Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T22:35:11.175Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  14 September 2018

Jean-Daniel Boissonnat
Affiliation:
INRIA Sophia Antipolis
Frédéric Chazal
Affiliation:
Inria Saclay - Ile-de-France
Mariette Yvinec
Affiliation:
INRIA Sophia Antipolis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alon, N. and Spencer, J. H.. The Probabilistic Method. Wiley-Interscience, New York, 2nd edition, 2008.CrossRefGoogle Scholar
Amenta, N. and Bern, M.. Surface reconstruction by Voronoi filtering. Discrete Comp. Geom., 22(4):481504, 1999.CrossRefGoogle Scholar
Attali, D., Boissonnat, J.-D., and Edelsbrunner, H.. Stability and computation of the medial axes. A State-of-the-Art Report. In Möller, T., Hamann, B., and Russell, R., editors, Math. Foundations of Scientific Visualization, Comp. Graphics, and Massive Data Exploration, volume 555 of Mathematics and Vizualization, pages 109–125. Springer-Verlag, Berlin, Germany, 2009.Google Scholar
Attali, D., Edelsbrunner, H., and Mileyko, Y.. Weak witnesses for Delaunay triangulations of submanifolds. In Proc. ACM Symp. Solid and Physical Modeling, pages 143–150, 2007.CrossRefGoogle Scholar
Attali, D., Lieutier, A., and Salinas, D.. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. Int. J. Comp. Geom. Appl., 22(4):279304, 2012.CrossRefGoogle Scholar
Aurenhammer, F.. Power diagrams: Properties, algorithms and applications. SIAM J. Comp., 16:7896, 1987.CrossRefGoogle Scholar
Aurenhammer, F., Klein, R., and Lee, D.-T.. Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore, 2013.CrossRefGoogle Scholar
Berger, M.. Géométrie (vols. 1–5). Fernand Nathan, Paris, 1977.Google Scholar
Biau, G., Chazal, F., Cohen-Steiner, D., Devroye, L., and Rodriguez, C.. A weighted k-nearest neighbor density estimate for geometric inference. Electronic J. Stat., 5:204237, 2011.CrossRefGoogle Scholar
Blumberg, A. J., Gal, I., Mandell, M. A., and Pancia, M.. Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comp. Math., 14(4):745789, 2014.CrossRefGoogle Scholar
Boissonnat, J.-D., Karthik, C. S., and Tavenas, S.. Building efficient and compact data structures for simplicial complexes. Algorithmica, Vol. 79, No 2, 2017.CrossRefGoogle Scholar
Boissonnat, J.-D., Devillers, O., Pion, S., Teillaud, M., and Yvinec, M.. Triangulations in CGAL. Comp. Geom. Theory Appl., 22:519, 2002.CrossRefGoogle Scholar
Boissonnat, J.-D., Dyer, R., and Ghosh, A.. Delaunay stability via perturbations. Int. J. Comp. Geom. Appl., 24(2):125152, 2014.CrossRefGoogle Scholar
Boissonnat, J.-D., Dyer, R., and Ghosh, A.. The Stability of Delaunay Triangulations. Int. J. Comp. Geom. Appl., 23(4 & 5):303333, 2014.CrossRefGoogle Scholar
Boissonnat, J.-D., Dyer, R., and Ghosh, A.. A probabilistic approach to reducing algebraic complexity of Delaunay triangulations. In Proc. 23rd European Symp. on Algorithms, Patras, Greece, pages 595606, September 2015.Google Scholar
Boissonnat, J.-D., Dyer, R., Ghosh, A., and Wintraecken, M.. Local criteria for triangulation of manifolds. In Proc. 34st Symp. Comp. Geom., Budapest, Hungary, June 2018.Google Scholar
Boissonnat, J.-D. and Flötotto, J.. A coordinate system associated with points scattered on a surface. Comp.-Aid. Des., 36:161174, 2004.Google Scholar
Boissonnat, J-D. and Ghosh, A.. Manifold reconstruction using tangential Delaunay complexes. Discrete & Comp. Geom., 51(1):221267, 2014.CrossRefGoogle Scholar
Boissonnat, J.-D., Lieutier, A., and Wintraecken, M.. The reach, metric distortion, geodesic convexity and the variation of tangent spaces. In Proc. 34st Symp. Comp. Geom., Budapest, Hungary, June 2018.Google Scholar
Boissonnat, J.-D. and Maria, C.. The simplex tree: An efficient data structure for general simplicial complexes. Algorithmica, 70(3):406427, November 2014.CrossRefGoogle Scholar
Boissonnat, J.-D., Nielsen, F., and Nock, R.. Bregman Voronoi diagrams. Discrete Comp. Geom., 44(2), 2010.CrossRefGoogle Scholar
Boissonnat, J.-D. and Oudot, S.. Provably good sampling and meshing of surfaces. Graphical Models, 67:405451, 2005.CrossRefGoogle Scholar
Boissonnat, J.-D., Wormser, C., and Yvinec, M.. Curved Voronoi diagrams. In Boissonnat, J.-D. and Teillaud, M., editors, Effective Computational Geometry for Curves and Surfaces, pages 67116. Mathematics and Visualization. Springer-Verlag, Berlin, 2006.CrossRefGoogle Scholar
Boissonnat, J.-D., Wormser, C., and Yvinec, M.. Anisotropic Delaunay mesh generation. SIAM J. Comput., 44(2):467512, 2015.CrossRefGoogle Scholar
Boissonnat, J.-D. and Yvinec, M.. Algorithmic Geometry. Cambridge University Press, New York, NY, 1998. Translated by Hervé Brönnimann.CrossRefGoogle Scholar
Boissonnat, J.-D., Devillers, O., Dutta, K., and Glisse, M.. Delaunay triangulation of a random sample of a good sample has linear size. Technical report, Inria, 2018.Google Scholar
Boissonnat, J.-D., Dyer, R., and Ghosh, A.. Delaunay triangulation of manifolds. Found. Comp. Math., 18(2):399431, 2018.CrossRefGoogle Scholar
Bolley, F., Guillin, A., and Villani, C.. Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Rel., 137(3): 541593, 2007.CrossRefGoogle Scholar
Buchet, M., Chazal, F., Oudot, S. Y., and Sheehy, D. R.. Efficient and robust persistent homology for measures. In Proc. 36th ACM-SIAM Symp. on Discrete Algorithms, pages 168180. SIAM, 2015.Google Scholar
Burago, D., Burago, Y., and Ivanov, S.. A Course in Metric Geometry, Volume 33 of Grad. Studies in Math. American Mathematical Society, Providence, RI, 2001.Google Scholar
Caillerie, C., Chazal, F., Dedecker, J., and Michel, B.. Deconvolution for the Wasserstein metric and geometric inference. Electron. J. Stat., 5:13941423, 2011.CrossRefGoogle Scholar
Cairns, S. S.. A simple triangulation method for smooth maniolds. Bull. Amer. Math. Soc., 67:380390, 1961.CrossRefGoogle Scholar
Callahan, P. B. and Kosaraju, S. R.. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):6790, 1995.CrossRefGoogle Scholar
Cannarsa, P. and Cinestrari, C.. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, volume 58. Brikhauser, Boston, 2004.CrossRefGoogle Scholar
Chaine, R.. A geometric convection approach of 3d-reconstruction. In 1st Symp. Geom. Processing, pages 218–229, 2003.Google Scholar
Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L. J., and Oudot, S. Y.. Proximity of persistence modules and their diagrams. In Proc. Comp. Geom., Aarhus, Denmark, pages 237246, 2009.Google Scholar
Chazal, F., Cohen-Steiner, D., Guibas, L. J., Memoli, F., and Oudot, S. Y.. Gromov-Hausdorff stable signatures for shapes using persistence. Comp. Graph. Forum, pages 1393–1403, 2009.CrossRefGoogle Scholar
Chazal, F., Cohen-Steiner, D., and Lieutier, A.. Normal cone approximation and offset shape isotopy. Comp. Geom. Theory Appl., 42(6–7):566581, 2009.CrossRefGoogle Scholar
Chazal, F., Cohen-Steiner, D., and Lieutier, A.. A sampling theory for compact sets in euclidean space. Discrete Comp. Geom., 41(3):461479, 2009.CrossRefGoogle Scholar
Chazal, F., Cohen-Steiner, D., Lieutier, A., and Thibert, B.. Shape smoothing using double offsets. In Proc. ACM Solid Phy. Model., Beijing, China, pages 183192, 2007.Google Scholar
Chazal, F., D. Cohen-Steiner, A. Lieutier, and B. Thibert. Stability of curvature measures. Comp. Graph. Forum, pages 1485–1496, 2009.CrossRefGoogle Scholar
Chazal, F., Cohen-Steiner, D., and Mérigot, Q.. Geometric inference for probability measures. Found. Comp. Math., 11(6):733751, 2011.CrossRefGoogle Scholar
Chazal, F., de Silva, V., and Oudot, S.. Persistence stability for geometric complexes. Geometriae Dedicata, 173(1):193214, 2014.CrossRefGoogle Scholar
Chazal, F., Fasy, B., Lecci, F., Michel, B., Rinaldo, A., and Wasserman, L.. Subsampling methods for persistent homology. In Blei, D. and Bach, F., editors, Proc. 32nd Int. Conf. on Machine Learning, pages 21432151. JMLR Workshop and Conference Proceedings, Lille, France, 2015.Google Scholar
Chazal, F., Fasy, B. T., Lecci, F., Michel, B., Rinaldo, A., and Wasserman, L.. Robust topological inference: Distance to a measure and kernel distance. arXiv preprint arXiv:1412.7197 (to appear in JMLR), 2014.Google Scholar
Chazal, F. and Lieutier, A.. The λ-medial axis. Graphical Models, 67(4):304331, July 2005.CrossRefGoogle Scholar
Chazal, F. and Lieutier, A.. Weak feature size and persistent homology: Computing homology of solids in from noisy data samples. In Proc. 21st Symp. Comp. Geom., Pisa, Italy, pages 255262, 2005.Google Scholar
Chazal, F. and Lieutier, A.. Stability and computation of topological invariants of solids in R n . Discrete Comp. Geom., 37(4):601617, 2007.CrossRefGoogle Scholar
Chazal, F., Massart, P., and Michel, B.. Rates of convergence for robust geometric inference. Electron. J. Stat., 10(2):22432286, 2016.CrossRefGoogle Scholar
Chazal, F. and Oudot, S. Y.. Towards persistence-based reconstruction in Euclidean spaces. In Proc. 24th Sympos. Comp. Geom., pages 232–241, 2008.CrossRefGoogle Scholar
Chazal, Frédéric, de Silva, Vin Marc Glisse, , and Oudot, Steve. The structure and stability of persistence modules. Springer Briefs in Mathematics. Springer, Basel, 2016.CrossRefGoogle Scholar
Chazelle, B.. An optimal convex hull algorithm in any fixed dimension. Discrete Comp. Geom., 10:377409, 1993.CrossRefGoogle Scholar
Chazal, F., Glisse, M., Labruère, C., and Michel, B.. Convergence rates for persistence diagram estimation in topological data analysis. J. Mach. Learn. Res., 16:36033635, 2015.Google Scholar
Cheeger, J.. Critical points of distance functions and applications to geometry. In Geometric Topology: Recent developments, Montecani Terme, volume 1504 of Lecture Notes in Math., pages 1–38. Springer, Basel, 1990.Google Scholar
Cheeger, J., Müller, W., and Schrader, R.. On the curvature of piecewise flat spaces. Comm. Math. Phys., 92:405454, 1984.CrossRefGoogle Scholar
Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., and Teng, S.-H.. Sliver Exudation. J. ACM, 47:883904, 2000.CrossRefGoogle Scholar
Cheng, S.-W., Dey, T. K., and Ramos, E. A.. Manifold Reconstruction from Point Samples. In Proc. 16th ACM-SIAM Symp. Discrete Algorithms, Vancouver, Canada, pages 10181027, 2005.Google Scholar
Clarke, F. H.. Optimization and Nonsmooth Analysis. Wiley-Interscience, New-York, 1983.Google Scholar
Clarkson, K. L. and Shor, P. W.. Applications of random sampling in computational geometry, II. Discrete Comp. Geom., 4:387421, 1989.CrossRefGoogle Scholar
Cohen-Steiner, D., Edelsbrunner, H., and Harer, J.. Stability of persistence diagrams. Discrete Comp. Geom., 37(1):103120, 2007.CrossRefGoogle Scholar
de Berg, M. M. van Kreveld, M. Overmars, , and Schwarzkopf, O.. Computational Geometry: Algorithms and Applications, 2nd edition. Springer-Verlag, Berlin, Germany, 2000.CrossRefGoogle Scholar
de Silva, V.. A weak characterisation of the Delaunay triangulation. Geometriae Dedicata, 135(1):3964, 2008.CrossRefGoogle Scholar
de Silva, V. and Ghrist, R.. Coverage in sensor networks via persistent homology. Algebraic & Geom. Topol., 7:339358, 2007.CrossRefGoogle Scholar
Delaunay, B.. sphère vide, Sur la. Izv. Akad. Nauk SSSR, Otdelenie Matematich-eskii i Estestvennyka Nauk, 7:793–800, 1934.Google Scholar
Dey, T. K.. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge University Press, New York NY, 2007.Google Scholar
Dyer, R., Vegter, G., and Wintraecken, M.. Riemannian simplices and triangulations. Geometriae Dedicata, 179:91138, 2015.CrossRefGoogle Scholar
Edelsbrunner, H.. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Comp. Science. Springer-Verlag, Heidelberg, West Germany, 1987.CrossRefGoogle Scholar
Edelsbrunner, H.. The union of balls and its dual shape. Discrete Comp. Geom., 13(1):415440, 1995.CrossRefGoogle Scholar
Edelsbrunner, H.. Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
Edelsbrunner, H.. Surface reconstruction by wrapping finite point sets in space. In Aronov, B., Basu, S., Pach, J., Sharir, M. (Eds.), Ricky Pollack and Eli Goodman Festschrift, pages 379404. Springer-Verlag, Berlin, 2003.CrossRefGoogle Scholar
Edelsbrunner, H., Facello, M., and Liang, J.. On the definition and the construction of pockets in macromolecules. Discrete Appl. Math., 88(1–3):83102, 1998.CrossRefGoogle Scholar
Edelsbrunner, H. and Harer, J. L.. Computational Topology: An Introduction. American Mathematical Soc., Providence, RI, 2010.Google Scholar
Edelsbrunner, H., Kirkpatrick, D., and Seidel, R.. On the shape of a set of points in the plane. IEEE Trans. on Inform. Theory, 29(4):551559, 1983.CrossRefGoogle Scholar
Edelsbrunner, H., Letscher, D., and Zomorodian, A.. Topological persistence and simplification. Discrete Comp. Geom., 28:511533, 2002.CrossRefGoogle Scholar
Edelsbrunner, H., Li, X.-Y., Miller, G. L., Stathopoulos, A., Talmor, D., Teng, S.-H., Üngör, A., and Walkington, N.. Smoothing and cleaning up slivers. In Proc. 32nd ACM Symp. on Theory of Comput., May 21–23, 2000, Portland, OR, pages 273277, 2000.Google Scholar
Edelsbrunner, H. and Mücke, E. P.. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):4372, 1994.CrossRefGoogle Scholar
Edelsbrunner, H. and Wagner, H.. Topological data analysis with Bregman divergences. In 33rd Symp. Comp. Geom, pages 39:1–39:16, Brisbane, Australia, July 2017.Google Scholar
Eppstein, D., Löffler, M., and Strash, D.. Listing all maximal cliques in sparse graphs in near-optimal time. In Proc. 21st Int. Symp. on Algorithms and Computation, Jeju Island, Korea, December 15–17, pages 403414, 2010.CrossRefGoogle Scholar
Fasy, B. T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A., et al. Confidence sets for persistence diagrams. Ann. Stat., 42(6):23012339, 2014.CrossRefGoogle Scholar
Feder, T. and Greene, D.. Optimal algorithms for approximate clustering. In Proc. of 20th ACM Sympos. Theory of Computing, pages 434444, New York, NY, 1988. ACM.Google Scholar
Federer, H.. Curvature measures. Trans. American Math. Society, 93(3):418491, 1959.CrossRefGoogle Scholar
Freedman, D.. Efficient simplicial reconstructions of manifolds from their samples. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(10): 13491357, 2002.CrossRefGoogle Scholar
Frosini, P. and Landi, C.. Size theory as a topological tool for computer vision. Pattern Recognition and Image Analysis, 9:596603, 1999.Google Scholar
Fu, J. H. G.. Convergence of curvatures in secant approximations. J. Diff. Geom., 37:177190, 1993.Google Scholar
Fu, J. H. G.. Tubular neighborhoods in Euclidean spaces. Duke Math. J., 52(4):10251046, 1985.CrossRefGoogle Scholar
Fulton, W.. Algebraic Topology: A First Course. Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
Gallier, J.. Notes on convex sets, polytopes, polyhedra combinatorial topology, Voronoi diagrams and Delaunay triangulations. Research Report RR-6379, Inria, 2007.Google Scholar
Gallot, S., Hulin, D., and Lafontaine, J.. Riemannian Geometry. Springer-Verlag, Berlin Heidelberg, 1990.CrossRefGoogle Scholar
Giesen, J. and John, M.. The flow complex: a data structure for geometric modeling. In Proc. 14th ACM-SIAM Symp. Discrete Algorithms (SODA), pages 285–294, 2003.Google Scholar
Giesen, J. and Wagner, U.. Shape dimension and intrinsic metric from samples of manifolds. Discrete Comp. Geom., 32:245267, 2004.CrossRefGoogle Scholar
Gonzales, T. F.. Clustering to minimize the maximaum intercluster distance. Theoretical Comp. Science, 38(2–3):293306, 1985.CrossRefGoogle Scholar
Grove, K.. Critical point theory for distance functions. In Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, RI, volume 54, 1993. Part 3.Google Scholar
Guibas, L., Morozov, D., and Mérigot, Q.. Witnessed k-distance. Discrete Comp. Geom., 49(1):2245, 2013.CrossRefGoogle Scholar
Har-Peled, S.. Geometric approximation algorithms, volume 173. American Mathematical Society, Providence, RI, 2011.Google Scholar
Har-Peled, S. and Mendel, M.. Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comp., 35(5):11481184, 2006.CrossRefGoogle Scholar
Hatcher, A.. Algebraic Topology. Cambridge University Press, Cambridge, UK, 2002.Google Scholar
Hirsch, M. W.. Differential Topology. Springer-Verlag, New York, NY, 1976.CrossRefGoogle Scholar
Jolliffe, I. T.. Principal Component Analysis. Springer, New York, 2002.Google Scholar
Li, X.-Y.. Generating well-shaped d-dimensional Delaunay meshes. Theor. Comp. Science, 296(1):145165, 2003.CrossRefGoogle Scholar
Liang, J., Edelsbrunner, H., and Woodward, C.. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Prot. Sci., 7:18841897, 1998.CrossRefGoogle ScholarPubMed
Lieutier, A.. Any open bounded subset of R n has the same homotopy type as it medial axis. Comp.-Aid. Design, 36(11):10291046, September 2004.CrossRefGoogle Scholar
Ma, Y., Niyogi, P., Sapiro, G., and Vidal Ed, R.. Dimensionality reduction via subspace and submanifold learning. IEEE Sig. Process. Mag., 28(2), 2011.CrossRefGoogle Scholar
Maria, C., Boissonnat, J.-D., Glisse, M., and Yvinec, M.. The Gudhi Library: Simplicial complexes and persistent homology. In The 4th Int. Congress on Math. Software, Hanyang University, Seoul, Korea, France, August 2014.Google Scholar
Martinetz, T. and Schulten, K.. Topology representing networks. Neural Networks, 7(3):507522, 1994.CrossRefGoogle Scholar
Milnor, J.. Morse Theory. Princeton University Press, Princeton, NJ, 2006.Google Scholar
Moser, R. A. and Tardos, G.. A constructive proof of the generalized Lovász lemma. J. ACM, 57(2), 2010.CrossRefGoogle Scholar
Motwani, R. and Raghavan, P.. Randomized Algorithms. Cambridge University Press, New York, NY, 1995.CrossRefGoogle Scholar
Mulmuley, K.. Computational Geometry: An Introduction through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.Google Scholar
Munkres, J. R.. Elementary Differential Topology. Princeton University Press, Princeton, NJ, 1966.Google Scholar
Munkres, J. R.. Elements of Algebraic Topology. Addison-Wesley, Redwood City, CA, 1984.Google Scholar
Munkres, J. R.. Topology. Prentice Hall, Upper Saddle River, NJ, 2000.Google Scholar
Niyogi, P., Smale, S., and Weinberger, S.. Finding the homology of submanifolds with high confidence from random samples. Discrete Comp. Geom., 39(1): 419441, 2008.CrossRefGoogle Scholar
Okabe, A., Boots, B., and Sugihara, K.. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 1992.Google Scholar
Oudot, S. Y.. Persistence Theory: From Quiver Representations to Data Analysis, volume 209 of AMS Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.Google Scholar
Pedoe, D.. Geometry, A Comprehensive Course. Dover Publications, New York, 1970.Google Scholar
Peleg, S., Werman, M., and Rom, H.. A unified approach to the change of resolution: Space and gray-level. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):739742, 1989.CrossRefGoogle Scholar
Petrunin, A.. Semiconcave functions in alexandrov’s geometry. In Surveys in Differential Geometry: Metric and Comparison Geometry, volume XI, Boston, 2007. Internationational Press of Boston.Google Scholar
Robins, V.. Towards computing homology from finite approximations. Topol. Proceed., 24:503532, 1999.Google Scholar
Rockafellar, R. T.. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.CrossRefGoogle Scholar
Rubner, Y., Tomasi, C., and Guibas, L. J.. The earth mover’s distance as a metric for image retrieval. Int. J. Comp. Vision, 40(2):99121, 2000.CrossRefGoogle Scholar
Seidel, R.. The upper bound theorem for polytopes: An easy proof of its asymptotic version. Comp. Geom. Theory Appl., 5:115116, 1995.CrossRefGoogle Scholar
Shewchuk, J.. Star splaying: An algorithm for repairing delaunay triangulations and convex hulls. In Proc. 21st Symp. on Comp. Geom., pages 237–246, 2005.CrossRefGoogle Scholar
Sibson, R.. A vector identity for the Dirichlet tesselation. Math. Proc. Camb. Phil. Soc., 87:151155, 1980.CrossRefGoogle Scholar
Sibson, R.. A brief description of natural neighbour interpolation. In Barnet, Vic, editor, Interpreting Multivariate Data, pages 2136. John Wiley & Sons, Chichester, 1981.Google Scholar
Spencer, J.. Robin Moser makes Lovász Local Lemma Algorithmic! https://www.cs.nyu.edu/spencer/moserlovasz1.pdf, 2009.Google Scholar
The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.Google Scholar
Trefethen, L. N. and Bau, D.. Numerical Linear Algebra. Society for Industrial and Applied Mathematics, 1997.CrossRefGoogle Scholar
Villani, C.. Topics in Optimal Transportation. American Mathematical Society, Providence, RI, 2003.CrossRefGoogle Scholar
Welzl, E.. Smallest enclosing disks (balls and ellipsoids). In Maurer, H., editor, New Results and New Trends in Comp. Science, volume 555 of Lecture Notes Comp. Sci., pages 359370. Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
Whitehead, J. H. C.. On C 1 -complexes. Ann. Math., 41:809824, 1940.CrossRefGoogle Scholar
Whitney, H.. Geometric Integration Theory. Princeton University Press, Princeton, NJ, 1957.CrossRefGoogle Scholar
Ziegler, G. M.. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, Heidelberg, 1994.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×