Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T16:44:28.631Z Has data issue: false hasContentIssue false

26 - Obstructive pulmonary disease

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Introduction

Obstructive pulmonary disease describes a heterogeneous group of diseases which are characterized by airflow obstruction on expiration. This is defined as a forced expiratory volume in one second (FEV1) of less than 80% predicted with a ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC) of less than 70%. Asthma and chronic obstructive pulmonary disease (COPD) account for the vast majority of the global disease burden from obstructive pulmonary disease and these two conditions will be the focus of this chapter.

Asthma

Asthma is an inflammatory condition of the airways which results in bronchial reactivity to a variety of stimuli with consequent narrowing of the airways. This results in airflow obstruction which is usually reversible (National Heart, Lung, and Blood Institute, 1992; Department of Health and Social Services, 2003). The cardinal features of airway inflammation, bronchial hyper-reactivity and reversible airflow obstruction give rise to the symptoms of wheeze, breathlessness, cough and chest tightness which are usually the basis for the diagnosis of asthma. Although these symptoms are not specific, the hallmark for the diagnosis of asthma is their intermittent nature, reversibility, diurnal variation and the recognition of specific triggers (British Thoracic Society; Scottish Intercollegiate Guidelines Network, 2003). Asthma is strongly associated with atopy as demonstrated by the link with eczema and hay fever and the detection of IgE, or a positive skin prick test, to a specific allergen (Witt et al., 1986; Woolcock et al., 1987).

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 391 - 405
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbey, D. E., Burchette, R. J., Knutsen, S. F.et al. (1998). Long-term particulate and other air pollutants and lung function in nonsmokers. Am J Respir Crit Care Med, 158, 289–98.CrossRefGoogle ScholarPubMed
Ackermann-Liebrich, U., Leuenberger, P., Schwartz, J.et al. (1997). Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. Am J Respir Crit Care Med, 155, 122–9.CrossRefGoogle ScholarPubMed
Anderson, D. O. and Ferris, B. G. Jr. (1962). Role of tobacco smoking in the causation of chronic respiratory disease. N Engl J Med, 267, 787–94.CrossRefGoogle ScholarPubMed
Anderson, H. R., Butland, B. K. and Strachan, D. P. (1994). Trends in prevalence and severity of childhood asthma. Br Med J, 308, 1600–4.CrossRefGoogle ScholarPubMed
Baranova, H., Perriot, J., Albuisson, E.et al. (1997). Peculiarities of the GSTM1 0/0 genotype in French heavy smokers with various types of chronic bronchitis. Hum Genet, 99, 822–6.CrossRefGoogle ScholarPubMed
Barker, D. J., Godfrey, K. M., Fall, C.et al. (1991). Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. Bmj, 303, 671–5.CrossRefGoogle ScholarPubMed
Behera, D., Jindal, S. K. and Malhotra, H. S. (1994). Ventilatory function in nonsmoking rural Indian women using different cooking fuels. Respiration, 61, 89–92.CrossRefGoogle ScholarPubMed
Benetazzo, M. G., Gile, L. S., Bombieri, C.et al. (1999). alpha 1-antitrypsin TAQ I polymorphism and alpha 1-antichymotrypsin mutations in patients with obstructive pulmonary disease. Respir Med, 93, 648–54.CrossRefGoogle ScholarPubMed
Bodner, C., Godden, D., Brown, K.et al. (1999). Antioxidant intake and adult-onset wheeze: a case-control study. Aberdeen WHEASE Study Group. Eur Respir J, 13, 22–30.CrossRefGoogle ScholarPubMed
Bodner, C., Godden, D. and Seaton, A. (1998). Family size, childhood infections and atopic diseases. The Aberdeen WHEASE Group. Thorax, 53, 28–32.CrossRefGoogle ScholarPubMed
Bolton-Smith, C. (1993). Antioxidant vitamin intakes in Scottish smokers and nonsmokers. Dose effects and biochemical correlates. Ann N Y Acad Sci, 686, 347–58; discussion 358–60.CrossRefGoogle ScholarPubMed
Bouhuys, A., Beck, G. J. and Schoenberg, J. B. (1978). Do present levels of air pollution outdoors affect respiratory health?Nature, 276, 466–71.CrossRefGoogle ScholarPubMed
British Thoracic Society (2003). The burden of lung disease. A statistics report from the British Thoracic Society, The British Thoracic Society, London.
British Thoracic Society; Scottish Intercollegiate Guidelines Network. (2003). British guideline on the management of asthma. Thorax, 58, Suppl 1, i1–94.
Britton, J., Pavord, I., Richards, K.et al. (1994). Dietary magnesium, lung function, wheezing, and airway hyperreactivity in a random adult population sample. Lancet, 344, 357–62.CrossRefGoogle Scholar
Britton, J. R., Pavord, I. D., Richards, K. A.et al. (1995). Dietary antioxidant vitamin intake and lung function in the general population. Am J Respir Crit Care Med, 151, 1383–7.CrossRefGoogle ScholarPubMed
Bruce, R. M., Cohen, B. H., Diamond, E. L.et al. (1984). Collaborative study to assess risk of lung disease in Pi MZ phenotype subjects. Am Rev Respir Dis, 130, 386–90.Google ScholarPubMed
Burney, P. G., Chinn, S. and Rona, R. J. (1990). Has the prevalence of asthma increased in children? Evidence from the national study of health and growth 1973–86. Bmj, 300, 1306–10.CrossRefGoogle ScholarPubMed
Burney, P. G. J. (1992). Asthma. London: Chapman & Hall.Google ScholarPubMed
Burrows, B., Knudson, R. J., Camilli, A. E., Lyle, S. K. and Lebowitz, M. D. (1987). The “horse-racing effect” and predicting decline in forced expiratory volume in one second from screening spirometry. Am Rev Respir Dis, 135, 788–93.CrossRefGoogle ScholarPubMed
Burrows, B., Knudson, R. J., Cline, M. G. and Lebowitz, M. D. (1977 a). Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis, 115, 195–205.Google ScholarPubMed
Burrows, B., Knudson, R. J. and Lebowitz, M. D. (1977 b). The relationship of childhood respiratory illness to adult obstructive airway disease. Am Rev Respir Dis, 115, 751–60.Google ScholarPubMed
Butland, B. K., Fehily, A. M. and Elwood, P. C. (2000). Diet, lung function, and lung function decline in a cohort of 2512 middle aged men. Thorax, 55, 102–8.CrossRefGoogle Scholar
Chavanas, S., Bodemer, C., Rochat, A.et al. (2000). Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet, 25, 141–2.Google ScholarPubMed
Chen, R., Tunstall-Pedoe, H., Bolton-Smith, C., Hannah, M. K. and Morrison, C. (2001). Association of dietary antioxidants and waist circumference with pulmonary function and airway obstruction. Am J Epidemiol, 153, 157–63.CrossRefGoogle ScholarPubMed
Chestnut, L. G., Schwartz, J., Savitz, D. A. and Burchfiel, C. M. (1991). Pulmonary function and ambient particulate matter: epidemiological evidence from NHANES I. Arch Environ Health, 46, 135–44.CrossRefGoogle ScholarPubMed
Church, D. F. and Pryor, W. A. (1985). Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect, 64, 111–26.CrossRefGoogle ScholarPubMed
Cockcroft, A., Seal, R. M., Wagner, J. C.et al. (1982). Post-mortem study of emphysema in coalworkers and non-coalworkers. Lancet, 2, 600–3.CrossRefGoogle ScholarPubMed
Colley, J. R., Douglas, J. W. and Reid, D. D. (1973). Respiratory disease in young adults: influence of early childhood lower respiratory tract illness, social class, air pollution, and smoking. Br Med J, 3, 195–8.CrossRefGoogle ScholarPubMed
Cross, C. E., Traber, M., Eiserich, J. and Vliet, A. (1999). Micronutrient antioxidants and smoking. Br Med Bull, 55, 691–704.CrossRefGoogle ScholarPubMed
Davison, A. G., Fayers, P. M., Taylor, A. J.et al. (1988). Cadmium fume inhalation and emphysema. Lancet, 1, 663–7.CrossRefGoogle ScholarPubMed
Department of Health and Social Services (2003). Report on diagnosis and treatment of asthma DHSS 1992, Published by Department of Health and Social Services (DHSS), London.
Detels, R., Tashkin, D. P., Sayre, J. W.et al. (1991). The UCLA population studies of CORD: X. A cohort study of changes in respiratory function associated with chronic exposure to SOx, NOx, and hydrocarbons. Am J Public Health, 81, 350–9.CrossRefGoogle Scholar
Dockery, D. W., Speizer, F. E., Ferris, B. G. Jr.et al. (1988). Cumulative and reversible effects of lifetime smoking on simple tests of lung function in adults. Am Rev Respir Dis, 137, 286–92.CrossRefGoogle ScholarPubMed
Dossing, M., Khan, J. and al-Rabiah, F. (1994). Risk factors for chronic obstructive lung disease in Saudi Arabia. Respir Med, 88, 519–22.CrossRefGoogle ScholarPubMed
Dow, L., Tracey, M., Villar, A.et al. (1996). Does dietary intake of vitamins C and E influence lung function in older people?Am J Respir Crit Care Med, 154, 1401–4.CrossRefGoogle Scholar
Edfors-Lubs, M. L. (1971). Allergy in 7000 twin pairs. Acta Allergol, 26, 249–85.CrossRefGoogle ScholarPubMed
Fischer, P., Remijn, B., Brunekreef, B.et al. (1985). Indoor air pollution and its effect on pulmonary function of adult non-smoking women: II. Associations between nitrogen dioxide and pulmonary function. Int J Epidemiol, 14, 221–6.CrossRefGoogle ScholarPubMed
Flatt, A., Pearce, N., Thomson, C. D.et al. (1990). Reduced selenium in asthmatic subjects in New Zealand. Thorax, 45, 95–9.CrossRefGoogle ScholarPubMed
Fletcher, C. and Peto, R. (1977). The natural history of chronic airflow obstruction. Br Med J, 1, 1645–8.CrossRefGoogle ScholarPubMed
Fogarty, A. and Britton, J. (2000). The role of diet in the aetiology of asthma. Clin Exp Allergy, 30, 615–27.CrossRefGoogle Scholar
Forastiere, F., Pistelli, R., Sestini, P.et al. (2000). Consumption of fresh fruit rich in vitamin C and wheezing symptoms in children. SIDRIA Collaborative Group, Italy (Italian Studies on Respiratory Disorders in Children and the Environment). Thorax, 55, 283–8.CrossRefGoogle Scholar
Gold, D. R., Wang, X., Wypij, D.et al. (1996). Effects of cigarette smoking on lung function in adolescent boys and girls. N Engl J Med, 335, 931–7.CrossRefGoogle ScholarPubMed
Grievink, L., Smit, H. A., Ocke, M. C., van't Veer, P. and Kromhout, D. (1998). Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: the MORGEN study. Thorax, 53, 166–71.CrossRefGoogle ScholarPubMed
Grievink, L., Zijlstra, A. G., Ke, X. and Brunekreef, B. (1999). Double-blind intervention trial on modulation of ozone effects on pulmonary function by antioxidant supplements. Am J Epidemiol, 149, 306–14.CrossRefGoogle ScholarPubMed
Harrison, D. J., Cantlay, A. M., Rae, F., Lamb, D. and Smith, C. A. (1997). Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol, 16, 356–60.CrossRefGoogle ScholarPubMed
Heinzmann, A. and Deichmann, K. A. (2001). Genes for atopy and asthma. Curr Opin Allergy Clin Immunol, 1, 387–92.CrossRefGoogle ScholarPubMed
Hijazi, N., Abalkhail, B. and Seaton, A. (2000). Diet and childhood asthma in a society in transition: a study in urban and rural Saudi Arabia. Thorax, 55, 775–9.CrossRefGoogle Scholar
Hodge, L., Salome, C. M., Peat, J. K.et al. (1996). Consumption of oily fish and childhood asthma risk. Med J Aust, 164, 137–40.Google ScholarPubMed
Holland, W. W. and Reid, D. D. (1965). The urban factor in chronic bronchitis. Lancet, 40, 445–8.CrossRefGoogle Scholar
Hu, G. and Cassano, P. A. (2000). Antioxidant nutrients and pulmonary function: the Third National Health and Nutrition Examination Survey (NHANES III). Am J Epidemiol, 151, 975–81.CrossRefGoogle Scholar
Hu, G., Zhang, X., Chen, J.et al. (1998). Dietary vitamin C intake and lung function in rural China. Am J Epidemiol, 148, 594–9.CrossRefGoogle ScholarPubMed
Ishii, T., Matsuse, T., Teramoto, S.et al. (1999). Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax, 54, 693–6.CrossRefGoogle ScholarPubMed
Jaakkola, M. S., Ernst, P., Jaakkola, J. J.et al. (1991). Effect of cigarette smoking on evolution of ventilatory lung function in young adults: an eight year longitudinal study. Thorax, 46, 907–13.CrossRefGoogle Scholar
Jarvis, D., Chinn, S., Luczynska, C. and Burney, P. (1997). The association of family size with atopy and atopic disease. Clin Exp Allergy, 27, 240–5.CrossRefGoogle ScholarPubMed
Jeffery, P. K. (2001). Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med, 164, S28–38.CrossRefGoogle ScholarPubMed
Kalsheker, N. A., Hodgson, I. J., Watkins, G. L.et al. (1987). Deoxyribonucleic acid (DNA) polymorphism of the alpha 1-antitrypsin gene in chronic lung disease. Br Med J (Clin Res Ed), 294, 1511–14.CrossRefGoogle ScholarPubMed
Keeley, D. J., Neill, P. and Gallivan, S. (1991). Comparison of the prevalence of reversible airways obstruction in rural and urban Zimbabwean children. Thorax, 46, 549–53.CrossRefGoogle Scholar
Kiernan, K. E., Colley, J. R., Douglas, J. W. and Reid, D. D. (1976). Chronic cough in young adults in relation to smoking habits, childhood environment and chest illness. Respiration, 33, 236–44.CrossRefGoogle ScholarPubMed
Lebowitz, M. D., Holberg, C. J., Knudson, R. J. and Burrows, B. (1987). Longitudinal study of pulmonary function development in childhood, adolescence, and early adulthood. Development of pulmonary function. Am Rev Respir Dis, 136, 69–75.CrossRefGoogle ScholarPubMed
Lewis, S., Bennett, J., Richards, K. and Britton, J. (1996). A cross sectional study of the independent effect of occupation on lung function in British coal miners. Occup Environ Med, 53, 125–8.CrossRefGoogle ScholarPubMed
Lieberman, J., Winter, B. and Sastre, A. (1986). Alpha 1-antitrypsin Pi-types in 965 COPD patients. Chest, 89, 370–3.CrossRefGoogle ScholarPubMed
Logan, W. P. (1953). Mortality in the London fog incident, 1952. Lancet, 1, 336–8.CrossRefGoogle ScholarPubMed
Lomas, D. A., Evans, D. L., Finch, J. T. and Carrell, R. W. (1992). The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature, 357, 605–7.CrossRefGoogle Scholar
Love, R. G. and Miller, B. G. (1982). Longitudinal study of lung function in coal-miners. Thorax, 37, 193–7.CrossRefGoogle ScholarPubMed
Macnee, W. and Rahman, I. (1999). Oxidants and antioxidants as therapeutic targets in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 160, S58–65.CrossRefGoogle ScholarPubMed
Matricardi, P. M., Franzinelli, F., Franco, A.et al. (1998). Sibship size, birth order, and atopy in 11,371 Italian young men. J Allergy Clin Immunol, 101, 439–44.CrossRefGoogle ScholarPubMed
Mattes, J., Karmaus, W., Moseler, M., Frischer, T. and Kuehr, J. (1998). Accumulation of atopic disorders within families: a sibling effect only in the offspring of atopic fathers. Clin Exp Allergy, 28, 1480–6.CrossRefGoogle ScholarPubMed
McCloskey, S. C., Patel, B. D., Hinchliffe, S. J.et al. (2001). Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. Am J Respir Crit Care Med, 164, 1419–24.CrossRefGoogle ScholarPubMed
Miedema, I., Feskens, E. J., Heederik, D. and Kromhout, D. (1993). Dietary determinants of long-term incidence of chronic nonspecific lung diseases. The Zutphen Study. Am J Epidemiol, 138, 37–45.CrossRefGoogle ScholarPubMed
Ministry of Health (1954). Mortality and morbidity during the London fog of December 1952. London: HMSO.
Mitsudo, K., Jayakumar, A., Henderson, Y.et al. (2003). Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry, 42, 3874–81.CrossRefGoogle ScholarPubMed
National Heart, Lung, and Blood Institute (1992). International consensus report on diagnosis and treatment of asthma. National Heart, Lung, and Blood Institute, National Institutes of Health. Bethesda, Maryland 20892. Publication no. 92–3091, March 1992. Eur Respir J, 5, 601–41.
Ness, A. R., Khaw, K. T., Bingham, S. and Day, N. E. (1996). Vitamin C status and respiratory function. Eur J Clin Nutr, 50, 573–9.Google ScholarPubMed
Oxman, A. D., Muir, D. C., Shannon, H. S.et al. (1993). Occupational dust exposure and chronic obstructive pulmonary disease. A systematic overview of the evidence. Am Rev Respir Dis, 148, 38–48.CrossRefGoogle Scholar
Palmer, L. J. (2001). Linkages and associations to intermediate phenotypes underlying asthma and allergic disease. Curr Opin Allergy Clin Immunol, 1, 393–8.CrossRefGoogle ScholarPubMed
Pandey, M. R. (1984). Domestic smoke pollution and chronic bronchitis in a rural community of the Hill Region of Nepal. Thorax, 39, 337–9.CrossRefGoogle Scholar
Peat, J. K., Berg, R. H., Green, W. F.et al. (1994). Changing prevalence of asthma in Australian children. Bmj, 308, 1591–6.CrossRefGoogle ScholarPubMed
Peat, J. K., Woolcock, A. J. and Cullen, K. (1990). Decline of lung function and development of chronic airflow limitation: a longitudinal study of non-smokers and smokers in Busselton, Western Australia. Thorax, 45, 32–7.CrossRefGoogle ScholarPubMed
Peters, J. M., Avol, E., Gauderman, W. J.et al. (1999). A study of twelve Southern California communities with differing levels and types of air pollution. II. Effects on pulmonary function. Am J Respir Crit Care Med, 159, 768–75.CrossRefGoogle ScholarPubMed
Peto, R., Chen, Z. M. and Boreham, J. (1999). Tobacco – the growing epidemic. Nat Med, 5, 15–17.CrossRefGoogle ScholarPubMed
Phelan, P. D. (1984). Does adult chronic obstructive lung disease really begin in childhood?Br J Dis Chest, 78, 1–9.CrossRefGoogle ScholarPubMed
Piitulainen, E. and Eriksson, S. (1999). Decline in FEV1 related to smoking status in individuals with severe alpha1-antitrypsin deficiency (PiZZ). Eur Respir J, 13, 247–51.CrossRefGoogle Scholar
Piitulainen, E., Tornling, G. and Eriksson, S. (1998). Environmental correlates of impaired lung function in non-smokers with severe alpha 1-antitrypsin deficiency (PiZZ). Thorax, 53, 939–43.CrossRefGoogle Scholar
Poller, W., Faber, J. P., Scholz, S.et al. (1992). Mis-sense mutation of alpha 1-antichymotrypsin gene associated with chronic lung disease. Lancet, 339, 1538.CrossRefGoogle ScholarPubMed
Poller, W., Faber, J. P., Weidinger, S.et al. (1993). A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics, 17, 740–3.CrossRefGoogle ScholarPubMed
Poller, W., Meisen, C. and Olek, K. (1990). DNA polymorphisms of the alpha 1-antitrypsin gene region in patients with chronic obstructive pulmonary disease. Eur J Clin Invest, 20, 1–7.Google ScholarPubMed
Prescott, E., Bjerg, A. M., Andersen, P. K., Lange, P. and Vestbo, J. (1997). Gender difference in smoking effects on lung function and risk of hospitalization for COPD: results from a Danish longitudinal population study. Eur Respir J, 10, 822–7.Google ScholarPubMed
Pryor, W. A. and Stone, K. (1993). Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci, 686, 12–27; discussion 27–8.CrossRefGoogle ScholarPubMed
Raizenne, M., Neas, L. M., Damokosh, A. I.et al. (1996). Health effects of acid aerosols on North American children: pulmonary function. Environ Health Perspect, 104, 506–14.CrossRefGoogle ScholarPubMed
Rautalahti, M., Virtamo, J., Haukka, J.et al. (1997). The effect of alpha-tocopherol and beta-carotene supplementation on COPD symptoms. Am J Respir Crit Care Med, 156, 1447–52.CrossRefGoogle ScholarPubMed
Retamales, I., Elliott, W. M., Meshi, B.et al. (2001). Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med, 164, 469–73.CrossRefGoogle ScholarPubMed
Roemer, W., Hoek, G. and Brunekreef, B. (1993). Effect of ambient winter air pollution on respiratory health of children with chronic respiratory symptoms. Am Rev Respir Dis, 147, 118–24.CrossRefGoogle ScholarPubMed
Romagnani, S. (1992). Human TH1 and TH2 subsets: regulation of differentiation and role in protection and immunopathology. Int Arch Allergy Immunol, 98, 279–85.CrossRefGoogle ScholarPubMed
Romieu, I., Meneses, F., Ramirez, M.et al. (1998). Antioxidant supplementation and respiratory functions among workers exposed to high levels of ozone. Am J Respir Crit Care Med, 158, 226–32.CrossRefGoogle ScholarPubMed
Rona, R. J., Duran-Tauleria, E. and Chinn, S. (1997). Family size, atopic disorders in parents, asthma in children, and ethnicity. J Allergy Clin Immunol, 99, 454–60.CrossRefGoogle ScholarPubMed
Sakao, S., Tatsumi, K., Igari, H.et al. (2001). Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 163, 420–2.CrossRefGoogle ScholarPubMed
Sandford, A. J., Chagani, T., Weir, T. D. and Pare, P. D. (1998). Alpha 1-antichymotrypsin mutations in patients with chronic obstructive pulmonary disease. Dis Markers, 13, 257–60.CrossRefGoogle ScholarPubMed
Sandford, A. J., Spinelli, J. J., Weir, T. D. and Pare, P. D. (1997). Mutation in the 3′ region of the alpha-1-antitrypsin gene and chronic obstructive pulmonary disease. J Med Genet, 34, 874–5.CrossRefGoogle ScholarPubMed
Sargeant, L. A., Jaeckel, A. and Wareham, N. J. (2000). Interaction of vitamin C with the relation between smoking and obstructive airways disease in EPIC Norfolk. European Prospective Investigation into Cancer and Nutrition. Eur Respir J, 16, 397–403.CrossRefGoogle ScholarPubMed
Schunemann, H. J., Grant, B. J., Freudenheim, J. L.et al. (2001). The relation of serum levels of antioxidant vitamins C and E, retinol and carotenoids with pulmonary function in the general population. Am J Respir Crit Care Med, 163, 1246–55.CrossRefGoogle Scholar
Schwartz, J. and Weiss, S. T. (1990). Dietary factors and their relation to respiratory symptoms. The Second National Health and Nutrition Examination Survey. Am J Epidemiol, 132, 67–76.CrossRefGoogle ScholarPubMed
Seaton, A., Godden, D. J. and Brown, K. (1994). Increase in asthma: a more toxic environment or a more susceptible population?Thorax, 49, 171–4.CrossRefGoogle ScholarPubMed
Shahar, E., Folsom, A. R., Melnick, S. L.et al. (1994). Dietary n-3 polyunsaturated fatty acids and smoking-related chronic obstructive pulmonary disease. Atherosclerosis Risk in Communities Study Investigators. N Engl J Med, 331, 228–33.CrossRefGoogle ScholarPubMed
Shapiro, S. D. and Owen, C. A. (2002). ADAM-33 surfaces as an asthma gene. N Engl J Med, 347, 936–8.CrossRefGoogle ScholarPubMed
Silverman, E. K., Chapman, H. A., Drazen, J. M.et al. (1998). Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med, 157, 1770–8.CrossRefGoogle ScholarPubMed
Silverman, E. K., Palmer, L. J., Mosley, J. D.et al. (2002). Genomewide linkage analysis of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease. Am J Hum Genet, 70, 1229–39.CrossRefGoogle ScholarPubMed
Silverman, E. K., Province, M. A., Campbell, E. J., Pierce, J. A. and Rao, D. C. (1990). Biochemical intermediates in alpha 1-antitrypsin deficiency: residual family resemblance for total alpha 1-antitrypsin, oxidized alpha 1-antitrypsin, and immunoglobulin E after adjustment for the effect of the Pi locus. Genet Epidemiol, 7, 137–49.CrossRefGoogle ScholarPubMed
Slade, R., Crissman, K., Norwood, J. and Hatch, G. (1993). Comparison of antioxidant substances in bronchoalveolar lavage cells and fluid from humans, guinea pigs, and rats. Exp Lung Res, 19, 469–84.CrossRefGoogle ScholarPubMed
Smith, C. A. and Harrison, D. J. (1997). Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet, 350, 630–3.CrossRefGoogle ScholarPubMed
Soutar, A., Seaton, A. and Brown, K. (1997). Bronchial reactivity and dietary antioxidants. Thorax, 52, 166–70.CrossRefGoogle ScholarPubMed
Sridhar, M. K. (1999). Nutrition and lung health. Proc Nutr Soc, 58, 303–8.CrossRefGoogle ScholarPubMed
Stern, B. R., Raizenne, M. E., Burnett, R. T.et al. (1994). Air pollution and childhood respiratory health: exposure to sulfate and ozone in 10 Canadian rural communities. Environ Res, 66, 125–42.CrossRefGoogle ScholarPubMed
Stone, J., Hinks, L. J., Beasley, R., Holgate, S. T. and Clayton, B. A. (1989). Reduced selenium status of patients with asthma. Clin Sci (Lond), 77, 495–500.CrossRefGoogle ScholarPubMed
Strachan, D. P. (1989). Hay fever, hygiene, and household size. Bmj, 299, 1259–60.CrossRefGoogle ScholarPubMed
Strachan, D. P., Cox, B. D., Erzinclioglu, S. W., Walters, D. E. and Whichelow, M. J. (1991). Ventilatory function and winter fresh fruit consumption in a random sample of British adults. Thorax, 46, 624–9.CrossRefGoogle Scholar
Strachan, D. P., Harkins, L. S. and Golding, J. (1997 a). Sibship size and self-reported inhalant allergy among adult women. ALSPAC Study Team. Clin Exp Allergy, 27, 151–5.CrossRefGoogle ScholarPubMed
Strachan, D. P., Harkins, L. S., Johnston, I. D. and Anderson, H. R. (1997 b). Childhood antecedents of allergic sensitization in young British adults. J Allergy Clin Immunol, 99, 6–12.Google ScholarPubMed
Subar, A. F. and Harlan, L. C. (1993). Nutrient and food group intake by tobacco use status: the 1987 National Health Interview Survey. Ann N Y Acad Sci, 686, 310–21; discussion 321–2.CrossRefGoogle ScholarPubMed
Sunyer, J. (2001). Urban air pollution and chronic obstructive pulmonary disease: a review. Eur Respir J, 17, 1024–33.CrossRefGoogle ScholarPubMed
Surgeon General. (1979). Smoking and Health. A report of the Surgeon General. DHEW publication no (PHS) 79–50066. Washington, DC: US GPO.
Svanes, C., Jarvis, D., Chinn, S. and Burney, P. (1999). Childhood environment and adult atopy: results from the European Community Respiratory Health Survey. J Allergy Clin Immunol, 103, 415–20.CrossRefGoogle ScholarPubMed
Tabak, C., Arts, I. C., Smit, H. A., Heederik, D. and Kromhout, D. (2001). Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: the MORGEN Study. Am J Respir Crit Care Med, 164, 61–4.CrossRefGoogle ScholarPubMed
Tabak, C., Feskens, E. J., Heederik, D.et al. (1998). Fruit and fish consumption: a possible explanation for population differences in COPD mortality (The Seven Countries Study). Eur J Clin Nutr, 52, 819–25.CrossRefGoogle Scholar
Tarjan, E., Magyar, P., Vaczi, Z., Lantos, A. and Vaszar, L. (1994). Longitudinal lung function study in heterozygous PiMZ phenotype subjects. Eur Respir J, 7, 2199–204.CrossRefGoogle ScholarPubMed
Tashkin, D. P., Detels, R., Simmons, M.et al. (1994). The UCLA population studies of chronic obstructive respiratory disease: XI. Impact of air pollution and smoking on annual change in forced expiratory volume in one second. Am J Respir Crit Care Med, 149, 1209–17.CrossRefGoogle ScholarPubMed
The European Community Respiratory Health Survey Group (1997). Genes for asthma? An analysis of the European Community Respiratory Health Survey. Am J Respir Crit Care Med, 156, 1773–80.CrossRef
Traber, M. G., Vliet, A., Reznick, A. Z. and Cross, C. E. (2000). Tobacco-related diseases. Is there a role for antioxidant micronutrient supplementation?Clin Chest Med, 21, 173–87.CrossRefGoogle Scholar
Troisi, R. J., Willett, W. C., Weiss, S. T.et al. (1995). A prospective study of diet and adult-onset asthma. Am J Respir Crit Care Med, 151, 1401–8.CrossRefGoogle ScholarPubMed
Ulvestad, B., Bakke, B., Melbostad, E.et al. (2000). Increased risk of obstructive pulmonary disease in tunnel workers. Thorax, 55, 277–82.CrossRefGoogle ScholarPubMed
Eerdewegh, P., Little, R. D., Dupuis, J.et al. (2002). Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature, 418, 426–30.CrossRefGoogle ScholarPubMed
Mutius, E., Fritzsch, C., Weiland, S. K., Roll, G. and Magnussen, H. (1992). Prevalence of asthma and allergic disorders among children in united Germany: a descriptive comparison. Bmj, 305, 1395–9.CrossRefGoogle Scholar
Mutius, E., Martinez, F. D., Fritzsch, C.et al. (1994). Skin test reactivity and number of siblings. Bmj, 308, 692–5.CrossRefGoogle Scholar
Walley, A. J., Chavanas, S., Moffatt, M. F.et al. (2001). Gene polymorphism in Netherton and common atopic disease. Nat Genet, 29, 175–8.CrossRefGoogle ScholarPubMed
Wang, X., Wypij, D., Gold, D. R.et al. (1994). A longitudinal study of the effects of parental smoking on pulmonary function in children 6–18 years. Am J Respir Crit Care Med, 149, 1420–5.CrossRefGoogle ScholarPubMed
Wickens, K. L., Crane, J., Kemp, T. J.et al. (1999). Family size, infections, and asthma prevalence in New Zealand children. Epidemiology, 10, 699–705.CrossRefGoogle ScholarPubMed
Wise, R. A. (1997). Changing smoking patterns and mortality from chronic obstructive pulmonary disease. Prev Med, 26, 418–21.CrossRefGoogle ScholarPubMed
Witt, C., Stuckey, M. S., Woolcock, A. J. and Dawkins, R. L. (1986). Positive allergy prick tests associated with bronchial histamine responsiveness in an unselected population. J Allergy Clin Immunol, 77, 698–702.CrossRefGoogle Scholar
Woolcock, A. J. (1996). Asthma – disease of a modern lifestyle. Med J Aust, 165, 358–9.Google ScholarPubMed
Woolcock, A. J., Peat, J. K., Salome, C. M.et al. (1987). Prevalence of bronchial hyperresponsiveness and asthma in a rural adult population. Thorax, 42, 361–8.CrossRefGoogle Scholar
Yamada, N., Yamaya, M., Okinaga, S.et al. (2000). Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet, 66, 187–95.CrossRefGoogle ScholarPubMed
Yemaneberhan, H., Bekele, Z., Venn, A.et al. (1997). Prevalence of wheeze and asthma and relation to atopy in urban and rural Ethiopia. Lancet, 350, 85–90.CrossRefGoogle Scholar
Yim, J. J., Park, G. Y., Lee, C. T.et al. (2000). Genetic susceptibility to chronic obstructive pulmonary disease in Koreans: combined analysis of polymorphic genotypes for microsomal epoxide hydrolase and glutathione S-transferase M1 and T1. Thorax, 55, 121–5.CrossRefGoogle ScholarPubMed
Yoshikawa, M., Hiyama, K., Ishioka, S.et al. (2000). Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. Int J Mol Med, 5, 49–53.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×