Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T14:32:34.444Z Has data issue: false hasContentIssue false

6 - Study design in mapping complex disease traits

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Introduction

The current rate of advances in genetic technology and statistical methods makes it difficult to discuss study design in mapping complex disease traits in a way that will have value beyond a relatively short time horizon. This chapter considers how knowledge about the nature of complex diseases and traits can inform study design and confines itself to genomic (rather than proteomic or metabonomic) approaches.

Genetic influences on complex traits can be considered in terms of susceptibility to disease (clinical and pre-clinical), susceptibility to differences in natural history of disease (severity, complications and prognosis), susceptibility to different therapeutic responses (efficacy and adverse effects) or in terms of the genetic determinants of normal phenotypic variation in health.

The choices between approaches depend not only on the context of the study, but also on the relative costs of ascertaining families, measuring phenotypes and genotyping. The costs of genotyping have been falling rapidly over the last decade and the trend is for genotyping to be done in a few automated high-throughput centres to maximize efficiency. In contrast, more stringent ethical and data protection legislation requirements have tended to increase unit recruitment costs, since ascertainment and recruitment procedures become more demanding and remain very labor intensive. It is likely therefore that the requirements for very large sample sizes and for large collaborative studies will increasingly involve research groups from countries of intermediate development which can assure high fidelity phenotyping, but at much lower cost than is possible in most industrialized nations.

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 92 - 112
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, L. and Muller-Myhsok, B. (1998). Maximum-likelihood expression of the transmission/disequilibrium test and power considerations. Am J Hum Genet, 63, 664–7.CrossRefGoogle ScholarPubMed
Altshuler, D., Brooks, L. D., Chakravarti, A.et al. International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437, 1299–320.Google Scholar
Antoniou, A. C. and Easton, D. F. (2003). Polygenic inheritance of breast cancer: Implications for design of association studies. Genet Epidemiol, 25, 190–202.CrossRefGoogle ScholarPubMed
Barton, N. H. and Keightley, P. D. (2002). Understanding quantitative genetic variation. Nature Rev Genet, 3, 11–21.CrossRefGoogle ScholarPubMed
Botstein, D. and Risch, N. (2003). Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet, 33 Suppl, 228–37.CrossRefGoogle ScholarPubMed
Campbell, H. and Rudan, I. (2002). Interpretation of genetic association studies in complex disease. Pharmacogenomics J, 2, 349–60.CrossRefGoogle ScholarPubMed
Carlborg, O. and Haley, C. S. (2004). Epistasis: too often neglected in complex trait studies?Nat Rev Genet, 5, 618–25.CrossRefGoogle ScholarPubMed
Cardon, L. R. and Bell, J. I. (2001). Association study designs for complex diseases. Nat Rev Genet, 2, 91–9.CrossRefGoogle ScholarPubMed
Cardon, L. R. and Palmer, L. J. (2003). Population stratification and spurious allelic association. Lancet, 361, 598–604.CrossRefGoogle ScholarPubMed
Carlborg, O., Koning, D. J., Manly, K. F.et al. (2005). Methodological aspects of the genetic dissection of gene expression. Bioinformatics, 21, 2383–93.CrossRefGoogle ScholarPubMed
Carlson, C. S., Eberle, M. A., Kruglyak, L. and Nickerson, D. A. (2004). Mapping complex disease loci in whole-genome association studies. Nature, 429, 446–52.CrossRefGoogle ScholarPubMed
Cheung, V. G., Spielman, R. S., Ewens, K. G.et al. (2005). Mapping determinants of human gene expression by regional and genome-wide association. Nat Genet, 437, 1365–9.Google ScholarPubMed
Claus, E. B., Risch, N. J. and Thompson, W. D. (1990). Using age of onset to distinguish between subforms of breast cancer. Ann Hum Genet, 54, 169–77.CrossRefGoogle ScholarPubMed
Clayton, D. and McKeigue, P. M. (2001). Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet, 358, 1356–60.CrossRefGoogle ScholarPubMed
Clayton, D. G., Walker, N. M., Smyth, D. J.et al. (2005). Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet, 37, 1243–6.CrossRefGoogle Scholar
Cohen, J. C., Kiss, R. S., Pertsemlidis, A.et al. (2004). Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science, 305, 869–72.CrossRefGoogle ScholarPubMed
Colhoun, H. M., McKeigue, P. M. and Davey Smith, G. (2003). Problems of reporting genetic associations with complex outcomes. Lancet, 361, 865–72.CrossRefGoogle ScholarPubMed
Davey Smith, G. and Ebrahim, S. (2003). ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?Int J Epidemiol, 32, 1–22.CrossRefGoogle Scholar
Davey Smith, G., Ebrahim, S., Lewis, S.et al. (2005). Genetic epidemiology and public health: hope, hype, and future prospects. Lancet, 366, 1484–98.CrossRefGoogle ScholarPubMed
Koning, D. J. and Haley, C. S. (2005). Genetical genomics in humans and model organisms. Trends Genet, 21, 377–81.CrossRefGoogle ScholarPubMed
Devlin, B., Bacanu, S. A. and Roeder, K. (2004). Genomic control to the extreme. Nat Genet, 36, 1129–30.CrossRefGoogle ScholarPubMed
Farrall, M. (2004). Quantitative genetic variation: a post-modern view. Hum Mol Genet, 13 Spec No 1, R1–7.CrossRefGoogle ScholarPubMed
Fay, J. C., Wyckoffand, G. J. and Wu, C. I. (2001). Positive and negative selection on the human genome. Genetics, 158, 1227–34.Google ScholarPubMed
Freimer, N. and Sabatti, C. (2004). The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet, 36, 1045–51.CrossRefGoogle ScholarPubMed
Fullerton, J., Cubin, M., Tiwari, H.et al. (2003). Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. Am J Hum Genet, 72, 879–90.CrossRefGoogle ScholarPubMed
Gibbs, R. (2005). Deeper into the genome. Nature, 437, 1233–4.CrossRefGoogle ScholarPubMed
Gu, C. and Rao, D. C. (2001). Optimum study designs. Adv Genet, 42, 439–57.Google ScholarPubMed
Hirschhorn, J. N. and Daly, M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nat Rev Genet, 6, 95–108.CrossRefGoogle ScholarPubMed
Kaye, J. (2006). Do we need a uniform regulatory system for biobanks across Europe?Eur J Hum Genet, 14, 245–8.CrossRefGoogle Scholar
Keavney, B. (2002). Genetic epidemiological studies of coronary heart disease. Int J Epidemiol, 31, 730–6.CrossRefGoogle ScholarPubMed
Kendziorski, C. M., Chen, M., Yuan, M., Lan, H. and Attie, A. D. (2006). Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics, 62, 19–27.CrossRefGoogle ScholarPubMed
Khoury, M. J. (2004). The case for a global human genome epidemiology initiative. Nat Genet, 36, 1027–8.CrossRefGoogle ScholarPubMed
Lander, E. S. and Botstein, D. (1987). Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science, 236, 1567–70.CrossRefGoogle ScholarPubMed
Lange, C., DeMeo, D. L. and Laird, N. M. (2002). Power and design considerations for a general class of family-based association tests: quantitative traits. Am J Hum Genet, 71, 1330–41.CrossRefGoogle ScholarPubMed
Little, J., Bradley, L., Bray, M. S.et al. (2002). Reporting, appraising, and integrating data on genotype prevalence and gene–disease associations. Am J Epidemiol, 156, 300–10.CrossRefGoogle ScholarPubMed
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. and Hirschhorn, J. N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet, 33, 177–82.CrossRefGoogle ScholarPubMed
Long, A. D. and Langley, C. H. (1999). The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res, 9, 720–31.Google ScholarPubMed
Lyons, M. J., Eisen, S. A., Goldberg, J.et al. (1998). A registry-based twin study of depression in men. Arch Gen Psychiat, 55, 468–72.CrossRefGoogle ScholarPubMed
Macgregor, S., Knott, S. A., White, I. and Visscher, P. M. (2003). Longitudinal variance-components analysis of the Framingham Heart Study data. BMC Genet, 4 Suppl 1, S22.CrossRefGoogle ScholarPubMed
Marenberg, M. E., Risch, N., Berkman, L. F., Floderus, B. and Faire, U. (1994). Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med, 330, 1041–6.CrossRefGoogle Scholar
Marchini, J., Cardon, L. R., Phillips, M. S. and Donnelly, P. (2004). The effects of human population structure on large genetic association studies. Nat Genet, 36, 512–17.CrossRefGoogle ScholarPubMed
Marchini, J., Donnelly, P. and Cardon, L. R. (2005). Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet, 37, 413–17.CrossRefGoogle ScholarPubMed
Merikangas, K. R. and Risch, N. (2003). Genomic priorities and public health. Science, 302, 599–601.CrossRefGoogle ScholarPubMed
McKeigue, P. M. (2005). Prospects for admixture mapping of complex traits. Am J Hum Genet, 76, 1–7.CrossRefGoogle ScholarPubMed
Millar, J. K., Pickard, B. S., Mackie, S.et al. (2005). DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science, 310, 1187–91.CrossRefGoogle ScholarPubMed
Minelli, C., Thompson, J. R., Tobin, M. D. and Abrams, K. R. (2004). An integrated approach to the meta-analysis of genetic association studies using Mendelian randomization. Am J Epidemiol, 160, 445–52.CrossRefGoogle ScholarPubMed
Morton, N. E. and Collins, A. (1998). Tests and estimates of allelic association in complex inheritance. Proc Natl Acad Sci USA, 95, 11389–93.CrossRefGoogle ScholarPubMed
Mueller, M., Goel, A., Thimma, M.et al. (2006). eQTL Explorer: integrated mining of combined genetic linkage and expression experiments. Bioinformatics, 22, 509–11.CrossRefGoogle ScholarPubMed
Ng, P. C. and Henikoff, S. (2002). Accounting for human polymorphisms predicted to affect protein function. Genome Res, 12, 436–46.CrossRefGoogle ScholarPubMed
Peltonen, L., Palotie, A. and Lange, K. (2000). Use of population isolates for mapping complex traits. Nat Rev Genet, 1, 182–90.CrossRefGoogle ScholarPubMed
Pharoah, P. D., Antoniou, A., Bobrow, M.et al. (2002). Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet, 31, 33–6.CrossRefGoogle Scholar
Pritchard, J. K., Stephens, M., Rosenberg, N. A. and Donnelly, P. (2000). Association mapping in structured populations. Am J Hum Genet, 67, 170–81.CrossRefGoogle ScholarPubMed
Pritchard, J. K. (2001). Are rare variants responsible for susceptibility to complex diseases?Am J Hum Genet, 69, 124–37.CrossRefGoogle ScholarPubMed
Ramensky, V., Bork, P. and Sunyaev, S. (2002). Human non-synonymous SNPs: server and survey. Nucl Acids Res, 30, 3894–900.CrossRefGoogle ScholarPubMed
Reich, D. E. and Lander, E. S. (2001). On the allelic spectrum of human disease. Trends Genet, 17, 502–10.CrossRefGoogle ScholarPubMed
Risch, N. (1990). Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet, 46, 222–8.Google ScholarPubMed
Risch, N. and Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 1516–17.CrossRefGoogle ScholarPubMed
Rudan, I., Campbell, H., Carothers, A.et al. (2003). Inbreeding and the genetic complexity of human essential hypertension. Genetics, 163, 1011–21.Google Scholar
Satagopan, J. M., Venkatraman, E. S. and Begg, C. B. (2004). Two-stage designs for gene-disease association studies with sample size constraints. Biometrics, 60, 589–97.CrossRefGoogle ScholarPubMed
Schliekelman, P. and Slatkin, M. (2002). Multiplex relative risk and estimation of the number of loci underlying an inherited disease. Am J Hum Genet, 71, 1369–85.CrossRefGoogle ScholarPubMed
Service, S., DeYoung, J., Karayiorgou, M.et al. (2006). Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat Genet, 38, 556–60.CrossRefGoogle ScholarPubMed
Skol, A. D., Scott, L. J., Abecasis, G. R. and Boehnke, M. (2006). Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet, 38, 209–13.CrossRefGoogle ScholarPubMed
Slager, S. L., Huang, J. and Vieland, V. J. (2000). Effect of allelic heterogeneity on the power of the transmission disequilibrium test. Genet Epidemiol, 18, 143–56.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Smith, G. D. and Ebrahim, S. (2004). Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol, 33, 30–42.CrossRefGoogle ScholarPubMed
Sunyaev, S., Ramensky, V., Koch, I.et al. (2001). Prediction of deleterious human alleles. Hum Mol Genet, 10, 591–7.CrossRefGoogle ScholarPubMed
Templeton, A. R., Weiss, K. M., Nickerson, D. A., Boerwinkle, E. and Sing, C. F. (2000). Cladistic structure within the human lipoprotein lipase gene and its implications for phenotypic association studies. Genetics, 156, 1259–75.Google ScholarPubMed
Thomas, D. C. and Clayton, D. G. (2004). Betting odds and genetic associations. J Natl Cancer Inst, 96, 421–3.CrossRefGoogle ScholarPubMed
Oord, E. J. and Sullivan, P. F. (2003). False discoveries and models for gene discovery. Trends Genet, 19, 537–42.CrossRefGoogle ScholarPubMed
Wacholder, S., Rothman, N. and Caporaso, N. (2002). Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev, 11, 513–20.Google ScholarPubMed
Wang, W. Y. S., Barrat, B. J., Clayton, D. G. and Todd, J. A. (2005). Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet, 6, 109–18.CrossRefGoogle ScholarPubMed
Wang, Z. and Moult, J. (2001). SNPs, protein structure, and disease. Hum Mutat, 17, 263–70.CrossRefGoogle ScholarPubMed
Weiss, K. M. and Terwilliger, J. D. (2000). How many diseases does it take to map a gene with SNPs?Nat Genet, 26, 151–7.CrossRefGoogle ScholarPubMed
Whittemore, A. S. and Nelson, L. M. (1999). Study design in genetic epidemiology: theoretical and practical considerations. J Natl Cancer Inst Monogr, 26, 61–9.CrossRefGoogle Scholar
Witte, J. S., Elston, R. C. and Cardon, L. R. (2000). On the relative sample size required for multiple comparisons. Stat Med, 19, 369–72.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Wright, A., Carothers, A. and Campbell, H. (2002). Gene environment interaction: the BioBank UK Study. Pharmacogenomics J, 2, 75–82.CrossRefGoogle Scholar
Wright, A., Charlesworth, B., Rudan, I., Carothers, A. and Campbell, H. (2003). A polygenic basis for late-onset disease. Trends Genet, 19, 97–106.CrossRefGoogle ScholarPubMed
Wright, A. F., Carothers, A. D. and Pirastu, M. (1999). Population choice in mapping genes for complex diseases. Nat Genet, 23, 397–404.CrossRefGoogle ScholarPubMed
Wright, A. F. and Hastie, N. D. (2001). Complex genetic diseases: controversy over the Croesus code. Genome Biol, 2, 2007.1–2007.8.Google ScholarPubMed
Zaykin, D. V. and Zhivotovsky, L. A. (2005). Ranks of genuine associations in whole-genome scans. Genetics, 171, 813–23.CrossRefGoogle ScholarPubMed
Zhao, L. P., Araqaki, C., Hsu, L.et al. (1999). Integrated designs for gene discovery and characterization. J Natl Cancer Inst Monogr, 26, 71–80.CrossRefGoogle Scholar
Zondervan, K. T., Cardon, L. R. (2004). The complex interplay among factors that influence allelic association. Nat Rev Genet, 5, 89–100.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×