Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-19T08:06:54.446Z Has data issue: false hasContentIssue false

18 - Solar Variability

Causes, Current Understanding, Prospects for the Future

from Part V - Magnetic Fields beyond the Earth and beyond Today

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Solar variability is the origin of space weather. Variations in the rate and kind of energetic output from the Sun cause the variability in the Earth’s space environment, generally termed space weather. The physics of the causes and phenomenology of the evolving solar energetic output has become a major topic of observational and theoretical research. The major components of solar variability are reviewed, together with what are understood to be outstanding questions. Understanding the origin of solar wind streams and their dependence on solar conditions contributes to the predictability of interplanetary processes that affect the Earth’s space environment and are primary drivers of space weather phenomena. The phenomenology of space weather effects resulting from variable solar and interplanetary conditions is well documented, with increasing details uncovered, but the causal processes are less so, as evidenced by the limits of predictability of space weather drivers. Future emphasis must be on improving models, both by the details and resolution that can be achieved and a clearer quantitative understanding of causal relationships, against a background of the essentially stochastic nature of all solar and interplanetary phenomena.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 286 - 311
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbo, L., Ofman, L., Antiochos, S. K., Hansteen, V. H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R. & Wang, Y.-M. Slow solar wind: Observations and modeling, Space Sci. Rev., 201, 55108 (2016). doi: 10.1007/s11214-016-0264-1CrossRefGoogle Scholar
Altschuler, M. D. & Newkirk, G. Jr. Magnetic fields and the structure of the solar corona I: Methods of calculating coronal fields, Sol. Phys., 9, 131–49 (1969).Google Scholar
Aulanier, G., Török, T., Démoulin, P. & DeLuca, E. E. Formation of torus-unstable flux ropes and electric currents in erupting sigmoids, Astrophys. J., 708, 314–33 (2010). doi: 10.1088/0004-637X/708/1/314Google Scholar
Babcock, H. D. The Sun’s polar magnetic field, Astrophys. J., 130, 364–5 (1959). doi: 10.1086/146726Google Scholar
Babcock, H. W. The topology of the Sun’s magnetic field and the 22-year cycle, Astrophys. J., 133, 572–87 (1961).Google Scholar
Balogh, A. & Erdõs, G. The heliospheric magnetic field, Space Sci. Rev., 176, 177215 (2013). doi: 10.1007/s11214-011-9835-3CrossRefGoogle Scholar
Balogh, A. & Smith, E. J. The heliospheric magnetic field at solar maximum: Ulysses observations, Space Sci. Rev., 97, 147–60 (2001). doi: 10.1023/A:101185490CrossRefGoogle Scholar
Balogh, A. & Thompson, M. J. Introduction to solar magnetism: The early years, Space Sci. Rev., 144, 114 (2009). doi: 10.1007/s11214-009-9493-xGoogle Scholar
Balogh, A., Hudson, H. S., Petrovay, K. & von Steiger, R. Introduction to the solar activity cycle: Overview of causes and consequences, Space Sci. Rev., 186, 115 (2014). doi: 10.1007/s11214-014–0125CrossRefGoogle Scholar
Barnes, G., Leka, K. D., Schrijver, C. J., Colak, T., Qahwaji, R., Ashamari, O. W., Yuan, Y., Zhang, J., McAteer, R. T. J., Bloomfield, D. S., Higgins, P. A., Gallagher, P. T., Falconer, D. A., Georgoulis, M. K., Wheatland, M. S., Balch, C., Dunn, T. & Wagner, E. L. A comparison of flare forecasting methods. I. Results from the ‘All-Clear’ workshop, Astrophys. J., 829(2), Article 89 (2016). doi: 10.3847/0004-637X/829/2/89Google Scholar
Behannon, K. W. Heliocentric distance dependence of the interplanetary magnetic field, Rev. Geophys. Space Phys., 16, 125–45 (1978). doi: 10.1029/RG016i001p00125CrossRefGoogle Scholar
Berger, M. A. Introduction to magnetic helicity, Plasma Phys. Control. Fusion, 41, B167–75 (1999). doi: 10.1088/0741-3335/41/12B/312Google Scholar
Berger, M. Magnetic helicity conservation, Highlights Astron., 13, 85–8 (2005). doi: 10.1017/S1539299600015148Google Scholar
Blackman, E. G. Magnetic helicity and large scale magnetic fields: A primer, Space Sci. Rev., 188, 5991 (2015). doi: 10.1007/s11214-014-0038-6Google Scholar
Brueckner, G. E., Howard, R. A., Koomen, M. J., et al. The Large Angle Spectroscopic Coronagraph (LASCO), Sol. Phys., 162, 357402 (1995). doi: 10.1007/BF00733434Google Scholar
Brun, A. S., Miesch, M. S. & Toomre, J., Global-scale turbulent convection and magnetic dynamo action in the solar envelope, Astrophys. J., 614, 1073–98 (2004). doi: 10.1086/423835Google Scholar
Brun, A. S., Browning, M. K., Dikpati, M., Hotta, H. & Strugarek, A. Recent advances on solar global magnetism and variability, Space Sci. Rev., 196, 101–36 (2015). doi: 10.1007/s11214-013-0028-0CrossRefGoogle Scholar
Cameron, R. H. & Schüssler, M. The crucial role of surface magnetic fields for the solar dynamo, Science, 347, 1333–5 (2015). doi: 10.1126/science.1261470Google Scholar
Cameron, R. H. & Schüssler, M. An update of Leighton’s solar dynamo model, Astron. Astrophys., 599, Article A52 (2017). doi: 10.1051/0004-6361/201629746Google Scholar
Cameron, R. H., Dasi-Espuig, M., Jiang, J., Işik, E., Schmidt, D. & Schüssler, M. Limits to solar cycle predictability: Cross-equatorial flux plumes, Astron. Astrophys., 557, Article A141 (2013). doi: 10.1051/0004-6361/201321981Google Scholar
Cameron, R. H., Jiang, J., Schüssler, M. & Gizon, L. Physical causes of solar cycle amplitude variability, J. Geophys. Res., 119, 680–88 (2014). doi: 10.1002/2013JA019498CrossRefGoogle Scholar
Charbonneau, P. Where is the solar dynamo? J. Phys. Conf. Ser., 440, Article 012014 (2013). doi: 10.1088/1742-6596/440/1/012014Google Scholar
Charbonneau, P. Solar dynamo theory, Ann. Rev. Astron. Astrophys., 52, 251–90 (2014). doi: 10.1146/annurev-astro-081913-040012Google Scholar
Chen, F., Rempel, M. & Fan, Y., Emergence of magnetic flux generated in a solar convective dynamo. I: Formation of sunspots and active regions, and origin of their asymmetries, Astrophys. J., 846, Article 149 (2017). doi: 10.3847/1538-4357/aa85a0Google Scholar
Chen, Y., Liu, L. & Wan, W., Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? J. Geophys. Res., 116, Article A04304 (2011). doi: 10.1029/2010JA016301Google Scholar
Cheung, M. C. M., van Driel-Gesztelyi, L., Martínez Pillet, V. & Thompson, M. J., The life cycle of active region magnetic fields, Space Sci. Rev., 210, 317–49 (2017). doi: 10.1007/s11214-016-0259-yGoogle Scholar
Clette, F., Svalgaard, L., Vaquero, J. M. & Cliver, E. W. Revisiting the sunspot number: A 400-year perspective on the solar cycle, Space Sci. Rev., 186(1–4), 35103 (2014). doi: 10.1007/s11214-014-0074-2Google Scholar
Choudhuri, A. R. Starspots, stellar cycles and stellar flares: Lessons from solar dynamo models, Sci. Chin. Phys. Mech. Astron., 60, Article 1:019601 (2017). doi: 10.1007/s11433-016-0413-7Google Scholar
Cranmer, S. R. Coronal holes and the high speed solar wind, Space Sci. Rev., 101, 229–94 (2002). doi: 10.1023/A:1020840004535Google Scholar
Cranmer, S. R., Coronal holes, Living Rev. Sol. Phys., 6, Article 3 (2009). doi: 10.12942/lrsp-2009-3Google Scholar
Cranmer, S. R., Gibson, S. E. & Riley, P. Origins of the ambient solar wind: Implications for space weather, Space Sci. Rev., 212, 1345–84 (2017). doi: 10.1007/s11214-017-0416-yGoogle Scholar
Dasi-Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R. & Peñuela, T. Sunspot group tilt angles and the strength of the solar cycle, Astron. Astrophys., 518, Article A7 (2010). doi: 10.1051/0004-6361/201014301Google Scholar
Demoulin, P. & Berger, M. A. Magnetic energy and helicity fluxes at the photospheric level, Sol. Phys., 215, 203–15 (2003). doi: 10.1023/A:1025679813955Google Scholar
de Toma, G., Chapman, G. A., Cookson, A. M. & Preminger, D. Temporal stability of sunspot umbral intensities: 1986–2012, Astrophys. J. Lett., 771, Article L22 (2013). doi: 10.1088/2041-8205/771/2/L22CrossRefGoogle Scholar
Deubner, F.-L. & Gough, D. Helioseismology: Oscillations as a diagnostic of the solar interior, Annu. Rev. Astron. Astrophys., 22, 593619 (1984). doi: 10.1146/annurev.aa.22.090184.0031Google Scholar
Dikpati, M. & Gilman, P. A. Flux-transport solar dynamos, Space Sci. Rev., 144, 6775 (2009). doi: 10.1007/s11214-008-9484-3Google Scholar
Dudok de Wit, T., Bruinsma, S. & Shibasaki, K. Synoptic radio observations as proxies for upper atmosphere modelling, J. Space Weather Space Clim., 4, Article A06 (2015). doi: 10.1051/swsc/2014003Google Scholar
Dudok de Wit, T., Kopp, G., Fröhlich, C. & Schöll, M. Methodology to create a new Total Solar Irradiance record: Making a composite out of multiple data records, Geophys. Res. Lett., 44, 11961203 (2017). doi: 10.1002/2016GL071866Google Scholar
Ebert, R. W., McComas, D. J., Elliott, H. A., Forsyth, R. J. & Gosling, J. T. Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations, J. Geophys. Res., 114, Article A01109 (2009). doi: 10.1029/2008JA013631CrossRefGoogle Scholar
Eddy, J. A. The Maunder minimum, Science, 192(4245), 11891202 (1976).CrossRefGoogle ScholarPubMed
Edmondson, J. K. On the role of interchange reconnection in the generation of the slow solar wind, Space Sci. Rev., 172, 209–25 (2012). doi: 10.1007/s11214-011-9767-yGoogle Scholar
Erdõs, G. & Balogh, A. Magnetic flux density measured in fast and slow solar wind streams, Astrophys J., 753, Article 130 (2012). doi: 10.1088/0004-637X/753/2/130.Google Scholar
Erdõs, G. & Balogh, A. Magnetic flux density in the heliosphere through several solar cycles, Astrophys. J., 781(1), Article 50 (2014). doi: 10.1088/0004-637X/781/1/50CrossRefGoogle Scholar
Fletcher, S. T., Broomhall, A.-M., Salabert, D., Basu, S., Chaplin, W. J., Elsworth, Y., Garcia, R. A. & New, R. A seismic signature of a second dynamo? Astophys. J. Lett., 718, L1922 (2010). doi: 10.1088/2041-8205/718/1/L19Google Scholar
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K., McComas, D. J., Raouafi, N. E. & Szabo, A. The Solar Probe Plus mission: Humanity’s first visit to our star, Space Sci. Rev., 204, 748 (2016). doi: 10.1007/s11214-015-0211-6Google Scholar
Fröhlich, C. Solar irradiance variability since 1978: Revision of the PMOD composite during Solar Cycle 21, Space Sci. Rev., 125, 5365 (2006). doi: 10.1007/s11214-006-9046-5.Google Scholar
Fröhlich, C. Total solar irradiance: What have we learned from the last three cycles and the recent minimum? Space Sci. Rev., 176, 237–52 (2013). doi: 10.1007/s11214-011-9780-1.Google Scholar
Geiss, J., Gloeckler, G. & von Steiger, R. Origin of the solar wind from composition data, Space Sci. Rev., 72, 4960 (1995). doi: 10.1007/BF00768753Google Scholar
Girazian, Z. & Withers, P. An empirical model of the extreme ultraviolet solar spectrum as a function of the F10.7 index, J. Geophys. Res., 120, 6779–94 (2015). doi: 10.1002/2015JA021436.Google Scholar
Gloeckler, G., Geiss, J., Balsiger, H., Bedini, P., Cain, J. C., Fischer, J., Fisk, L. A., Galvin, A. B., Gliem, F., Hamilton, D. C., Hollweg, J. V., Ipavich, F. M., Joos, R., Livi, S., Lundgren, R. A., Mall, U., McKenzie, J. F., Ogilvie, K. W., Ottens, F., Rieck, W., Tums, E. O., von Steiger, R., Weiss, W. & Wilken, B. The solar wind ion composition spectrometer, Astron. Astrophys. Suppl. Ser., 92, 267 (1992).Google Scholar
Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P., Yashiro, S. & Michalek, G. The peculiar behavior of halo coronal mass ejections in Solar Cycle 24, Astrophys. J. Lett., 804(1), Article L23 (2015). doi: 10.1088/2041-8205/804/1/L23Google Scholar
Gosling, J. T. Corotating and transient solar wind flows in three dimensions, Annu. Rev. Astron. Astrophys., 34, 3573 (1996). doi: 10.1146/annurev.astro.34.1.35Google Scholar
Green, L. M., Török, T., Vršnak, B., Manchester, B. IV & Veronig, A. The origin, early evolution and predictability of solar eruptions, Space Sci. Rev., 214, Article 46 (2018). doi: 10.1007/s11214-017-0462-5Google Scholar
Haigh, J. D. The Sun and the Earth’s climate, Living Rev. Sol. Phys., 4, Article 2 (2007). doi: 10.12942/lrsp-2007-2Google Scholar
Hale, G. E., Ellerman, F., Nicholson, S. B. & Joy, A. H. The magnetic polarity of sunspots, Astrophys. J., 49, 153–78 (1919).Google Scholar
Hanasoge, S., Miesch, M. S., Roth, M., Schou, J., Schüssler, M. & Thompson, M. J. Solar dynamics, rotation, convection and overshoot, Space Sci. Rev., 196, 7999 (2015). doi: 10.1007/s11214-015–0144–0Google Scholar
Hathaway, D. H. Solar cycle forecasting, Space Sci. Rev., 144, 401–12 (2009).Google Scholar
Hathaway, D. H. The solar cycle, Living Rev. Sol. Phys., 12, Article 4 (2015). doi: 10.1007/lrsp-2015-4Google Scholar
Hathaway, D. H. & Upton, L. The solar meridional circulation and sunspot cycle variability, J. Geophys. Res., 119, 3316–24 (2014). doi: 10.1002/2013JA019432Google Scholar
Hathaway, D. H. & Wilson, R. M. Geomagnetic activity indicates large amplitude for sunspot cycle 24, Geophys. Res. Lett., 33, L18101 (2006). doi: 10.1029/2006GL027053CrossRefGoogle Scholar
Hathaway, D. H., Wilson, R. M. & Reichmann, E. J. A synthesis of solar cycle predictions, J. Geophys. Res., 104, 22375–88 (1999). doi: 10.1029/1999JA900313Google Scholar
Hathaway, D. H., Wilson, R. M. & Reichmann, E. J. Group sunspot numbers: Sunspot cycle characteristics, Sol. Phys., 211, 357–70 (2002). doi: 10.1023/A:1022425402664CrossRefGoogle Scholar
Hess, P. & Colaninno, R. C. Comparing automatic CME detections in multiple LASCO and SECCHI catalogs, Astrophys. J., 836, Article 134 (2017). doi: 10.3847/1538-4357/aa5b85Google Scholar
Hoeksema, J. T., Wilcox, J. M. & Scherrer, P. H. Structure of the heliospheric current sheet in the early portion of Sunspot Cycle 21, J. Geophys. Res., 87, 10331–8 (1982). doi: 10.1029/JA087iA12p10331Google Scholar
Jiang, J. Solar-cycle precursors and predictions, in Solar and Astrophysical Dynamos and Magnetic Activity, ed. Kosovichev, A. G., de Gouveia Dal Pino, E. M. & Yan, Y., pp. 4960, Proceedings IAU Symposium 294 (2013). doi: 10.1017/S1743921313002196Google Scholar
Jiang, J., Chatterjee, P. & Choudhuri, A. R. Solar activity forecast with a dynamo model, Mon. Not. R. Astron. Soc., 381, 1527–42 (2007). doi: 10.1111/j.1365-2966.2007.12267.xCrossRefGoogle Scholar
Jiang, J., Cameron, R. H., Schmitt, D. & Işık, E. Modelling solar cycles 15 to 21 using a flux transport dynamo, Astron. Astrophys., 553, Article A128 (2013). doi: 10.1051/0004-6361/201321145Google Scholar
Jiang, J., Hathaway, D. H., Cameron, R. H., Solanki, S. K., Gizon, L. & Upton, L. Magnetic flux transport at the solar surface, Space Sci. Rev., 186, 491523 (2014). doi: 10.1007/s11214-014-0083-1Google Scholar
Kepko, L., Viall, N. M., Antiochos, S. K., Lepri, S. T., Kasper, J. C. & Weberg, M. Implications of L1 observations for slow solar wind formation by solar reconnection, Geophys. Res. Lett., 43, 4089–97 (2017). doi: 10.1002/2016GL068607Google Scholar
Kilpua, E. K. J., Madjarska, M. S., Karna, N., Wiegelmann, T., Farrugia, C., Yu, W. & Andreeova, K. Sources of the slow solar wind during the Solar Cycle 23/24 minimum, Sol. Phys., 291, 2441–56 (2016). doi: 10.1007/s11207-016-0979-xGoogle Scholar
Kilpua, E. K. J., Balogh, A., von Steiger, R. & Liu, Y. D. Geoeffective properties of solar transients and stream interaction regions, Space Sci. Rev., 212, 12711314 (2017). doi: 10.1007/s11214-017-0411-3Google Scholar
Kopp, G. Magnitudes and timescales of total solar irradiance variability, J. Space Weather Space Clim., 6, Article A30 (2016). doi: 10.1051/swsc/2016025Google Scholar
Korhonen, H. Properties of stellar activity cycles, Proc. IAU, 11(A29A), 354–9 (2016). doi: 10.1017/S1743921316003276Google Scholar
Krivova, N. A., Solanki, S. K. & Floyd, L. Reconstruction of solar UV irradiance in cycle 23, Astron. Astrophys., 452, 631–9 (2006). doi: 10.1051/0004-6361:20064809Google Scholar
Lean, J. L., Wang, Y.-M. & Sheeley, N. R. Jr. The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: Implications for solar forcing of climate, Geophys. Res. Lett., 29(24), Article 2224 (2002). doi: 10.1029/2002GL015880Google Scholar
Leighton, R. B. A magneto-kinematic model of the solar cycle, Astrophys. J., 156, 126 (1969). doi: 10.1086/149943Google Scholar
Lemerle, A. & Charbonneau, P. A coupled 2 × 2D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions, Astrophys. J., 834(2), Article 133 (2017). doi: 10.3847/1538-4357/834/2/133Google Scholar
Li, K. J., Wang, J. X., Xiong, S. Y., Liang, H. F., Yun, H. S. & Gu, X. M. Regularity of the north-south asymmetry of solar activity, Astron. Astrophys., 383, 648–52 (2002). doi: 10.1051/0004-6361:20011799Google Scholar
Linker, J. A., Mikic, Z., Biesecker, D. A., Forsyth, R. J., Gibson, S. E., Lazarus, A. J., Lecinski, V., Riley, P., Szabo, A. & Thompson, B. J. Magnetohydrodynamic modeling of the solar corona during Whole Sun Month, J. Geophys. Res., 104, 9809–30 (1999). doi: 10.1029/1998JA900159Google Scholar
Linker, J. A., Caplan, R. M., Downs, C., Riley, P., Mikic, Z., Lionello, R. Henney, C. J., Arge, C. N., Liu, Y., Derosa, M. L., Yeates, A. & Owens, M. J. The open flux problem, Astrophys. J., 848(1), Article 70 (2017). doi: 10.3847/1538-4357/aa8a70Google Scholar
Livingston, W., Penn, M. J. & Svalgaard, L. Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux, Astrophys. J. Lett., 757, Article L8 (2012). doi: 10.1088/2041-8205/757/1/L8Google Scholar
Lockwood, M., Owens, M., Hawkins, E., Jones, G. S. & Usoskin, I. Frost fairs, sunspots and the Little Ice Age, Astron. Geophys., 83(2), 1723 (2017). doi: 10.1093/astrogeo/atx057Google Scholar
Lugaz, N., Temmer, M., Wang, Y. & Farrugia, C. J. The interaction of successive coronal mass ejections: A review, Sol. Phys., 292(4), Article 64 (2017). doi: 10.1007/s11207-017-1091-6Google Scholar
Luhmann, J. G., Lee, C. O., Li, Y., Arge, C. N., Galvin, A. B., Simunac, K., Russell, C. T., Howard, R. A. & Petrie, G. Solar wind sources in the late declining phase of Cycle 23: Effects of the weak solar polar field on high speed streams, Sol. Phys., 256, 285305 (2009). doi: 10.1007/s11207-009-9354-5Google Scholar
Manchester, W., IV, Kilpua, E. K. J., Liu, Y. D., Lugaz, N., Riley, P., Török, T. & Vršnak, B. The physical processes of CME/ICME evolution, Space Sci. Rev., 212, 11591219 (2017). doi: 10.1007/s11214-017-0394-0Google Scholar
Martin, S. F. Conditions for the formation and maintenance of filaments, Sol. Phys., 182, 107–37 (1998). doi: 10.1023/A:100502681Google Scholar
Maunder, E. W. Note on the distribution of sunspots in heliographic latitude, 1874 to 1902, Mon. Nat. R. Astron. Soc., 64, 747–61 (1904).Google Scholar
McComas, D. J., Elliott, H. A., Schwadron, N. A., Gosling, G. T., Skoug, R. M. & Goldstein, B. E. The three-dimensional solar wind around solar maximum, Geophys. Res. Lett., 30(10), 1517–20 (2003). doi: 10.1029/2003GL017136Google Scholar
McComas, D. J., Velli, M., Lewis, W. S., Acton, L. W., Balat-Pichelin, M., Bothmer, V., Dirling, R. B., Feldman, W. C., Gloeckler, G., Habbal, S. R., Hassler, D. M., Mann, I., Matthaeus, W. H., McNutt, R. L., Mewaldt, R. A., Murphy, N., Ofman, L., Sittler, E. C., Smith, C. W. & Zurbuchen, T. H. Understanding coronal heating and solar wind acceleration: Case for in situ near-Sun measurements, Rev. Geophys., 45(1), Article RG1004 (2007). doi: 10.1029/2006RG000195Google Scholar
Melrose, D. B. Current-driven flare and CME models, J. Geophys. Res., 122, 7963–78 (2017). doi: 10.1002/2017JA024035CrossRefGoogle Scholar
Miralles, M. P., Cranmer, S. R. & Kohl, J. L. Low-latitude coronal holes during solar maximum, Adv. Space Res., 33, 696700 (2004). doi: 10.1016/S0273-1177(03)00239-4Google Scholar
Mordvinov, A. V., Pevtsov, A. A., Bertello, L. & Petrie, G. J. D. The reversal of the Sun’s magnetic field in Cycle 24, Sol. Terr. Phys., 2(1), 318 (2016). doi: 10.12737/19856Google Scholar
Muñoz-Jaramillo, A., Balmaceda, L. A. & DeLuca, E. E. Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields, Phys. Rev. Lett., 111, Article 041106 (2013). doi: 10.1103/PhysRevLett.111.041106Google Scholar
Muraközy, J. & Ludmány, A. North-south differences of solar cycles, Centr. Eur. Astrophys. Bull., 34, 99107 (2010).Google Scholar
Murray, S. A., Bingham, S., Sharpe, M. & Jackson, D. R. Flare forecasting at the Met Office Space Weather Operations Centre, Space Weather, 15, 577–88 (2017). doi: 10.1002/2016SW001579Google Scholar
Nagovitsyn, Y. A. & Pevtsov, A. A. On the presence of two populations of sunspots, Astrophys. J., 833, Article 94 (2016). doi: 10.3847/1538-4357/833/1/94Google Scholar
Nagovitsyn, Y. A., Pevtsov, A. A. & Osipova, A. A. Long-term variations in sunspot magnetic field–area relation, Astron. Nachr., 338, 2634 (2017). doi: 10.1002/asna.201613035Google Scholar
Neugebauer, M. & Snyder, C. W. Solar plasma experiment, Science, 138, 1095–7 (1962).Google Scholar
Norton, A. A., Charbonneau, P. & Passos, D. Hemispheric coupling: Comparing dynamo simulations and observations, Space Sci. Rev., 186, 251–83 (2014). doi: 10.1007/s11214-014-0100-4Google Scholar
Odstrčil, D. Modeling 3-D solar wind structure, Adv. Space Res., 32, 497506 (2003). doi: 10.1016/S0273-1177(03)00332-6Google Scholar
Owens, M. J. & Forsyth, R. J. The heliospheric magnetic field, Living Rev. Sol. Phys., 10(5), 152 (2013). doi: 10.12942/lrsp-2013-5Google Scholar
Owens, M. J., Lockwood, M. & Barnard, L. A. Coronal mass ejections are not coherent magnetohydrodynamic structures, Sci. Rep., 7, Article 4152 (2017). doi: 10.1038/s41598-017-04546-3Google Scholar
Owens, M. J. & Riley, P. Probabilistic solar wind forecasting using large ensembles of near-Sun conditions with a simple one-dimensional ‘upwind’ scheme, Space Weather, 15, 1461–74 (2017). doi: 10.1002/2017SW001679Google Scholar
Pariat, E., Leake, J. E., Valori, G., Linton, M. G., Zuccarello, F. P. & Dalmasse, K. Relative magnetic helicity as a diagnostic of solar eruptivity, Astron. Astrophys., 601, Article A125 (2017). doi: 10.1051/0004-6361/201630043Google Scholar
Park, S.-H., Kusano, K., Cho, K.-S., Chae, J., Bong, S.-C., Kumar, P., Park, S.-Y. Kim, Y.-H. & Park, Y.-D. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events, Astrophys. J., 778(1), Article 13 (2013). doi: 10.1088/0004-637X/778/1/13Google Scholar
Parker, E. N. Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664–76 (1958).Google Scholar
Parker, E. N. Extension of the solar corona into interplanetary space, J. Geophys. Res., 64, 1675–81 (1959).Google Scholar
Pesnell, W. D. Solar cycle predictions, Sol. Phys., 281, 507–32 (2012). doi: 10.1007/s11207-012-9997-5Google Scholar
Pesnell, W. D. Predicting Solar Cycle 24 using a geomagnetic precursor pair, Sol. Phys., 289, 2317–31 (2014). doi: 10.1007/s11207-013-0470-xCrossRefGoogle Scholar
Pesnell, W. D. Predictions of solar cycle 24: How are we doing? Space Weather, 14, 1021 (2016). doi: 10.1002/2015SW001304Google Scholar
Petrie, G. J. D. Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles, Sol. Phys., 281, 577–98 (2012). doi: 10.1007/s11207-012-0117-3Google Scholar
Petrie, G. J. D. Solar magnetic activity cycles, coronal potential field models and eruption rates, Astrophys. J., 768, Article 12 (2013). doi: 10.1088/0004-637X/768/2/162Google Scholar
Petrie, G. J. D. On the enhanced coronal mass ejection detection rate since the Solar Cycle 23 polar field reversal, Astrophys. J., 812(1), Article 74 (2015). doi: 10.1088/0004-637X/812/1/74Google Scholar
Petrie, G. High-resolution vector magnetograms of the Sun’s poles from Hinode: Flux distributions and global coronal modelling, Sol. Phys., 292, Article 13 (2017). doi: 10.1007/s11207-016-1034-7Google Scholar
Petrie, G. J. D., Canou, A. & Amari, T. Nonlinear force-free and potential-field models of active-region and global coronal fields during the Whole Heliosphere Interval, Sol. Phys., 274, 163–94 (2011). doi: 10.1007/s11207-010-9687-0Google Scholar
Petrie, G. J. D., Petrovay, K. & Schatten, K. Solar polar fields and the 22-year activity cycle: Observations and models, Space Sci. Rev., 186, 325–57 (2014). doi: 10.1007/s11214-014-0064-4Google Scholar
Petrovay, K. Solar cycle prediction, Living Rev. Sol. Phys., 7, Article 6 (2010). doi: 10.12942/lrsp-2010-6#Google Scholar
Pipin, V. V. & Kosovichev, A. G. Dependence of stellar magnetic activity cycles on rotational period in a nonlinear solar-type dynamo, Astophys. J., 823(2), Article 133 (2016). doi: 10.3847/0004-637X/823/2/133Google Scholar
Priest, E. R., Longcope, D. W. & Janvier, M. Evolution of magnetic helicity during eruptive flares and coronal mass ejections, Sol. Phys., 291, 2017–36 (2016). doi: 10.1007/s11207-016-0962-6Google Scholar
Rezaei, R., Beck, C., Lagg, A., Borrero, J. M., Schmidt, W. & Collados, M. Variation in sunspot properties between 1999 and 2014, Astron. Astrophys., 578, Article A43 (2015). doi: 10.1051/0004-6361/201425557Google Scholar
Richardson, I. G. Solar wind stream interaction regions throughout the heliosphere, Liv. Rev. Sol. Phys., 15(1), Article 1 (2018). doi: 10.1007/s41116-017-0011-zGoogle Scholar
Richardson, J. D., Belcher, J. W., Lazarus, A. J. & Paularena, K. I. Statistical prpperties of the solar wind, AIP Conf. Proc., 382, 483–6 (1996). doi: 10.1063/1.51433Google Scholar
Riley, P., Linker, J. A., Mikic, Z., Lionello, R., Ledvina, S. A. & Luhmann, J. G. A comparison between global solar magnetohydrodynamic and potential field source surface model results, Astrophys. J., 653, 1510–16 (2006). doi: 10.1086/508565Google Scholar
Sadykov, V. M. & Kosovichev, A. G. Relationships between characteristics of the line-of-sight magnetic field and solar flare forecasts, Astrophys. J., 849, Article 148 (2017). doi: 10.3847/1538-4357/aa9119Google Scholar
Schatten, K. Fair space weather for solar cycle 24, Geophys. Res. Lett., 32, Article L21106 (2005). doi: 10.1029/2005GL024363Google Scholar
Schatten, K. H., Wilcox, J. M. & Ness, N. F. A model of the interplanetary and coronal magnetic fields, Sol. Phys., 6, 442–55 (1969).Google Scholar
Schmieder, B., Archontis, V. & Pariat, E. Magnetic flux emergence along the solar cycle, Space Sci. Rev., 186, 227–50 (2014). doi: 10.1007/s11214-014-0088-9Google Scholar
Schmieder, B., Aulanier, G. & Vršnak, B. Flare-CME models: An observational perspective (invited review), Sol. Phys., 290, 3457–86 (2015). doi: 10.1007/s11207-015-0712-1Google Scholar
Schonfeld, S. J., White, S. M., Henney, C. J., Arge, C. N. & McAteer, R. T. J. Coronal sources of the F10.7 radio flux, Astrophys. J., 808, Article 29 (2015). doi: 10.1088/0004-637X/808/1/29Google Scholar
Schrijver, C. J. The nonpotentiality of coronae of solar active regions, the dynamics of the surface magnetic field, and the potential for large flares, Astrophys. J., 820, Article 103 (2016). doi: 10.3847/0004-637X/820/2/103Google Scholar
Schrijver, C. J. & DeRosa, M. L. Photospheric and heliospheric magnetic fields, Sol. Phys., 212, 165200 (2003). doi: 10.1023/A:1022908504100Google Scholar
Schrijver, C. J., De Rosa, M. L., Title, A. M. & Metcalf, T. R. The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field, Astrophys. J., 628, 501–13 (2005). doi: 10.1086/430733Google Scholar
Schulz, M. Non-spherical source-surface model of the heliosphere: A scalar formulation, Ann. Geophys., 15, 1379–87 (1997). doi: 10.1007/s00585-997-1379-1Google Scholar
Severnyi, A. B. Nonstationary processes in solar flares as a manifestation of the pinch effect, Sov. Astron., 2, 310–25 (1958).Google Scholar
Sharykin, I. N., Sadykov, V. M., Kosovichev, A. G., Vargas-Dominguez, S. & Zimovets, I. V. Flare energy release in the lower solar atmosphere near the magnetic field Polarity Inversion Line, Astrophys. J., 840, Article 84 (2017). doi: 10.3847/1538-4357/aa6dfdGoogle Scholar
Sheeley, N. R., Walters, J. H., Wang, Y.-M. & Howard, R. A. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections, J. Geophys. Res., 104(A11), 24739–68 (1999). doi: 10.1029/1999JA900308Google Scholar
Sheeley, N. R. Jr & Wang, Y.-M. The recent rejuvenation of the Sun’s large-scale magnetic field: A clue for understanding past and future sunspot cycles, Astrophys. J., 809(2), Article 113 (2015). doi: 10.1088/0004-637X/809/2/113Google Scholar
Simoniello, R., Tripathy, S. C., Jain, K. & Hill, F. A new challenge to solar dynamo models from helioseismic observations: The latitudinal dependence of the progression of the solar cycle, Astrophys. J., 828, Article 41 (2016). doi: 10.3847/0004-637X/828/1/41Google Scholar
Smith, E. J. The heliospheric current sheet, J. Geophys. Res., 106, 15819–31 (2001). doi: 10.1029/2000JA000120Google Scholar
Smith, E. J. & Balogh, A. Ulysses observations of the radial magnetic field, Geophys. Res. Lett., 22, 3317–20 (1995). doi: 10.1029/95GL02826Google Scholar
Solanki, S. K. Sunspots: An overview, Astron. Astrophys. Rev., 11(2–3), 153286 (2003). doi: 10.1007/s00159-003-0018-4Google Scholar
Solanki, S. K., Krivova, N. A. & Haigh, J. D. Solar irradiance variability and climate, Annu. Rev. Astron. Astrophys., 51, 311–51 (2013). doi: 10.1146/annurev-astro-082812-141007Google Scholar
Stakhiv, M., Landi, E., Lepri, S. T., Oran, R. & Zurbuchen, T. H. On the origin of mid-latitude fast wind: Challenging the two-state solar wind paradigm, Astrophys. J., 801, Article 100 (2015). doi: 10.1088/0004-637X/801/2/100Google Scholar
Stejko, A. M., Guerrero, G. G. & Kosovichev, A. G. 3D global modelling of the solar dynamo, eprint arXiv:1701.08450 (2017).Google Scholar
Strassmeier, K. G. Starspots, Astron. Astrophys. Rev., 17, 251308 (2009). doi: 10.1007/s00159-009-0020-6Google Scholar
Sun, X., Hoeksema, J. T., Liu, Y. & Zhao, J. On polar magnetic field reversal and surface flux transport during Solar Cycle 24, Astrophys. J., 798, Article 114 (2015). doi: 10.1088/0004-637X/798/2/114Google Scholar
Svalgaard, L., Cliver, E. W. & Kamide, Y. Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett., 32, Article L01104 (2004). doi: 10.1029/2004GL021664Google Scholar
Tapping, K. F. The 10.7 cm solar radio flux (F10.7), Space Weather, 11, 394406 (2013). doi: 10.1002/swe.20064Google Scholar
Tapping, K. F. & Morgan, C. Changing relationships between sunspot number, total sunspot area and F10.7 in Cycles 23 and 24, Sol. Phys., 292, Article 73 (2017). doi: 10.1007/s11207-017-1111-6Google Scholar
Temmer, M., Rybák, J., Bendík, P., Veronig, A., Vogler, F., Otruba, W., Pötzi, W. & Hanslmeier, A. Hemispheric sunspot numbers Rn and Rs from 1945–2004: Catalogue and N-S asymmetry analysis for solar cycles 18–23, Astron. Astrophys., 447, 735–43 (2006). doi: 10.1051/0004-6361:20054060Google Scholar
Temmer, M., Thalmann, J. K., Dissauer, K., Veronig, A. M., Tschernitz, J., Hinterreiter, J. & Rodriguez, L. On flare-CME characteristics from Sun to Earth combining remote-sensing image data with in situ measurements supported by modelling, Sol. Phys., 292, Article 93 (2017a). doi: 10.1007/s11207-017-1112-5Google Scholar
Temmer, M., Reiss, M. A., Nikolic, L., Hofmeister, S. J. & Veronig, A. M. Preconditioning of interplanetary space due to transient CME disturbances, Astrophys. J., 835, Article 141 (2017b). doi: 10.3847/1538-4357/835/2/141Google Scholar
Török, T., Downs, C., Linker, J. A., Lionello, R., Titov, V. S., Mikić, Z., Riley, P., Caplan, R. M. & Wijaya, J. Sun-to-earth MHD simulation of the 2000 July 14 ‘Bastille Day’ eruption, Astrophys. J., 856, Article 75 (2018). doi: 10.3847/1538-4357/aab36dGoogle Scholar
Usoskin, I. G. A history of solar activity over millennia, Living Rev. Sol. Phys., 14, Article 3 (2017). doi: 10.1007/s41116-017-0006-9Google Scholar
van Driel-Gesztelyi, L. & Green, L. M. Evolution of active regions, Living Rev. Sol. Phys., 12, Article 1 (2015). doi: 10.1007/lrsp-2015-1Google Scholar
Wang, Y. M. The Sun’s large-scale magnetic field and its long-term evolution, Sol. Phys., 224, 2135 (2004). doi: 10.1007/s11207-005-4982-xGoogle Scholar
Wang, Y.-M. Coronal holes and open magnetic flux, Space Sci. Rev., 144, 383–99 (2009). doi: 10.1007/s11214-008-9434-0Google Scholar
Wang, Y.-M. Solar cycle variation of the Sun’s low-order magnetic multipoles: Heliospheric consequences, Space Sci. Rev., 186, 387407 (2014). doi: 10.1007/s11214-014-0051-9Google Scholar
Wang, Y.-M. & Colaninno, R. Is Solar Cycle 24 producing more coronal mass ejections than Cycle 23? Astrophys. J. Lett., 784, Article L27 (2014). doi: 10.1088/2041-8205/784/2/L27Google Scholar
Wang, Y.-M. & Muglach, K. On the formation of filament channels, Astrophys. J., 666, 1284–95 (2007). doi: 10.1086/520623Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. Solar wind speed and coronal flux-tube expansion, Astrophys. J., 355, 726–32 (1990). doi: 10.1086/168805CrossRefGoogle Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. Magnetic flux transport and the sun’s dipole moment – New twists to the Babcock-Leighton model, Astrophys. J., 375, 761–70 (1991). doi: 10.1086/170240Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. On potential field models of the solar corona, Astrophys. J., 392, 310–19 (1992). doi: 10.1086/171430Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr., Global evolution of interplanetary sector structure, coronal holes, and solar wind streams during 1976–1993: Stackplot displays based on solar magnetic observations, J. Geophys. Res., 99(A4), 6597–608 (1994). doi: 10.1029/93JA02105Google Scholar
Wang, Y.-M., Sheeley, N. R. Jr & Lean, J. Understanding the evolution of the Sun’s open magnetic flux, Geophys. Res. Lett., 27, 505–8 (2000). doi: 10.1029/1999GL010744Google Scholar
Wang, Y.-M., Sheeley, N. R. Jr & Andrews, M. D. Polarity reversal of the solar magnetic field during cycle 23, J. Geophys. Res., 107(A12), Article 1465 (2002). doi: 10.1029/2002JA009463Google Scholar
Wang, Y. M. & Sheeley, N. R. Jr. Sources of the solar wind at Ulysses during 1990–2006, Astrophys. J., 653, 708–18 (2006). doi: 10.1086/508929Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. Understanding the geomagnetic precursor of the solar cycle, Astrophys. J., 694, L1115 (2009). doi: 10.1088/0004-637X/694/1/L11Google Scholar
Wang, Y.-M., Robrecht, E. & Sheeley, N. R. Jr. On the weakening of the polar magnetic fields during solar cycle 23, Astrophys. J., 707, 1372–86 (2009). doi: 10.1088/0004-637X/707/2/1372Google Scholar
Weiss, N. O. & Tobias, S. M. Physical causes of solar activity, Space Sci. Rev., 94, 99112 (2000). doi: 10.1023/A:1026790416627Google Scholar
Weiss, N. O. & Thompson, M. J. The solar dynamo, Space Sci. Rev., 144, 5366 (2009).Google Scholar
Wiegelmann, T., Petrie, G. J. D. & Riley, P. Coronal magnetic field models, Space Sci. Rev., 210, 249–74 (2017). doi: 10.1007/s11214-015-0178-3Google Scholar
Wimmer-Schweingruber, R. F. & Hassler, D. M. Tracing heliospheric structures to their solar origin, AIP Conf. Proc., 1720, Article 100002 (2016). doi: 10.1063/1.4943857Google Scholar
Wimmer-Schweingruber, R. F., von Steiger, R. & Paerli, R. Solar wind stream interfaces in corotating interaction regions: New SWICS/Ulysses results, J. Geophys. Res., 104, 9933–46 (1999). doi: 10.1029/1999JA900038Google Scholar
Wood, B. E., Wu, C. C., Lepping, R. P., Nieves-Chinchilla, T., Howard, R. A., Linton, M. G. & Socker, D. G. A STEREO survey of magnetic cloud coronal mass ejections observed at Earth in 2008–2012, Astrophys. J. Suppl. Ser., 229(2), Article 29 (2017). doi: 10.3847/1538-4365/229/2/29Google Scholar
Wyper, P. E., Antiochos, S. & DeVore, C. R. A universal model for solar eruptions, Nature, 544, 452–9 (2017). doi: 10.1038/nature22050Google Scholar
Xie, H., Mäkelä, P., St. Cyr, O. C. & Gopalswamy, N. Comparison of the coronal mass ejection shock acceleration of three widespread SEP events during solar cycle 24, J. Geophys. Res., 122, 7021–41 (2017). doi: 10.1002/2017JA024218Google Scholar
Yeo, K. L., Krivova, N. A. & Solanki, S. K. Solar cycle variation in solar irradiance, Space Sci. Rev., 186, 137–67 (2014). doi: 10.1007/s11214-014-0061-7Google Scholar
Yeo, K. L., Krivova, N. A. & Solanki, S. K. EMPIRE: A robust empirical reconstruction of solar irradiance variability, J. Geophys. Res., 122, 38883914 (2017a). doi: 10.1002/2016JA023733Google Scholar
Yeo, K. L., Solanki, S. K., Norris, C. M., Beeck, B., Unruh, Y. C. & Krivova, N. A. Solar irradiance variability is caused by the magnetic activity on the solar surface, Phys. Rev. Lett., 119(9), Article 091102 (2017b). doi: 10.1103/PhysRevLett.119.091102Google Scholar
Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H. & Gopalswamy, N. Statistical distributions of speeds of coronal mass ejections, Astrophys. J., 619, 599603 (2005). doi: 10.1086/426129Google Scholar
Zacharias, P. An independent review of existing total solar irradiance records, Surv. Geophys., 35, 897912 (2014). doi: 10.1007/s10712-014-9294-yGoogle Scholar
Zerbo, J.-L. & Richardson, J. D. The solar wind during current and past solar minima and maxima, J. Geophys. Res., 120, 10250–56 (2015). doi: 10.1002/2015JA021407.Google Scholar
Zhang, J., Woch, J., Solanki, S. K., von Steiger, R. & Forsyth, R. Interplanetary and solar surface properties of coronal holes observed during solar maximum, J. Geophys. Res., 108, Article 1144 (2003). doi: 10.1029/2002JA009538Google Scholar
Zhao, L., Landi, E., Lepri, S. T., Kocher, M., Zurbuchen, T. H., Fisk, L. A. & Raines, J. M. An anomalous composition in slow solar wind as a signature of magnetic reconnection in its source region, Astrophys. J. Suppl. Ser., 228(1), Article 4 (2017). doi: 10.3847/1538-4365/228/1/4Google Scholar
Zheng, Y., Macneice, P., Odstrcil, D., Mays, M. L., Rastaetter, L., Pulkkinen, A., Taktakishvili, A., Hesse, M., Kuznetsova, M., Lee, H. & Chulaki, A. Forecasting propagation and evolution of CMEs in an operational setting: What has been learned, Space Weather, 11, 557–74 (2013). doi: 10.1002/swe.20096Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×