal of Experimental Botany, 51 (350): 16271634.Google Scholar
Stoller, E. W. 1970. ‘Mechanism for the differential translocation of amiben in plants.Plant Physiology, 46 (5): 732737.Google Scholar
Stone, E. C. 1957. ‘Dew as an ecological factor. 1. A review of the literature.Ecology, 38 (3): 407413.Google Scholar
Sudzuki, F. 1969. Absorción Foliar De Humedad Atmosférica En Tamarugo, Prosopis Tamarugo Phil (Vol. 30). Boletín Técnico: Universidad de Chile, Facultad de Agronomía, pp. 123.Google Scholar
Sun, L. Z., Auerswald, K., Wenzel, R., and Schnyder, H.. 2014. ‘Drinking water intake of grazing steers: the role of environmental factors controlling canopy wetness.Journal of Animal Science, 92 (1): 282291.Google Scholar
Suresh, B., and Ravishankar, G. A.. 2004. ‘Phytoremediation—a novel and promising approach for environmental cleanup.Critical Reviews in Biotechnology 24 (2/3): 97124.Google Scholar
Sutton, T., Baumann, U., Hayes, J., et al. 2007. ‘Boron-toxicity tolerance in barley arising from eff lux transporter amplification.Science, 318 (5855): 14461449.Google Scholar
Svetlikova, P., Hajek, T., and Tesitel, J.. 2015. ‘Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae.Annals of Botany, 116 (1): 6168.Google Scholar
Szarek, I., and Trebacz, K.. 1999. ‘The role of light-induced membrane potential changes in guttation in gametophytes of Asplenium trichomanes.Plant & Cell Physiology, 40 (12): 12801286.Google Scholar
Sze, H. 1984. ‘H+-translocating ATPases of the plasma membrane and tonoplast of plant cells.Physiologia Plantarum, 61: 683691.Google Scholar
Sze, H., Schumacher, K., Muller, M. L., Padmanaban, S., and Taiz, L.. 2002. ‘A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase.Trends in Plant Science, 7 (4): 157161.Google Scholar
Tagawa, T. 1934. ‘The relation between the absorption of water by plant root and the concentration and nature of the surrounding solution.Japanese Journal of Botany, 7: 3360.Google Scholar
Taiz, L., and Zeiger, E.. 2006. Plant Physiology (4th ed.). Massachusetts: Sinauer Associates.Google Scholar
Takeda, F., and Glenn, D. M.. 1989. ‘Hydathode anatomy and the relationship between guttation and plant water status in strawberry (Fragaria x ananassa Duch.).Acta Horticulturae (ISHS), 265: 387392.Google Scholar
Takeda, F., Wisniewski, M. E., and Glenn, D. M.. 1991. ‘Occlusion of water pores prevents guttation in older strawberry leaves.Journal of the American Society for Horticultural Science, 116 (6): 11221125.Google Scholar
Takeyama, N., Kiyono, H., and Yuki, Y.. 2015. ‘Plant-based vaccines for animals and humans: recent advances in technology and clinical trials.Therapeutic Advances in Vaccines 3 (5/6): 139154.Google Scholar
Tal, M., and Gavish, U.. 1973. ‘Salt tolerance in the wild relatives of the cultivated tomato: water balance and abscisic acid in Lycopersicon esculentum and L. peruvianumunder low and high salinity.Australian Journal of Agricultural Research, 24: 353361.Google Scholar
Tamm, C. O. 1951. ‘Removal of plant nutrients from tree crowns by rain.Physiologia Plantarum 4 (1): 184.Google Scholar
Tang, A. C., and Boyer, J. S.. 2003. ‘Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves.Journal of Experimental Botany, 54 (392): 24792488.Google Scholar
Tang, J. Y., Zielinski, R. E., Zangerl, A. R., Crofts, A. R., Berenbaum, M. R., and Delucia, E. H.. 2006. ‘The differential effects of herbivory by first and fourth instars of Trichoplusiani (Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana.Journal of Experimental Botany, 57 (3): 527536.Google Scholar
Tanner, W., and Beevers, H.. 1999. ‘Does transpiration have an essential function in long-distance ion transport in plants?Plant, Cell & Environment, 13 (8): 745750.Google Scholar
Tanner, W., and Beevers, H.. 2001. ‘Transpiration, a prerequisite for long-distance transport of minerals in plants?Proceedings of the National Academy of Sciences of the United States of America, 98 (16): 94439447.Google Scholar
Tappero, R., Peltier, E., Grafe, M., et al. 2007. ‘Hyper-accumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel.New Phytologist, 175 (4): 641654.Google Scholar
Tarakanova, G. A., and Zholkevich, V. N.. 1986The study of electrochemical parameters kinetics of Pilobolus umbonatus Buller mucor fungus.Doklady Akademii Nauk SSSR, 286: 504508.Google Scholar
Tarakanova, G. A., Shvedova, O. Y., and Zholkevich, V. N.. 1985. ‘Electrochemical parameters and guttation of Pilobolus umbonatus buller cells.Doklady Akademii Nauk SSSR, 280: 12771280.Google Scholar
Tattersall, D. B., Bak, S., Jones, P. R., et al. 2001. ‘Resistance to an herbivore through engineered cyanogenic glucoside synthesis.Science, 293 (5536): 18261828.Google Scholar
Tazaki, T. 1939. ‘On the nature of recretion from Colocasia antiquorum var. esculentum.Botanical Magazine, 53 (636): 524533.Google Scholar
Teakle, N. L., and Tyerman, S. D.. 2010. ‘Mechanisms of chloride transport contributing to salt tolerance.Plant, Cell & Environment, 33 (4): 566589.Google Scholar
Telewski, F. W. 2006. ‘A unified hypothesis of mechanoperception in plants.American Journal of Botany, 93 (10): 14661476.Google Scholar
Tester, M., and Davenport, R.. 2003. ‘Na+ tolerance and Na+ transport in higher plants.Annals of Botany, 91 (5): 503527.Google Scholar
Testone, G., Condello, E., Verde, I., et al. 2009. ‘The peach (Prunus persica [L.] Batsch) homeobox geneKNOPE3, which encodes a class 2 knotted-like transcription factor, is regulated during leaf development and triggered by sugars.Molecular Genetics and Genomics, 282 (1): 4764.Google Scholar
Thompson, A. J., Jackson, A. C., Symonds, R. C., et al. 2000. ‘Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid.The Plant Journal, 23 (3): 363374.Google Scholar
Thompson, A. J., Andrews, J., Mulholland, B. J., et al. 2007. ‘Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and inf luences leaf expansion.Plant Physiology, 143 (4): 19051917.Google Scholar
Thompson, H. M. 2010. ‘Risk assessment for honey bees and pesticides recent developments and new issues.Pest Management Science, 66 (11): 11571162.Google Scholar
Tibbitts, T. J., and Ewers, F. W.. 2000. ‘Root pressure and specific conductivity in temperate lianas: exotic Celastrus orbiculatus (celastraceae) vs. native Vitis riparia (vitaceae).American Journal of Botany, 87 (9): 12721278.Google Scholar
Tibbitts, T. W. 1986. ‘Controlled environment life support system: calcium-related leaf injuries on plants.NASA Contractor Report, p. 37.Google Scholar
Tissier, A. 2012. ‘Trichome specific expression: promoters and their applications.’ In: Ciftci, YO (ed), Transgenic Plants– Advances and Limitations. Rijeka, Croatia: InTech, pp. 353378.Google Scholar
Torres-Ruiz, J. M., Sperry, J. S., and Fernandez, J. E.. 2012. ‘Improving xylem hydraulic conductivity measurements by correcting the error caused by passive water uptake.Physiologia Plantarum, 146 (2): 129135.Google Scholar
Traore, M. D., Traore, V. S., Galzi-Pinel, A., Fargette, D., Konate, G., Traore, A. S., and Traore, O.. 2008. ‘Abiotic transmission of rice Yellow Mottle Virusthrough soil and contact between plants.Pakistan Journal of Biological Sciences, 11 (6): 900904.Google Scholar
Trusov, Y., and Botella, J. R.. 2016. ‘Plant G-proteins come of age: breaking the bond with animal models.’ Frontiers in Chemistry https://doi.org/10.3389/fchem.2016.00024.Google Scholar
Tucker, S. C., and Hoefert, L. L.. 1968. ‘Ontogeny of the tendril in Vitis vinifera.American Journal of Botany, 55 (9): 11101119.Google Scholar
Tudzynski, B., and Sharon, A. . 2002. ‘Biosynthesis, biological role, and application of fungal hormones.’ In The Mycota X: Industrial Applications, edited by Osiewacz, H. D.. Berlin: Springer, pp. 183211.Google Scholar
Twyman, R. M., Schillberg, S., and Fischer, R.. 2005. ‘Transgenic plants in the biopharmaceutical market.Expert Opinion on Emerging Drugs, 10 (1): 185218.Google Scholar
Twyman, R. M., Schillberg, S., and Fischer, R.. 2006. ‘Production of therapeutic antibodies and heterologous recombinant proteins in plant systems.’ In Medicinal Plant Biotechnology, edited by Kayser, O., and Quax, W.. Weinheim: Wiley-VCH, pp. 319344.Google Scholar
Twyman, R. M., Schillberg, S., and Fischer, R.. 2007. ‘Molecular farming of antibodies in plants.’ In Improvements of Crop Plants for Industrial End Uses, edited by Ranalli, P.. New York, NY: Springer, pp. 435469.Google Scholar
Twyman, R. M., Schillberg, S., and Fischer, R.. 2013. ‘Optimizing the yield of recombinant pharmaceutical proteins in plants.Current Pharmaceutical Design, 19 (31): 548694.Google Scholar
Twyman, R. M., Stoger, E., Schillberg, S., Christou, P., and Fischer, R.. 2003. ‘Molecular farming in plants: host systems and expression technology.Trends in Biotechnology, 21 (12): 570578.Google Scholar
Tyree, M. T. 2003. ‘Plant hydraulics: the ascent of water.Nature 423 (6943): 923.Google Scholar
Tyree, M. T., and Zimmermann, M. H.. 2002. Xylem Structure and the Ascent of Sap (2nd ed.). Berlin: Springer.Google Scholar
Unger, F. 1861. ‘Betrage zur physiologic der pulanzen. XIV. Uber die kal kausscheidenden organe der Saxifraga crustata Vest.Sitzungsberichte der Akademie der Wissenschaften, Wien, 43: 510524.Google Scholar
Valente, M., and Bologna, R.. 2011. Available at www.rfb.it/bastaveleni/chisiamo.htm (published daily “live” updates) [Verified on 5 June 2012].Google Scholar
van As, H. 2007. ‘Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long-distance water transport.Journal of Experimental Botany, 58 (4): 7347561.Google Scholar
van Overbeek, J. 1942. ‘Water uptake by excised root systems of the tomato due to non-osmotic forces.American Journal of Botany, 29 (8): 677683.Google Scholar
Vasilev, N., Schmitz, C., Dong, L., et al. 2014. ‘Comparison of plant-based expression platforms for the heterologous production of geraniol.Plant Cell, Tissue and Organ Culture, 117 (3): 373380.Google Scholar
Verma, R. S., Padalia, R. C., Chauhan, A., and Velusamy, S.. 2014. ‘Essential oil composition of Sphagneticola trilobata (L.) Pruski from India.Journal of Essential Oil Research, 26: 29-33.Google Scholar
Verpoorte, R. 2000. ‘Pharmacognosy in the new millennium: lead finding and biotechnology.Journal of Pharmacy and Pharmacology, 52: 253262.Google Scholar
Vigorov, L. I. 1954. ‘Absorption and distribution of microelements in wheat grain.Doklady Akademii Nauk SSSR, 94: 149152.Google Scholar
Vivanco, J. M., and Baluska, F.. 2012. Secretions and Exudates in Biological Systems, Signaling and Communication in Plants. Berlin: Springer.Google Scholar
Voisin, A., Reidy, B., Parent, B., et al. 2006. ‘Are ABA, ethylene or their interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic transformation of ABA production in maize.Plant, Cell & Environment, 29 (9): 18291840.Google Scholar
von Guttenberg, H. 1934. ‘Studien an pflanzen der sunda-inseln.Annales du Jardin Botanique de Buitenzorg, 44: 162.Google Scholar
von Minden, M. D. 1899. ‘Beitrage zur anatomischen und physiologischen kenntnis wasser-secernierender organe.Biblio Bot, 46: 172.Google Scholar
Voronin, N. S., Voronin, R. A., and Voronin, S. N.. 1976. ‘Distribution of hydathodes on leaves of some species of the genus Crassula.’ Botanicheskii Zhurnal USSR, 61: 621628.Google Scholar
Wagner, G. J., and Wang, E.. 2001. ‘Exploiting the ooze: engineering surface secretion systems of plants. Secretion systems of plants may be molecular farming and pest/disease resistance factor factories of the future.Agricultural Biotechnology Net, 3: 13.Google Scholar
Wagner, G. J., Wang, E., and Shepherd, R. W.. 2004. ‘New approaches for studying and exploiting an old protuberance, the plant trichome.Annals of Botany, 93 (1): 311.Google Scholar
Wan, Q., Zhang, H., Ye, W., Wu, H., and Zhang, T.. 2014. ‘Genome-wide transcriptome profiling revealed cotton fuzz fiber development having a similar molecular model as Arabidopsis trichome.PLoS One 9 (5): e97313.Google Scholar
Wang, C., Skrobek, A., and Butt, T. M.. 2004. ‘Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae.Journal of Invertebrate Pathology, 85 (3): 168174.Google Scholar
Wang, Q. Qin, Liu, F., Sheng Chen, X., Ma, X. J., Zeng, H., and Yang, Z. M.. 2010. ‘Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant.Genomics, 96 (6): 369376.Google Scholar
Wang, W., Ben, X., Wang, H., Li, J., Huang, H., and Xu, L.. 2011. ‘YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development.Plant Physiology, 157 (4): 18051819.Google Scholar
Wang, X., Wang, D., Sun, Y., et al. 2015. ‘Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production.Scientific Reports, 5: 13778.Google Scholar
Wang, Y., Ribot, C., Rezzonico, E., and Poirier, Y.. 2004. ‘Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis.Plant Physiology, 135 (1): 400411.Google Scholar
Wegner, L. H. 2014. ‘Root pressure and beyond: energetically uphill water transport into xylem vessels?Journal of Experimental Botany, 65 (2): 381393.Google Scholar
Wegner, L. H. 2015a. ‘Interplay of water and nutrient transport: a whole plant perspective.Progress in Botany, 76: 109141.Google Scholar
Wegner, L. H. 2015b. ‘A thermodynamic analysis of the feasibility of water secretion into xylem vessels against a water potential gradient.Functional Plant Biology, 42 (9): 828835.Google Scholar
Wei, C., Tyree, M. T., and Steudle, E.. 1999. ‘Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration.Plant Physiology, 121 (4): 11911206.Google Scholar
Weinhold, A., and Baldwin, I. T.. 2011. ‘Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation.Proceedings of the National Academy of Sciences of the United States of America, 108 (19): 78557859.Google Scholar
White, P. R. 1938. ‘Root pressure– an unappreciated force in sap movement.American Journal of Botany, 25: 223227.Google Scholar
Wilf, P. 1997. ‘When are leaves good thermometers? A new case for leaf margin analysis.Paleobiology, 23 (3): 373390.Google Scholar
Williamson, P. S., and Schneider, E. L.. 1993. ‘Cabombaceae.’ In: Kubitzki, K (ed), Families and Genera of Flowering Plants. Berlin: Springer, pp. 157161.Google Scholar
Wilson, J. K. 1923. The Nature and Reaction of Water from Hydathodes. USA: Cornell Agricultural Experiment Station Memoir 65.Google Scholar
Wilson, K. 1947. ‘Water movement in submerged aquatic plants, with special reference to cut shoots of Ranunculus fluifans.Annals of Botany, 11 (1): 91122.Google Scholar
Wilson, M. R. 2009. The Endocrine System: Hormones, Growth, and Development. New York, NY: The Rosen Publishing Group.Google Scholar
Wilson, T. P., Canny, M. J., and McCully, M. E.. 1991. ‘Leaf teeth, transpiration and the retrieval of apoplastic solutes in balsam poplar.Physiologia Plantarum, 83 (2): 225232.Google Scholar
Winkler, A. J., Kliewer, W. M., and Lider, L. A.. 1962. General Viticulture. California: University of California Press.Google Scholar
Wolfe, J. A. 1993. ‘A method of obtaining climatic parameters from leaf assemblages.US Geological Survey Bulletin, 2040: 171.Google Scholar
Woods, F. W. 1960. ‘Biological antagonisms due to phytotoxic root exudates.Botanical Review, 26 (4): 546569.Google Scholar
Yamaguchi, S. 2008. ‘Gibberellin metabolism and its regulation.Annual Review of Plant Biology, 59 (1): 225251.Google Scholar
Yang, J., Zhang, J., Liu, K., Wang, Z., and Liu, L.. 2007. ‘Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis.Journal of Plant Growth Regulation, 26 (4): 318328.Google Scholar
Yang, Y., Wu, S., Mcc Lilley, R., and Zhang, R.. 2015. ‘The diversity of membrane transporters encoded in bacterial arsenic-resistance operons.Peer Journal 3 (5): e943.Google Scholar
Yao, J., and Allen, C.. 2006. ‘Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralston solanacearum.Journal of Bacteriology, 188 (10): 36973708.Google Scholar
Yarwood, C. E. 1952. ‘Guttation due to leaf pressure favors fungus infections.Phytopathology, 42: 520.Google Scholar
Young, S. A., Guo, A., Guikema, J. A., White, F. F., and Leach, J. E.. 1995. ‘Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae.Plant Physiology, 107 (4): 13331341.Google Scholar
Yusibov, V., Streatfield, S. J., and Kushnir, N.. 2011. ‘Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond.Human Vaccines, 7 (3): 313321. (Verified: 5 May 2015)Google Scholar
Zachary, M. 2009. ‘Sap flow dynamics of a tropical, woody bamboo: deductions of physiology and hydraulics within Guadua angustifolia.’ PhD thesis, Washington University in St. Louis, USA.Google Scholar
Zaitseva, R. I., Minashina, N. G., and Sudnitsyn, I. I.. 1998. ‘Inf luence of capillary-sorptive and osmotic moisture pressure in chernozemon the growth and guttation of barley.Eurasian Soil Science, 31: 10751082.Google Scholar
Zeuthen, T. 2010. ‘Water-transporting proteins.Journal of Membrane Biology, 234 (2): 5773.Google Scholar
Zeuthen, T., and McAulay, N.. 2012. ‘Cotransport of water by Na+ –K+ –2Cl- cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2.Journal of Physiology, 590 (5): 11391154.Google Scholar
Zheng, M., Beck, M., Müller, J.. 2009. ‘Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs.PLoS One 4 (6): e5961.Google Scholar
Zholkevich, V. N. 1991. ‘Root pressure.’ In Plant Roots, the Hidden Half, edited by Waisel, Y., Eshel, A., and Kafkafi, U.. New York, NY: Marcel Dekker, pp. 589603.Google Scholar
Zholkevich, V. N., Chugunova, T. V., and Korolev, A. V.. 1989. ‘The role of metabolic processes in root pumping activity.’ In Water Behavior of Agricultural Plants, edited by Kushnirenko, M. D.. Kishinev: Stiintsa, pp. 1216.Google Scholar
Zholkevich, V. N., Chugunova, T. V., and Korolev, A. V.. 1990. ‘New data on the nature of root pressure.Studia Biophysica, 136: 209216.Google Scholar
Zholkevich, V. N., Popova, M. S., and Zhukovskaya, N. V.. 2007. ‘Stimulatory effects of adrenalin and noradrenalin on root water-pumping activity and the involvement of G-proteins.Russian Journal of Plant Physiology, 54 (6): 790796.Google Scholar
Zholkevich, V. N., Sinitsyna, Z. A., Peisakhzon, B. I., Abutalybov, V. F., and D’yachenko, I. V.. 1979. ‘On the nature of root pressure.Fiziologiya Rastenii, 26: 978993. (Soviet Plant Physiol., Engl. Transl.).Google Scholar
Zholkevich, V. N., Sinitsina, Z. A., and Peisakhzon, B. I.. 1981. ‘On physiological regulation of water transport in root systems.Studia Biophysica, 85: 1718.Google Scholar
Zhu, C., Schraut, D., Hartung, W., and Schaffner, A. R.. 2005. ‘Differential responses of maize MIP genes to salt stress and ABA.Journal of Experimental Botany, 56 (421): 29712981.Google Scholar
Zhu, J., Bai, X. Bu, Q., and Jiang, X.. 2010. ‘An analysis to the driving forces for water and salt absorption in roots of maize seedlings under salt stress.Agricultural Sciences in China, 9 (6): 806812.Google Scholar
Zimmermann, M. H., and Ziegler, H.. 1975. ‘List of sugars and sugar alcohols in sieve tube exudates.’ In Encyclopedia of Plant Physiology, edited by Zimmermann, M. H., and Milburn, J. A.. Heidelberg: Springer-Verlag, Vol. 1, pp. 480503.Google Scholar
Zimmermann, M. H. 1983. Xylem Structure and the Ascent of Sap. Berlin: Springer.Google Scholar
Zolobowska, L., and van Gijsegem, F.. 2006. ‘Induction of lateral root structure formation on petunia roots: a novel effect of GM11000 Ralston solanacearum infection impaired in Hrp mutants.Molecular Plant-Microbe Interactions, 19 (6): 597606.Google Scholar
Zwieniecki, M. A., and Holbrook, N. M.. 2009. ‘Confronting Maxwell’s demon: biophysics of xylem embolism repair.Trends in Plant Science, 14 (10): 530534.Google Scholar
Zwieniecki, M. A., Melcher, P. J., Feild, T. S., and Holbrook, N. M.. 2004. ‘A potential role for xylem–phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance.Tree Physiology, 24 (8): 911917.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Sanjay Singh
  • Book: Guttation
  • Online publication: 12 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108487023.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Sanjay Singh
  • Book: Guttation
  • Online publication: 12 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108487023.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Sanjay Singh
  • Book: Guttation
  • Online publication: 12 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108487023.013
Available formats
×