Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T14:57:19.467Z Has data issue: false hasContentIssue false

Chapter 15 - Integrated Geophysical Characterization and Monitoring at the Aquistore CO2 Storage Site

from Part III - Case Studies

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alnes, H., Eiken, O., and Stenvold, T. (2008). Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73(6): 155161.CrossRefGoogle Scholar
Bachu, S., and Hitchon, B. (1996). Regional-scale flow of formation waters in the Williston Basin. AAPG Bulletin, 80(2): 248264.Google Scholar
Black, A., Hare, J., and MacQueen, J. (2016). Borehole gravity monitoring in the Aquistore Boundary Dam CO2 sequestration well. Expanded Abstract, Society of Exploration Geophysicists.Google Scholar
Boullenger, B., Verdel, A., Paap, B., Thorbecke, J., and Draganov, D. (2015). Studying CO2 storage with ambient-noise seismic interferometry: A combined numerical feasibility study and field-data example for Ketzin, Germany. Geophysics, 80(1): Q1Q13.CrossRefGoogle Scholar
Brady, J. L., Hare, J. L., Ferguson, J. F., et al. (2006). Results of the world’s first 4D microgravity surveillance of a waterflood – Prudhoe Bay, Alaska. SPE Paper 101762, 2006 SPE Annual Technical Conference and Exhibition.CrossRefGoogle Scholar
Brunskill, B. (2004). CO2 disposal potential in the deep subsurface of southeast Saskatchewan. Internal report, prepared for the University of Regina and Saskatchewan Power Corporation.Google Scholar
Cheraghi, S., White, D. J., Draganov, D., Bellefleur, G., Craven, J. A., and Roberts, B. (2017). Passive seismic reflection interferometry: A case study from the Aquistore CO2 storage site, Saskatchewan, Canada. Geophysics, 82(3): B79B93.CrossRefGoogle Scholar
Craymer, M., Henton, J., Piraszewski, M., and Lapelle, E. (2011). An updated velocity field for Canada. Eos Transactions, AGU, 92(51), Fall Meeting Supplement, Abstract G21A-0793.Google Scholar
Craymer, M., White, D., Piraszewksi, M., Zhao, Y., Henton, J., Silliker, J., and Samsonov, S. (2015). First results of geodetic deformation monitoring after commencement of CO2 injection at the Aquistore underground CO2 storage site. Eos Transactions, American Geophysical Fall Meeting, Paper G33A-1132.Google Scholar
Czarnogorska, M., Samsonov, S., and White, D. (2016). Airborne and spaceborne remote sensing for Aquistore carbon capture and storage site characterization. Canadian Journal of Remote Sensing, 42(3): 274290. DOI:10.1080/07038992.2016.1171131.CrossRefGoogle Scholar
Daley, T. M., Smithy, J. T., Beyer, J. H., and LaBrecque, D. (2015). Borehole EM monitoring at Aquistore with a downhole source. In Gerdes, K. F. (ed.), Carbon dioxide capture for storage in deep geological formations: Results from the CO2 Capture Project, Vol. 4. Thatcham, Berks, UK: CPL Press, 733758.Google Scholar
Dodds, K., Krahenbuhl, R., Reitz, A., Li, Y., and Hovorka, S. (2015). Evaluating time-lapse borehole gravity for CO2 plume detection at SECARB Cranfield. In Gerdes, K. F. (ed.), Carbon dioxide capture for storage in deep geological formations: Results from the CO2 Capture Project, Vol. 4. Thatcham, Berks, UK: CPL Press, 651664.Google Scholar
Energy and Environmental Research Center. (2014). Geologic modeling and simulation report for the Aquistore Project: University of North Dakota & U.S. Department of Energy National Energy Technology Laboratory.Google Scholar
Gasperikova, E., and Hoversten, G. M. (2006). A feasibility study of nonseismic geophysical methods for monitoring geologic CO2 sequestration. Leading Edge, 25, 12821288. DOI:10.1190/1.2360621.CrossRefGoogle Scholar
Gasperikova, E., and Hoversten, G. M. (2008). Gravity monitoring of CO2 movement during sequestration: Model studies. Geophysics, 73(6): WA105WA112.CrossRefGoogle Scholar
Gassenmeier, M., Sens-Schönfelder, C., Delatre, M., and Korn, M. (2015). Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise. Geophysical Journal International, 200: 524533.CrossRefGoogle Scholar
Gowan, E. J., Ferguson, I. J., Jones, A. G., and Craven, J. A. (2009). Geoelectric structure of the northeastern Williston basin and underlying Precambrian lithosphere. Canadian Journal of Earth Sciences, 46: 441464.CrossRefGoogle Scholar
Hardage, B. A. (2000). Vertical seismic profiling: Principles. Oxford: Elsevier Science.Google Scholar
Harris, K., White, D., Samson, C., Daley, T., and Miller, D. (2015). Evaluation of distributed acoustic sensing for 3D time-lapse VSP monitoring of the Aquistore CO2 storage site, GeoConvention, May 4–8, Calgary, Expanded Abstract.Google Scholar
Harris, K., White, D., Melanson, D., Samson, C. and Daley, T. (2016). Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. International Journal of Greenhouse Gas Control, 50: 248260. http://dx.doi.org/10.1016/j.ijggc.2016.04.016.CrossRefGoogle Scholar
Harris, K., White, D., Samson, C. (2017). 4D VSP monitoring at the Aquistore CO2 storage site. Geophysics , 82(6), M81–M96.Google Scholar
Hibbs, A. D. (2015). Test of a new BSEM configuration at Aquistore, and its application to mapping injected CO2. In Gerdes, K. F. (ed.), Carbon dioxide capture for storage in deep geological formations: Results from the CO2 Capture Project, Vol. 4. Thatcham, Berks, UK: CPL Press, 759776.Google Scholar
Jiang, T., Pekot, L. J., Jin, L., et al. (2016). Numerical modelling of the Aquistore CO2 Project: GHGT-13 Proceedings. Energy Procedia, 114.Google Scholar
Kaven, J. O., Hickman, S. H., McGarr, A. F., and Ellsworth, W. L. (2015). Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site. Seismological Research Letters, 86(4): 16. DOI:10.1785é0220150062.CrossRefGoogle Scholar
Kent, D. M., and Christopher, J. E. (1994). Geological history of the Williston Basin and Sweetgrass River Arch. In G. D. Mossop and I. Shetsen (comp.), Geological atlas of the Western Canada sedimentary basin. Canadian Society of Petroleum Geologists and Alberta Research Council, 421–430.Google Scholar
Khan, D. K., and Rostron, B. J. (2005). Regional hydrogeological investigation around the IEAWeyburn CO2 Monitoring and Storage Project Site. In Rubin, E. S., Keith, D. W., and Gilboy, C. F. (eds.), Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, September 5–9, 2004, Vancouver, Canada, Vol. 1: Peer Reviewed Papers and Overviews, 741750.Google Scholar
Kuzmiski, L., Charters, B., and Galbraith, M. (2009). Processing considerations for 3D VSP: CSEG Recorder, 34(4). https://csegrecorder.com/articles/view/processing-considerations-for-3d-vspGoogle Scholar
Liard, J., Huang, J., Silliker, J., Jobin, D., Wand, S. and Doherty, , A. (2011). Detecting groundwater storage change using micro-gravity survey in Waterloo Moraine, Proceeding. Geohydro.Google Scholar
Marsh, A., and Love, M. (2014). Middle Devonian prairie evaporite: Isopach map, map 132. In Regional Stratigraphic Framework of the Phanerozoic in Saskatchewan, Saskatchewan Phanerozoic Fluids and Petroleum Systems Project, Saskatchewan Ministry of the Economy, Saskatchewan Geological Survey, Open File 2014–1, set of 156 maps.Google Scholar
Mathias, S., Hardisty, P., Trudell, M., and Zimmerman, R. (2009). Approximate solutions for pressure buildup during CO2injection in brine aquifers. Transport in Porous Media, 79: 265284.CrossRefGoogle Scholar
McLeod, J. (2016). Magnetotelluric and controlled-source electromagnetic pre-injection study of Aquistore CO2 sequestration site, near Estevan, Saskatchewan, Canada. M.Sc. thesis, University of Manitoba.Google Scholar
McLeod, J., Craven, J. A., Ferguson, I. J., Roberts, B. J., Bancroft, B., and Liveda, T (2014). Overview of the 2013 baseline magnetotelluric and controlled-source electromagnetic geophysical study of CO2 sequestration at the Aquistore site near Estevan, Saskatchewan. Geological Survey of Canada, Open File 7617. DOI:10.4095/293921.CrossRefGoogle Scholar
McLeod, J., Craven, J. A., Ferguson, I. J., and Roberts, B. J. (2016). Overview of the 2013 and 2014 baseline magnetotelluric and controlled-source electromagnetic studies of CO2 sequestration at the Aquistore site near Estevan, Saskatchewan. Geological Survey of Canada, Open File 8101.CrossRefGoogle Scholar
Mestayer, J., Cox, B., Wills, P. (2011). Field trials of distributed acousticsensing for geophysical monitoring. In 81st Annual International Meeting of the Society of Exploration Geophysics, Expanded Abstract, 4253–4257.Google Scholar
Miller, D. E., Daley, T. M., White, D., et al. (2016). Simultaneous acquisition of distributed acoustic sensing VSP with multi-mode and singlemode fibre optic cables and 3 C-geophones at the Aquistore CO2 storage site. CSEG Recorder, 2833.Google Scholar
Nixon, C. G., Schmitt, D. R., Kofman, R. S., et al. (2017). Experiences in deep downhole digital micro-seismic monitoring near 3 km at the PTRC Aquistore CO2 Sequestration Project, 2017 Geoconvention, Expanded Abstract.CrossRefGoogle Scholar
O’Brien, J., Kilbride, F., and Lim, F. (2004). Time-lapse VSP reservoir monitoring. Geophysics, 23(11), 11781184.Google Scholar
Palombi, D. D. (2008). Regional hydrogeological characterization of the northeastern margin in the Williston Basin. M.Sc. thesis, University of Alberta, Edmonton, Alberta.Google Scholar
Roach, L. A. N., White, D. J., and Roberts, B. (2015). Assessment of 4D seismic repeatability and CO2 detection limits using a sparse permanent land array at the Aquistore CO2 storage site. Geophysics, 80(2): WA1WA13.CrossRefGoogle Scholar
Roach, L. A. N., White, D. J., Roberts, B., and Angus, D. (2017). Initial 4D seismic results after CO2 injection start-up at the Aquistore storage site. Geophysics, 82(3). http://dx.doi.org/10.1190/geo2016-0488.1CrossRefGoogle Scholar
Rostron, B., White, D., Hawkes, C., and Chalaturnyk, R. (2014). Characterization of the Aquistore CO2 Project storage site, Saskatchewan, Canada. In 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12. Energy Procedia, 63: 29772984, DOI:10.1016/j.egypro.2014.11.320.CrossRefGoogle Scholar
RPS Boyd PetroSearch. (2011). Interpretation of 2D seismic data for the Aquistore Project near Estevan, Saskatchewan: Internal Report for Petroleum Technology Research Centre, Regina, 54.Google Scholar
Rutqvist, J., Vasco, D., and Myer, L. (2010). Coupled reservoir geomechanical analysis of CO2 injection and ground deformation at In Salah, Algeria. International Journal of Greenhouse Gas Control, 4(2): 225230.CrossRefGoogle Scholar
Samsonov, S., Czarnogorska, M., and White, D. (2015). Satellite interferometry for high-precision detection of ground deformation at a carbon dioxide storage site. International Journal of Greenhouse Gas Control, 42: 188–199, DOI:10.1016/j.ijggc.2015.07.034.CrossRefGoogle Scholar
Sato, K., Mito, S., Horie, T., et al. (2011). Monitoring and simulation studies for assessing macro- and meso-scale migration of CO2 sequestered in an onshore aquifer: Experiences from the Nagaoka pilot site, Japan. International Journal of Greenhouse Gas Control, 5: 125137, DOI:10.1016/j.ijggc.2010.03.003.CrossRefGoogle Scholar
Schenkel, C. J., and Morrison, H. F. (1994). Electrical resistivity measurement through metal casing. Geophysics, 59(7): 10721082.CrossRefGoogle Scholar
Sherlock, D. A., Toomey, A., Hoversten, M., Gasperikova, E., and Dodds, K. (2006). Gravity monitoring of CO2 storage in a depleted gas field: A sensitivity study. Exploration Geophysics, 37: 3743.CrossRefGoogle Scholar
Stork, A. L, Nixon, C., Schmitt, D. R., White, D. J., Kendall, J.-M., and Worth, K. (2016). The seismic response at the Aquistore CO2 injection project, Saskatchewan, Canada. Seismological Research Letters, 87(2B): 477. DOI:10.1785/0220160046.Google Scholar
Streich, R. (2016). Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37: 4780.CrossRefGoogle Scholar
Vasco, D., Rucci, A., Ferretti, A., et al. (2010). Satellite-based measurements of surface deformation revealfluid flow associated with the geological storage of carbon dioxide. Geophysics Research Letters, 37(3): L03303, 15.CrossRefGoogle Scholar
Vasco, D. W., Ferretti, A., Rucci, A., et al. (2016). Geodetic monitoring of the geological storage of greenhouse gas emissions. Submitted to AGU books.Google Scholar
Verdon, J. P., Kendall, J.-M., Horleston, A. C., and Stork, A. (2016). Subsurface fluid injection and induced seismicity in southeast Saskatchewan. International Journal of Greenhouse Gas Control (in press).CrossRefGoogle Scholar
Vigrass, L., Jessop, A., and Brunskill, B. (2007). Regina Geothermal Project. In Summary of Investigations 2007, Vol. 1, Saskatchewan Geological Survey, Saskatchewan Industry Resources, Misc. Rep. 2007–4.1, CD-ROM, Paper A-2.Google Scholar
Vozoff, K. (1991). The magnetotelluric method. In Nabighian, M. N., (ed.), Electromagnetic methods in applied geophysics, Vol. 2: Applications. Tulsa, OK: Society of Exploration Geophysicists, 641711.CrossRefGoogle Scholar
Wang, Y. (2015). Design, deployment, performance and baseline data assessment of surface tiltmeter array technology in Aquistore geologic CO2 storage project. M.Sc. thesis, University of Alberta.Google Scholar
Washbourne, J. K., Rector, J. W., and Bube, K. P. (2002). Crosswell traveltime tomography in three dimensions. Geophysics, 67(3) (May–June): 853871, DOI 10.1190/1.1484529.CrossRefGoogle Scholar
White, D. (2012). Geophysical monitoring. In Hitchon, B. (ed.), Best practices for validating CO2 geological storage. Sherwood Park, AB: Geoscience Publishing, 155210.Google Scholar
White, D. J. (2013a). Seismic characterization and time-lapse imaging during seven years of CO2 flood in the Weyburn Field, Saskatchewan, Canada. International Journal of Greenhouse Gas Control, 16S: S78S94.CrossRefGoogle Scholar
White, D. J. (2013b). Toward quantitative CO2 storage estimates from time-lapse 3D seismic travel times: An example from the IEA GHG Weyburn–Midale CO2 monitoring and storage project. International Journal of Greenhouse Gas Control, 16S: S95S102.CrossRefGoogle Scholar
White, D., Roach, L. A. N., Roberts, B., and Daley, T. M. (2014). Initial results from seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada. Energy Procedia, 63: 44184423. DOI:10.1016/j.egypro.2014.11.477.CrossRefGoogle Scholar
White, D. J., Roach, L. A. N., and Roberts, B. (2015). Time-lapse seismic performance of a sparse permanent array: Experience from the Aquistore CO2 storage site. Geophysics, 80(2): WA35–WA48.CrossRefGoogle Scholar
White, D. J., Hawkes, C. D., and Rostron, B. J. (2016). Geological characterization of the Aquistore CO2 storage site from 3D seismic data. International Journal of Greenhouse Gas Control, 54(1), 330–344.CrossRefGoogle Scholar
White, D., Harris, K., Roach, L., et al. (2017). Monitoring results after 36 ktonnes of deep CO2 injection at the Aquistore CO2 storage site, Saskatchewan, Canada. In 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13. Energy Procedia, 114.CrossRefGoogle Scholar
Whittaker, S., and Worth, K. (2011). Aquistore: A fully integrated demonstration of the capture, transportation and geologic storage of CO2. Energy Procedia, 4: 56075614.CrossRefGoogle Scholar
Whittaker, S., Rostron, B., Khan, D., et al. (2004). Theme 1: Geological characterization. In Wilson, M. and Monea, M. (eds.), IEA GHG Weyburn CO2 Monitoring and Storage Project summary report 2000–2004, from the Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. Regina: Petroleum Technology Research Centre, 1–72.Google Scholar
Worth, K., White, D., Chalaturnyk, R., et al. (2014). Aquistore Project measurement, monitoring and verification: From concept to CO2 injection. In 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12. Energy Procedia, 63: 32023208. DOI:10.1016/j.egypro.2014.11.345.CrossRefGoogle Scholar
Xu, Z., Fang, Y., Scheibe, T., and Bonneville, A. (2012a). A fluid pressure and deformation analysis for geological sequestration of carbon dioxide. Computational Geosciences, 46: 3137.CrossRefGoogle Scholar
Xu, Z., Juhlin, C., Gudmundsson, O., et al. (2012b). Reconstruction of subsurface structure from ambient seismic noise: An example from Ketzin, Germany. Geophysical Journal International, 189: 10851102.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×