Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T04:12:30.568Z Has data issue: false hasContentIssue false

19 - Thought Experiments

Published online by Cambridge University Press:  05 June 2012

Douglas Heggie
Affiliation:
University of Edinburgh
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

As has been seen in Chapter 18, two-body relaxation predicts its own downfall. It leads to the collapse of the core and, at the level of simplified models, infinite central density. Clearly, some new dynamical processes, beyond two-body encounters, must come into play. The very high density is the clue, for it suggests that a third body may, with increasing probability, intervene in the two-body encounters which mediate relaxation. In Chapter 27 it will be seen that three-body encounters do indeed act on a sufficiently short time scale, late in core collapse, to have a decisive influence on events. As we note there, this is not the only mechanism that can work, but we concentrate on it for the time being.

The mechanism is a two-stage one, both stages involving three-body encounters. In the first stage, which we consider in Chapter 21, a three-body interaction leads to the formation of a binary star and a single third body (which acts as a kind of catalyst). In the second stage, this binary interacts with other single stars (again in three-body reactions). In this chapter we shall study three-body encounters in isolation, in order to uncover those properties which allow them to play their crucial role in rescuing the cluster from collapse. Clusters get into this difficulty because of their negative heat capacity, and in fact it is the negative heat capacity of binaries which comes to their rescue.

Type
Chapter
Information
The Gravitational Million–Body Problem
A Multidisciplinary Approach to Star Cluster Dynamics
, pp. 181 - 188
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Thought Experiments
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Thought Experiments
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Thought Experiments
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.026
Available formats
×