References[1] Alekseev, A., Bursztyn, H., Meinrenken, E., Pure spinors on Lie groups. Asterisque 327 (2010), 129–197.
[2] Alekseev, A., Malkin, A., Meinrenken, E., Lie group valued moment maps. J. Differential Geom. 48 (1998), 445–495.
[3] Alekseev, A., Strobl, T., Current algebras and differential geometry. JHEP, 0503 (2005), 035.
[4] Alekseev, A., Xu, P., Derived brackets and Courant algebroids, unpublished manuscript.
[5] Bates, S., Weinstein, A., Lectures on the geometry of quantization, Berkeley Mathematics Lecture Notes 8. Providence, RI: American Mathematical Society, 1997.
[6] Bressler, P., The first Pontryagin class. Compositio Math. 143 (2007), 1127–1163.
[7] Bursztyn, H., Crainic, M., Dirac geometry, quasi-Poisson actions and D/G-valued moment maps. J. Differential Geom. 82 (2009), 501–566.
[8] Bursztyn, H., Crainic, M., Weinstein, A., Zhu, C., Integration of twisted Dirac brackets. Duke Math. J. 123 (2004), 549–607.
[9] Bursztyn, H., Iglesias-Ponte, D., Severa, P., Courant morphisms and moment maps. Math. Res. Lett. 16 (2009), 215–232.
[10] Bursztyn, H., Radko, O., Gauge equivalence of Dirac structures and symplectic groupoids. Ann. Inst. Fourier (Grenoble), 53 (2003), 309–337.
[11] Cannas da Silva, A., Weinstein, A., Geometric models for noncommutative algebras. Berkeley Mathematics Lecture Notes 10. Providence, RI: American Mathematical Society, 1999.
[12] Cattaneo, A., Felder, G., Poisson sigma models and symplectic groupoids. In N. P., Landsman, M., Pflaum and M., Schlichenmaier (eds), Quantization of singular symplectic quotients, Progress in Mathematical. Basel: Birkhauser, 2001, pp. 61–93.
[13] Cattaneo, A., Zambon, M., Coisotropic embeddings in Poisson manifolds. Trans. Am. Math. Soc. 361 (2009), 3721–3746.
[14] Cavalcanti, G., Gualtieri, M., A surgery for generalized complex structures on 4-manifolds. J. Differential Geom. 76 (2007), 35–43.
[15] Coste, A., Dazord, P., Weinstein, A., Groupoïdes symplectiques. Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2. Lyon: Université Claude-Bernard, 1987, pp. i–ii, 1–62.
[16] Courant, T., Dirac manifolds, Trans. Am. Math. Soc. 319 (1990), 631–661.
[17] Courant, T., Weinstein, A., Beyond Poisson structures. Séminaire sudrhodanien de géométrie VIII. Travaux en Cours 27, Paris: Hermann, 1988, pp. 39–49.
[18] Crainic, M., Fernandes, R., Integrability of Lie brackets. Ann. Math. 157 (2003), 575–620.
[19] Crainic, M., Fernandes, R., Integrability of Poisson brackets. J. Differential Geom. 66 (2004), 71–137.
[20] Dirac, P., Lectures on quantum mechanics. New York: Belfer Graduate School of Science, Yeshiva University, 1964.
[21] Dorfman, I., Dirac structures and integrability of evolution equations. New York: John Wiley, 1993.
[22] Dufour, J.-P., Zung, N.-T., Poisson structures and their normal forms, Progress in Mathematics 242. Boston, MA: Birkhauser, 2005.
[23] Gotay, M., Coisotropic imbeddings, Dirac brackets and quantization. In M., Gotay (ed.), Geometric quantization, University of Calgary, 1981.
[24] Gotay, M., On coisotropic imbeddings of presymplectic manifolds. Proc. Am. Math. Soc. 84 (1982), 111–114.
[25] Gotay, M., Constraints, reduction and quantization. J. Math. Phys. 27 (1986), 2051–2066.
[26] Gualtieri, M., Generalized complex geometry. D.Phil. thesis, Oxford University, 2003. ArXiv: math.DG/0401221.
[27] Guillemin, V., Sternberg, S., Some problems in integral geometry and some related problems in microlocal analysis. Amer. J. Math. 101 (1979), 915–955.
[28] Hitchin, N., Generalized Calabi-Yau manifolds. Q. J. Math. 54 (2003), 281–308.
[29] Jotz, M., Ratiu, T., Induced Dirac structures on isotropy type manifolds. Transform. Groups 16 (2011), 175–191.
[30] Kapustin, A., Li, Y., Topological sigma-models with H-flux and twisted generalized complex manifolds. Adv. Theor. Math. Phys. 11 (2007), 269–290.
[31] Klimcik, C., Strobl, T., WZW-Poisson manifolds. J. Geom. Phys. 43 (2002), 341–344.
[32] Kosmann-Schwarzbach, Y., Derived brackets. Lett. Math. Phys. 69 (2004), 61–87.
[33] Liu, Z.-J., Weinstein, A., Xu, P., Manin triples for Lie bialgebroids. J. Differential Geom. 45 (1997), 547–574.
[34] Marle, C.-M., Sous-variété de rang constant d'une variété symplectique. Asterisque 107 (1983), 69–86.
[35] Marsden, J., Ratiu, T., Introduction to Mechanics and Symmetry, Text in Applied Mathematics 17. Berlin: Springer-Verlag, 1994.
[36] Mikami, K., Weinstein, A., Moments and reduction for symplectic groupoid actions. Publ. RIMS, Kyoto Univ. 24 (1988), 121–140.
[37] Ortega, J.-P., Ratiu, T., Momentum maps and Hamiltonian reduction, Progress in Mathematics 222, Boston: Birkhauser, 2004.
[38] Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, In T., Voronov (ed.), Quantization, Poisson brackets and beyond, Contemporary Mathematics 315. Providence, RI: American Mathematical Society, 2002.
[39] Ševera, P., Some title containing the words “homotopy” and “symplectic”, e.g. this one. Travaux mathématiques. Fasc. XVI (2005), 121–137.
[40] Ševera, P., Weinstein, A., Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144 (2001), 145–154.
[41] Sniatycki, J., Dirac brackets in geometric dynamics. Ann. Inst. H. Poincaré, A 20 (1974), 365–372.
[42] van der Schaft, A. J., Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians, Vol. 3, Madrid, 2006, pp. 1339–1365.
[43] Weinstein, A., The local structure of Poisson manifolds. J. Differential Geom. 18 (1983), 523–557.
[44] Weinstein, A., The geometry of momentum, Géometrie au XXème Siècle, Histoire et Horizons. Paris: Hermann, 2005. ArXiv: math.SG/0208108.
[45] Weinstein, A., Symplectic categories. Port. Math. 67 (2010), 261–278.
[46] Xu, P., Momentum maps and Morita equivalence. J. Differential Geom. 67 (2004), 289–333.
[47] Yoshimura, H., Marsden, J., Dirac structures in Lagrangian mechanics I. Implicit Lagrangian systems. J. Geom. Phys. 57 (2006), 133–156.
[48] Zabzine, M., Lectures on generalized complex geometry and supersymmetry. Arch. Math. 42: 5 (2006), 119–146.