Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: April 2013

8 - Black holes and gravitational collapse

Summary

Lasciate ogni speranza voi ch'entrate.

Dante Alighieri, The Inferno

The dimensionless quantity GM/rc2 may be regarded as a measure of the strength of the gravitational field. This quantity enters into the formulas for light deflection, time delay, gravitational redshift, perihelion precession, and so on. The small magnitude of the relativistic gravitational effects in the Solar System is related to the small magnitude of this quantity; even at the solar surface, GM/rc2 is only 2 × 10−6. Large relativistic effects are found in the gravitational field in the neighborhood of an extremely compact mass, where GM/rc2 can attain values of the order of magnitude of 1. For example, near such a compact mass, at a radius r = 3GM/c2, the deflection of light in the Schwarzschild field becomes so large that a light signal will move in a closed circular orbit around the central mass.

The relativistic effects become spectacular when r = 2GM/c2. The gravitational fields at this radius are so strong that nothing can escape from their grip. Light signals, particles, and even spacecraft with the most powerful engines are inexorably pulled inward.

Related content

Powered by UNSILO
References
Barceló, C., Liberati, S., and Visser, M. (2011). Analogue Gravity. arXiv:gr-qc/0505065
Bekenstein, J. D. (1973). Phys. Rev. D 7, 2333.
Bekenstein, J. D. (1974). Phys. rev. D 9, 3292.
Bekenstein, J. D. (1980). Physics Today, January.
Belvedere, R. et al. (2012). Nucl. Phys. A. 83.
Bini, D., Geralico, A., and Ruffini, R. (2008). Phys. Rev. D 77, 064020.
Blandford, R. D. (1987). Astrophysical Black Holes . Three hundred years of gravitation, ed. Hawking, S. W. and Israel, W.. Cambridge: Cambridge University Press.
Boyer, R. H., and Lindquist, R. W. J. (1967). J. Math. Phys. 8, 265.
Carter, B. (1966). Phys. Rev. 141, 1242.
Chandrasekhar, S. (1931). Astrophys. J. 74, 592.
Christodolou, D., and Ruffini, R. (1971). Phys. Rev. D 4, 3552.
Christodolou, D. (1970). Phys. Rev. Lett. 25, 1596.
Damour, T. (1978). Phys. Rev. D 18, 3598.
Damour, T. (1979). Surface effects in black hole physics. Proceedings of the Second Marcel Grossmann Meeting on General Relativity, ed. Ruffini, R.. Amsterdam-New York: North-Holland.
Damour, T. and Ruffini, R. (1976). Phys. Rev. 14, 332. See also Damour, T. (1977). Klein Paradox and Vacuum Polarization. In Proceedings of the First Marcel Grossmann Meeting on General Relativity, ed. R. Ruffini. Amsterdam: North-Holland.
Droz, S., et al. (1996). Physics World 9, 34.
Eardley, D. M., and Press, W. H. (1975). Ann Rev. Astron. Astrophys. 13, 381.
Eardley, D. M., and Press, W. H. (1975). Ann. Rev. Astron. Astrophys. 13, 381.
Ferrarese, L. (2005). Space Sci. Rev. 116, 523. arXiv:astro-ph/0411247
Fuller, R. W., and Wheeler, J. A. (1962). Phys. Rev. 128, 919.
Giacconi, R., et al. (1962). Phys. Rev. Lett. 9, 439.
Hanni, R., and Ruffini, R. (1973). Phys. Rev. D 8, 3259.
Harrison, B. K., et al. (1965). Gravitation Theory and Gravitational Collapse. Chicago: University of Chicago Press.
Hawking, S. W. (1972). Commun. Math. Phys. 25, 152.
Hawking, S. W. (1973). Proc. N.Y. Acad. Sci. 224, 268.
Hawking, S. W. (1974). Nature 248, 30.
Hawking, S. W. (1975). Commun. Math. Phys. 43, 199.
Hawking, S. W. (1976). Phys. Rev. D 13, 191.
Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press, p. 266.
Jeans, J. (1925). The Mathematical Theory of Electricity and Magnetism, 5th ed. Cambridge: Cambridge University Press. p. 167.
Kerr, R. P. (1963). Phys. Rev. Lett. 11, 237.
Kruskal, M. D. (1960). Phys. Rev. 119, 1743.
Landau, L. D., and Lifshitz, E. M. (1958). Statistical Physics. London: Pergamon. p. 168.
Laplace, P. S. (1796). Exposition du systême du monde. Paris: Imprimerie du Cercle-Social.
Lynden-Bell, D. (1969). Nature 223, 690.
McClintock, J. E., and Remillard, R. A. (2004). Black Hole Binaries. arXiv:astro-ph/0306213
Melia, F., and Falcke, H. (2001). Ann. Rev. Astron. Astrophys. 39, 309.
Merloni, A., Ruffini, R., and Torroni, V. (1998). Nuov. Cim. 113B, 255.
Michell, J. (1784). Trans. Roy. Soc. 74, 35.
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation. San Francisco: Freeman.
Morris, M. S., Thorne, K. S., and Yurtsever, U. (1988). Phys. Rev. Lett. 61, 1446. See also Morris, M. S., and Thorne, K. S., Am. J. Phys. 56, 5 (1988).
Ohanian, H. C., and Ruffini, R. (1974). Phys. Rev. D 10, 3903.
Oppenheimer, J. R., and Snyder, H. (1939). Phys. Rev. 56, 455.
Oppenheimer, J. R., and Volkoff, G. M. (1939). Phys. Rev. 55, 374.
Page, D. N. (1976a). Phys. Rev. D 13, 198.
Page, D. N. (1976b). Phys. Rev. D 14, 3260.
Penrose, R. (1969). Nuov. Cim. Ser. I, 1, 252.
Preparata, G., Ruffini, R., and Xue, S.-S. (1988). Astron. Astrophys. 338, L87.
Price, R. H. (1972). Phys. Rev. D 5, 2419 and 2439.
Rees, M., Ruffini, R., and Wheeler, J. A. (1974). Black Holes, Gravitational Waves, and Cosmology. New York: Gordon and Breach, p. 65.
Rhoades, C. E., and Ruffini, R. (1974). Phys. Rev. Lett. 32, 324.
Robinson, D. C. (1975). Phys. Rev. Lett. 34, 905.
Salpeter, E. E. (1964). Astrophys. J. 140, 796.
Shapiro, S. L., and Teukolsky, S. A. (1991). Phys. Rev. Lett. 66, 994.
Shapiro, S. L., and Teukolsky, S. A. (1983). Black Holes, White Dwarfs, and Neutron Stars. New York: Wiley & Sons.
Thorne, K. S. (1972). Nonspherical Gravitational Collapse – A short Review. Magic without Magic: John Archibald Wheeler, ed. Klauder, J. R.. San Francisco: Freeman.
Thorne, Price, and Macdonald, , 1986.
Unruh, W. G. (1974). Phys. Rev. D 25, 942.
Ze'ldovich, Ya. B. (1972). Zh. Eksp. Teor. Fiz. 62, 2076; translated in Soviet Phys. JETP 35, 1085 (1972).
Ze'ldovich, Ya. B., and Novikov, I. D. (1964). Sov. Phys. Dok. 158, 811.