Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T14:12:39.665Z Has data issue: false hasContentIssue false

9 - Mitochondrial and nuclear DNA estimates of divergence between western and eastern gorillas

Published online by Cambridge University Press:  11 August 2009

Michael I. Jensen-Seaman
Affiliation:
Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A.
Amos S. Deinard
Affiliation:
School of Veterinary Medicine, University of California–Davis, Davis, CA 95616, U.S.A.
Kenneth K. Kidd
Affiliation:
Department of Genetics, Yale Unversity, New Haven, CT 06520, U.S.A.
Andrea B. Taylor
Affiliation:
Duke University, North Carolina
Michele L. Goldsmith
Affiliation:
Tufts University, Massachusetts
Get access

Summary

Introduction

Gorilla distribution and taxonomy

Gorillas are found discontinuously in the tropical forests of equatorial Africa (Fig. 9.1) (for more detailed discussion of the distribution of gorilla populations see Groves, 1970b, 1971; Hall et al., 1998; Omari et al., 1999; Plumptre et al., this volume). The largest discontinuity in gorillas' distribution is between the gorillas from West Africa (Nigeria, Cameroon, Gabon, Equatorial Guinea, Republic of Congo, and Central African Republic) and those from East/central Africa (eastern Democratic Republic of Congo, Rwanda, and Uganda).

The taxonomy of gorillas (as well as the other great apes) is currently under debate. During the past two decades most authors have used a “one-species–three-subspecies” taxonomy (e.g., Groves, 1986; Fleagle, 1988; Uchida, 1996). Recently, however, not only are gorillas increasingly being considered as two separate species (i.e., Gorilla gorilla and Gorilla beringei: e.g., Groves, 1996, 2001, this volume Sarmiento and Butynski, 1996), but the exact number of recognized subspecies is also undergoing revision (Sarmiento and Butynski, 1996; Sarmiento et al., 1996; Oates et al., 1999, this volume; Groves, 2001, this volume; this volume; Stumpf et al.,). For the purposes of this discussion (and to avoid confusion), gorillas from West Africa (G. g. gorilla and G. g. diehli) and from East/central Africa (G. g. graueri and G. g. beringei, or G. b. graueri and G. b. beringei if two species of gorillas are recognized) will be referred to here simply as “western gorillas” and “eastern gorillas”, respectively.

Type
Chapter
Information
Gorilla Biology
A Multidisciplinary Perspective
, pp. 247 - 268
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altheide, T. K. and Hammer, M. F. (1999). Y chromosome variation in the Hominoidea. American Journal of Physical Anthropology, Supplement 28, 83Google Scholar
Altheide, T. and Hammer, M. (2000). Comparing patterns of Y chromosome and mitochondrial DNA variation in the Hominoidea. American Journal of Physical Anthropology, Supplement 30, 95Google Scholar
Anderson, S., Bankier, A. T., Barrell, B. G., Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465CrossRefGoogle ScholarPubMed
Arnason, U., Xu, X., and Gullberg, A. (1996). Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on nonchimeric sequences. Journal of Molecular Evolution, 42, 145–152CrossRefGoogle ScholarPubMed
Avise, J. C. (1998). The history and purview of phylogeography: A personal reflection. Molecular Ecology, 7, 371–379CrossRefGoogle Scholar
Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522CrossRefGoogle Scholar
Bermingham, E. and Moritz, C. (1998). Comparative phylogeography: Concepts and applications. Molecular Ecology, 7, 367–369CrossRefGoogle Scholar
Birky, C. W. Jr., Maruyama, T., and Fuerst, P. (1983). An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics, 103, 513–527Google ScholarPubMed
Birky, C. W. Jr., Fuerst, P., and Maruyama, T. (1989). Organelle gene diversity under migration, mutation and drift: Equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121, 613–627Google ScholarPubMed
Burrows, W. and Ryder, O. A. (1997). Y-chromosome variation in great apes. Nature, 385, 125–126CrossRefGoogle ScholarPubMed
Candela, P. B., Wiener, A. S., and Goss, L. J. (1940). New observations on the blood group factors in Simiidi and Cercopithecidae. Zoologica, 25, 513–521Google Scholar
Deinard, A. S. (1997). The evolutionary genetics of the chimpanzees. PhD thesis, Yale University, New Haven, CT
Deinard, A. S. and Kidd, K. K. (1995). Levels of DNA polymorphism in extant and exinct hominoids. In The Origin and Past of Modern Humans as Viewed from DNA, ed. S. Brenner and K. Hanihara, pp. 149–170. Singapore: World Scientific Publishing
Deinard, A. S. and Kidd, K. K. (1998). Evolution of a D2 dopamine receptor intron within the Great Apes and humans. DNA Sequence, 8, 289–301CrossRefGoogle ScholarPubMed
Deinard, A. and Kidd, K. K. (1999). Evolution of a HOXB6 intergenic region within the Great Apes and humans. Journal of Human Evolution, 36, 687–703CrossRefGoogle ScholarPubMed
Deinard, A. and Kidd, K. K. (2000). Identifying conservation units within captive chimpanzee populations. American Journal of Physical Anthropology, 111, 25–443.0.CO;2-R>CrossRefGoogle ScholarPubMed
Evans, B. J., Morales, J. C., Picker, M. D., Kelley, D. B., and Melnick, D. J. (1997). Comparative molecular phylogeography of two Xenopus species,X. gilli and X. laevis, in the southwestern Cape Province, South Africa. Molecular Evolution, 6, 333–343Google Scholar
Fay, J. C. and Wu, C.-I. (1999). A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Molecular Biology and Evolution, 16, 1003–1005CrossRefGoogle ScholarPubMed
Fleagle, J. G. (1988). Primate Adaptation and Evolution. San Diego, CA: Academic Press
Gagneux, P., Wills, C., Gerloff, U., Tautz, D., Morin, P. A., Boesch, C., Fruth, B., Hohmann, G., Ryder, O. A., and Woodruff, D. S. (1999). Mitochondrial sequences show diverse evolutionary histories of African hominoids. Proceedings of the National Academy of Sciences U.S.A., 96, 5077–5082CrossRefGoogle ScholarPubMed
Garner, K. J. and Ryder, O. A. (1996). Mitochondrial DNA diversity in gorillas. Molecular Phylogenetics and Evolution, 6, 39–48CrossRefGoogle ScholarPubMed
Giribet, G. and Wheeler, W. C. (1999). On gaps. Molecular Phylogenetics and Evolution, 13, 132–143CrossRefGoogle ScholarPubMed
Goldberg, T. L. and Ruvolo, M. (1997). Molecular phylogenetics and historical biogeography of East African chimpanzees. Biological Journal of the Linnean Society, 61, 301–324CrossRefGoogle Scholar
Gonder, M. K., Oates, J. F., Disotell, T. R., Forstner, M. R. J., Morales, J. C., and Melnick, D. J. (1997). A new West African chimpanzee subspecies?Nature, 388, 337CrossRefGoogle ScholarPubMed
Goodman, M., Porter, C. A., Czelusniak, J., Page, S. L., Schneider, H., Shoshani, J., Gunnell, G., and Groves, C. P. (1998). Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Molecular Phylogenetics and Evolution, 9, 585–598CrossRefGoogle Scholar
Groves, C. P. (1967). Ecology and taxonomy of the gorilla. Nature, 213, 890–893CrossRefGoogle ScholarPubMed
Groves, C. P. (1970a). Gorillas. New York: Arco Publishing Co.
Groves, C. P. (1970 b). Population systematics of the gorilla. Journal of Zoology, London, 161, 287–300CrossRefGoogle Scholar
Groves, C. P. (1971). Distribution and place of origin of the gorilla. Man, 6, 44–51CrossRefGoogle Scholar
Groves, C. P. (1986). Systematics of the Great Apes. In Comparative Primate Biology, vol. 1, Systematics, Evolution and Anatomy, eds. D. R. Swindler and J. Erwin, pp. 187–217. New York: A. R. Liss
Groves, C. P. (1996). Do we need to update the taxonomy of gorillas?Gorilla Journal, June, 3–4Google Scholar
Groves, C. P. (2001). Primate Taxonomy. Washington, D.C.: Smithsonian Institution Press
Hall, J. S., Saltonstall, K., Inogwabini, B. I., and Omari, I. (1998). Distribution, abundance and conservation status of Grauer's gorilla. Oryx, 32, 122–130CrossRefGoogle Scholar
Hammer, M. F. and Zegura, S. L. (1996). The role of the Y chromosome in human evolutionary studies. Evolutionary Anthropology, 5, 116–1333.0.CO;2-E>CrossRefGoogle Scholar
Harcourt, A. H. (1978). Strategies of emigration and transfer by primates, with particular reference to gorillas. Zeitschrift für Tierpsychologie, 48, 401–420CrossRefGoogle ScholarPubMed
Harding, R. M., Fullerton, S. M., Griffiths, R. C., Bond, J., Cox, M. J., Schneider, J. A., Moulin, D. S., and Clegg, J. B. (1997). Archaic African and Asian lineages in the genetic ancestry of modern humans. American Journal of Human Genetics, 60, 772–789Google ScholarPubMed
Hey, J. (1997). Mitochondrial and nuclear genes present conflicting portraits of human origins. Molecular Biology and Evolution, 14, 166–172CrossRefGoogle ScholarPubMed
Hey, J. and Harris, E. (1999). Population bottlenecks and patterns of human evolution. Molecular Biology and Evolution, 16, 1423–1426CrossRefGoogle Scholar
Iyengar, S., Seaman, M., Deinard, A. S., Rosenbaum, H. C., Sirugo, G., Castiglione, C. M., Kidd, J. R., and Kidd, K. K. (1998). Analyses of cross-species polymerase chain reaction products to infer the ancestral state of human polymorphisms. DNA Sequence, 8, 317–327CrossRefGoogle ScholarPubMed
Jensen-Seaman, M. I. (2000). Evolutionary genetics of gorillas. PhD thesis, Yale University, New Haven, CT
Johns, G. C. and Avise, J. C. (1998). A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution, 15, 1481–1490CrossRefGoogle ScholarPubMed
Jolly, C., Oates, J., and Disotell, T. (1995). Chimpanzee kinship. Science, 268, 185–186CrossRefGoogle ScholarPubMed
Jorde, L. B., Bamshad, M., and Rogers, A. R. (1998). Using mitochondrial and nuclear DNA markers to reconstruct human evolution. BioEssays, 20, 126–1363.0.CO;2-R>CrossRefGoogle ScholarPubMed
Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism, ed. H. N. Munro, pp. 21–123. New York: Academic PressCrossRef
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120CrossRefGoogle ScholarPubMed
Kumar, S., Tamura, K., and Nei, M. (1993). MEGA: Molecular Evolutionary Genetics Analysis, v 1.01. University Park, PA: Pennsylvania State University
Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
Melnick, D. J. and Hoelzer, G. A. (1992). Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation. International Journal of Primatology, 13, 379–393CrossRefGoogle Scholar
Miyamoto, M. M., Slightom, J. L., and Goodman, M. (1987). Phylogenetic relations of humans and African apes from DNA sequences in the ψ-η-globin region. Science, 238, 369–373CrossRefGoogle ScholarPubMed
Moore, W. S. (1995). Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49, 718–726Google ScholarPubMed
Morell, V. (1994). Will primate genetics split one gorilla into two?Science, 265, 1661CrossRefGoogle ScholarPubMed
Morin, P. A., Moore, J. J., Chakraborty, R., Jin, L., Goodall, J., and Woodruff, D. S. (1994) Kin selection, social structure, gene flow and the evolution of chimpanzees. Science, 265, 1193–1201CrossRefGoogle ScholarPubMed
Oates, J. F., McFarland, K. L., Stumpf, R. M., Fleagle, J. G., and Disotell, T. R. (1999). New findings on the distinctive gorillas of the Nigeria–Cameroon border region. American Journal of Physical Anthropology, Supplement 28, 213–214Google Scholar
Omari, I., Hart, J. A., Butynski, T. M., Birhashirwa, N. R., Upoki, A., M'Keyo, Y., Bengana, F., Bashonga, M., and Bagurubumwe, N. (1999). The Itombwe Massif, Democratic Republic of Congo: Biological surveys and conservation, with an emphasis on Grauer's gorilla and birds endemic to the Albertine Rift. Oryx, 33, 301–322CrossRefGoogle Scholar
Osier, M., Pakstis, A. J., Kidd, J. R., Lee, J.-F., Yin, S.-J., Ko, H.-C., Edenberg, H. J., Lu, R.-B., and Kidd, K. K. (1999). Linkage disequilibrium at the ADH2 and ADH3 loci and risk of alcoholism. American Journal of Human Genetics, 64, 1147–1157CrossRefGoogle ScholarPubMed
Pamilo, P. and Nei, M. (1988). Relationship between gene trees and species trees. Molecular Biology and Evolution, 5, 568–583Google Scholar
Ruvolo, M. (1996). A new approach to studying modern human origins: Hypothesis testing with coalescence time distributions. Molecular Phylogenetics and Evolution, 5, 202–219CrossRefGoogle ScholarPubMed
Ruvolo, M. (1997). Genetic diversity in hominoid primates. In Annual Review of Anthropology, ed. W. H. Durham, pp. 515–540. Palo Alto, CA: Annual Reviews Inc.CrossRef
Ruvolo, M., Pan, D., Zehr, S., Goldberg, T., Disotell, T. R., and Dornum, M. (1994). Gene trees and hominoid phylogeny. Proceedings of the National Academy of Sciences U.S.A., 91, 8900–8904CrossRefGoogle ScholarPubMed
Ryder, O. A., Garner, K. J., and Burrows, W. (1999). Non-invasive molecular genetic studies of gorillas: Evolutionary and systematic implications. American Journal of Physical Anthropology, Supplement 28, 238Google Scholar
Saltonstall, K., Amato, G., and Powell, J. (1998). Mitochondrial DNA variability in Grauer's gorillas of Kahuzi-Biega National Park. Journal of Heredity, 89, 129–135CrossRefGoogle ScholarPubMed
Sarich, V. M. (1977). Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature, 265, 24–28CrossRefGoogle ScholarPubMed
Sarich, V. M. and Cronin, J. E. (1976). Molecular systematics of the primates. In Molecular Anthropology: Genes and Proteins in the Evolutionary Ascent of the Primates, eds. M. Goodman, R. E. Tashian, and J. H. Tashian, pp. 141–170. New York: Plenum PressCrossRef
Sarmiento, E. E. and Butynski, T. M. (1996). Present problems in gorilla taxonomy. Gorilla Journal, June, 5–7Google Scholar
Sarmiento, E. E., Butynski, T. M., and Kalina, J. (1996). Gorillas of Bwindi-Impenetrable forest and the Virunga Volcanoes: Taxonomic implications of morphological and ecological differences. American Journal of Primatology, 40, 1–213.0.CO;2-1>CrossRefGoogle Scholar
Schultz, A. H. (1934). Some distinguishing characters of the mountain gorilla. Journal of Mammalogy, 15, 51–61CrossRefGoogle Scholar
Simmons, M. and Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49, 369–381CrossRefGoogle ScholarPubMed
Socha, W. W., Wiener, A. S., Moor-Jankowski, J., and Mortelmans, J. (1973). Blood groups of mountain gorillas (Gorilla gorilla beringei). Journal of Medical Primatology, 2, 364–368CrossRefGoogle Scholar
Socha, W. W., Blancher, A., and Moor-Jankowski, J. (1995). Red cell polymorphisms in nonhuman primates: A review. Journal of Medical Primatology, 24, 282–304CrossRefGoogle ScholarPubMed
Uchida, A. (1996). What we don't know about great ape variation. Trends in Ecology and Evolution, 11, 163–168CrossRefGoogle ScholarPubMed
Walsh, P. S., Metzger, D. A., & Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10, 506–513Google ScholarPubMed
Wiener, A. S., Socha, W. W., Arons, E. B., Mortelmans, J., and Moor-Jankowski, J. (1976). Blood groups of gorillas: Further observations. Journal of Medical Primatology, 5, 317–320CrossRefGoogle ScholarPubMed
Wu, C.-I. (1991). Inferences of species phylogeny in relation to segregation of ancient polymorphisms. Genetics, 127, 429–435Google ScholarPubMed
Wyner, Y., Absher, R., Amato, G., Sterling, E., Stumpf, R., Rumpler, Y., and DeSalle, R. (1999). Species concepts and the determination of historic gene flow patterns in the Eulemur fulvus complex. Biological Journal of the Linnean Society, 66, 39–56Google Scholar
Xia, X. (2000). Data Analysis in Molecular Biology and Evolution. Boston, MA: Kluwer
Xu, X. and Arnason, U. (1996 a) A complete sequence of the mitochondrial genome of the Western lowland gorilla. Molecular Biology and Evolution, 13, 691–698CrossRefGoogle ScholarPubMed
Xu, X. and Arnason, U. (1996 b). The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan. Journal of Molecular Evolution, 43, 431–437CrossRefGoogle Scholar
Zhi, L., Karesh, W. B., Janczewski, D. N., Frazier-Taylor, H., Sajuthi, D., Gombek, F., Andau, M., Martenson, J. S., and O'Brien, S. J. (1996). Genomic differentiation among natural populations of orang-utan (Pongo pygmaeus). Current Biology, 6, 1326–1336CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×