Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T11:56:57.142Z Has data issue: false hasContentIssue false

24 - Genetics of coronary heart disease

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Coronary heart disease (CHD) is the single commonest cause of death in the developed world. One in four men and one in six women die from CHD. In the UK, around 15% of these deaths occur under the age of 65, and 35% under the age of 75 (www.heartstats.org). CHD frequency varies between populations, with the highest age-adjusted rates of 600–1000 deaths per 100 000 found in countries of the former Soviet Union and the lowest at around 60 per 100 000 in Japan (World Health Organization 2002, www.who.ch/). Age-adjusted rates in the UK and USA are around 200–300 per 100 000 of population. Age-adjusted CHD prevalence in the UK and USA has fallen by around 40% in the past 30 years, although this reflects more a postponement in age of CHD-related death by about 10 years rather than an absolute reduction in numbers of deaths (Fuster, 1999). CHD is predicted to remain the commonest single cause of death in developed countries over the next 20 years and will increase in frequency to become the commonest cause of disease-related disability in both developed and developing countries by the year 2020 (Murray and Lopez, 1997).

Genetic and environmental contributions to CHD pathogenesis

The significant changes in CHD incidence and mortality over the past 20 years can be attributed at least in part to variation in known environmental risk factors (Table 24.1).

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 359 - 376
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abifadel, M., Varret, M., Rabes, J. P.et al. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet, 34, 154–6.CrossRefGoogle ScholarPubMed
Aitman, T. J., Dong, R., Vyse, T. J.et al. (2006). Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature, 439, 798–9.CrossRefGoogle ScholarPubMed
Aitman, T. J., Glazier, A. M., Wallace, C. A.et al. (1999). Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet, 21, 76–83.CrossRefGoogle ScholarPubMed
Aitman, T. J., Godsland, I. F., Farren, B.et al. (1997 a). Defects of insulin action on fatty acid and carbohydrate metabolism in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol, 17, 748–54.CrossRefGoogle ScholarPubMed
Aitman, T. J., Gotoda, T., Evans, A. L.et al. (1997 b). Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet, 16, 197–201.CrossRefGoogle ScholarPubMed
Allayee, H., Ghazalpour, A. and Lusis, A. J. (2003). Using mice to dissect genetic factors in atherosclerosis. Arterioscler Thromb Vasc Biol, 23, 1501–9.CrossRefGoogle ScholarPubMed
Altshuler, D., Hirschhorn, J. N., Klannemark, M.et al. (2000). The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet, 26, 76–80.Google ScholarPubMed
Altshuler, D. and Hirschhorn, J. N. (2005). MEF2A sequence variants and coronary artery disease: a change of heart?J Clin Invest, 4, 831–3.CrossRefGoogle Scholar
Aouizerat, B. E., Allayee, H., Cantor, R. M.et al. (1999). A genome scan for familial combined hyperlipidemia reveals evidence of linkage with a locus on chromosome 11. Am J Hum Genet, 65, 397–412.CrossRefGoogle ScholarPubMed
Arca, M., Zuliani, G., Wilund, K.et al. (2002). Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet, 359, 841–7.CrossRefGoogle ScholarPubMed
Austin, M. A. (1992). Genetic epidemiology of low-density lipoprotein subclass phenotypes. Ann Med, 24, 477–81.CrossRefGoogle ScholarPubMed
Babirak, S. P., Brown, B. G. and Brunzell, J. D. (1992). Familial combined hyperlipidemia and abnormal lipoprotein lipase. Arterioscler Thromb, 12, 1176–83.CrossRefGoogle ScholarPubMed
Benoit, P., Emmanuel, F., Caillaud, J. M.et al. (1999). Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models. Circulation, 99, 105–10.CrossRefGoogle ScholarPubMed
Berard, A. M., Foger, B., Remaley, A.et al. (1997). High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nat Med, 3, 744–9.CrossRefGoogle ScholarPubMed
Berge, K. E., Tian, H., Graf, G. A.et al. (2000). Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science, 290, 1771–5.CrossRefGoogle ScholarPubMed
BHF Family Heart Study Research Group. (2005). A Genomewide Linkage Study of 1,933 Families Affected by Premature Coronary Artery Disease: The British Heart Foundation (BHF) Family Heart Study. Am J Hum. Genet., 77, 1011–20.CrossRef
Bodnar, J. S., Chatterjee, A., Castellani, L. W.et al. (2002). Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat Genet, 30, 110–6.CrossRefGoogle ScholarPubMed
Boisvert, W. A., Spangenberg, J. and Curtiss, L. K. (1997). Role of leukocyte-specific LDL receptors on plasma lipoprotein cholesterol and atherosclerosis in mice. Arterioscler Thromb Vasc Biol, 17, 340–7.CrossRefGoogle ScholarPubMed
Boring, L., Gosling, J., Cleary, M. and Charo, I. F. (1998). Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature, 394, 894–7.CrossRefGoogle Scholar
Broeckel, U., Hengstenberg, C., Mayer, B.et al. (2002). A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat Genet, 30, 210–4.CrossRefGoogle ScholarPubMed
Cabezas, M. C., Bruin, T. W., Jansen, H.et al. (1993). Impaired chylomicron remnant clearance in familial combined hyperlipidemia. Arterioscler Thromb, 13, 804–14.CrossRefGoogle ScholarPubMed
Cambien, F., Poirier, O., Lecerf, L.et al. (1992). Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature, 359, 641–4.CrossRefGoogle ScholarPubMed
Chiodini, B. D. and Lewis, C. M. (2003). Meta-analysis of 4 coronary heart disease genome-wide linkage studies confirms a susceptibility locus on chromosome 3q. Arterioscler Thromb Vasc Biol, 23, 1863–8.CrossRefGoogle ScholarPubMed
Cullen, P., Farren, B., Scott, J. and Farrall, M. (1994). Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia. Arterioscler Thromb, 14, 1233–49.CrossRefGoogle Scholar
Cyrus, T., Witztum, J. L., Rader, D. J.et al. (1999). Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest, 103, 1597–604.CrossRefGoogle ScholarPubMed
Dallinga-Thie, G. M., Bu, X. D., Linde-Sibenius, T. M.et al. (1996). Apolipoprotein A-I/C-III/A-IV gene cluster in familial combined hyperlipidemia: effects on LDL-cholesterol and apolipoproteins B and C-III. J Lipid Res, 37, 136–47.Google ScholarPubMed
Doggen, C. J., Manger, C. V., Bertina, R. M.et al. (1998). A genetic propensity to high factor VII is not associated with the risk of myocardial infarction in men. Thromb Haemost, 80, 281–5.CrossRefGoogle Scholar
Durrington, P. (2003). Dyslipidaemia. Lancet, 362, 717–31.CrossRefGoogle ScholarPubMed
Durrington, P. N. (2003). Lipid and lipoprotein disorders. In Warrell, D. A., Cox, T. M., Firth, J. D. and Benz, E. J., eds., Oxford textbook of medicine, 4th edn. Oxford: Oxford University Press, pp. 74–90.Google Scholar
Eden, E. R., Patel, D. D., Sun, X. M.et al. (2002). Restoration of LDL receptor function in cells from patients with autosomal recessive hypercholesterolemia by retroviral expression of ARH1. J Clin Invest, 110, 1695–702.CrossRefGoogle ScholarPubMed
Eichenbaum-Voline, S., Olivier, M., Jones, E. L.et al. (2004). Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol, 24, 167–74.CrossRefGoogle ScholarPubMed
Febbraio, M., Podrez, E. A., Smith, J. D.et al. (2000). Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest, 105, 1049–56.CrossRefGoogle Scholar
Francke, S., Manraj, M., Lacquemant, C.et al. (2001). A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27. Hum Mol Genet, 10, 2751–65.CrossRefGoogle ScholarPubMed
Furuhashi, M., Ura, N., Nakata, T. and Shimamoto, K. (2003). Insulin sensitivity and lipid metabolism in human CD36 deficiency. Diabetes Care, 26, 471–4.CrossRefGoogle ScholarPubMed
Fuster, V. (1999). Epidemic of cardiovascular disease and stroke: the three main challenges. Presented at the 71st Scientific Sessions of the American Heart Association. Dallas, Texas. Circulation, 99, 1132–7.CrossRefGoogle ScholarPubMed
Garcia, C. K., Wilund, K., Arca, M.et al. (2001). Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science, 292, 1394–8.CrossRefGoogle Scholar
Girelli, D., Russo, C., Ferraresi, P.et al. (2000). Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med, 343, 774–80.CrossRefGoogle ScholarPubMed
Glass, C. K. and Witztum, J. L. (2001). Atherosclerosis. the road ahead. Cell, 104, 503–16.CrossRefGoogle ScholarPubMed
Goldbourt, U., Yaari, S. and Medalie, J. H. (1997). Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality. A 21-year follow-up of 8000 men. Arterioscler Thromb Vasc Biol, 17, 107–13.CrossRefGoogle ScholarPubMed
Goldstein, J., Hazzard, W. R., Schrott, H. G., Bierman, E. L. and Motulsky, A. G. (1973). Hyperlipidemia in coronary heart disease. I. Lipid levels in 500 survivors of myocardial infarction. J Clin Invest, 52, 1533–43.CrossRefGoogle ScholarPubMed
Goldstein, J., Hobbs, H. and Brown, M. (2001). Familial hypercholesterolemia. In Scriver, C. R., Beaudet, A. I., Sly, W. S.et al. (eds.), The metabolic and molecular bases of inherited disease 8th edn. McGraw Hill, pp. 2863–913.Google Scholar
Gonzalez, E.et al. (2005). The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science, 307, 1434–40.CrossRefGoogle ScholarPubMed
Gu, L., Okada, Y., Clinton, S. K.et al. (1998). Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell, 2, 275–81.CrossRefGoogle ScholarPubMed
Harats, D., Shaish, A., George, J.et al. (2000). Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol, 20, 2100–5.CrossRefGoogle ScholarPubMed
Harrap, S. B., Zammit, K. S., Wong, Z. Y.et al. (2002). Genome-wide linkage analysis of the acute coronary syndrome suggests a locus on chromosome 2. Arterioscler Thromb Vasc Biol, 22, 874–8.CrossRefGoogle ScholarPubMed
Hawe, E., Talmud, P. J., Miller, G. J. and Humphries, S. E. (2003). Family history is a coronary heart disease risk factor in the Second Northwick Park Heart Study. Ann Hum Genet, 67, 97–106.CrossRefGoogle ScholarPubMed
Helgadottir, A., Manolescu, A., Thorleifsson, G.et al. (2004). The gene encoding 5-lipooxygenase activating protein (FLAP) confers risk of myocardial infarction and stroke. Nature Genetics, 36, 233–9.CrossRefGoogle Scholar
Helgadottir, A., Manolescu, A., Helgason, A.et al. (2006). A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nature Genetics, 38, 68–74.CrossRefGoogle ScholarPubMed
Hill, J. S., Hayden, M. R., Frohlich, J. and Pritchard, P. H. (1991). Genetic and environmental factors affecting the incidence of coronary artery disease in heterozygous familial hypercholesterolemia. Arterioscler Thromb, 11, 290–7.CrossRefGoogle ScholarPubMed
Iacoviello, L., Di Castelnuovo, A., Knijff, P.et al. (1998). Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction. N Engl J Med, 338, 79–85.CrossRefGoogle ScholarPubMed
Ishibashi, S., Brown, M. S., Goldstein, J. L.et al. (1993). Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest, 92, 883–93.CrossRefGoogle ScholarPubMed
Ito, Y., Azrolan, N., O'Connell, A., Walsh, A. and Breslow, J. L. (1990). Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science, 249, 790–3.CrossRefGoogle ScholarPubMed
Kissebah, A. H., Alfarsi, S. and Evans, D. J. (1984). Low density lipoprotein metabolism in familial combined hyperlipidemia. Mechanism of the multiple lipoprotein phenotypic expression. Arteriosclerosis, 4, 614–24.CrossRefGoogle ScholarPubMed
Kuhlencordt, P. J., Gyurko, R., Han, F.et al. (2001). Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation, 104, 448–54.CrossRefGoogle ScholarPubMed
Kuhn, H., Anton, M., Gerth, C. and Habenicht, A. (2003). Amino acid differences in the deduced 5-lipoxygenase sequence of CAST atherosclerosis-resistance mice confer impaired activity when introduced into the human ortholog. Arterioscler Thromb Vasc Biol, 23, 1072–6.CrossRefGoogle ScholarPubMed
Lane, A., Green, F., Scarabin, P. Y.et al. (1996). Factor VII Arg/Gln353 polymorphism determines factor VII coagulant activity in patients with myocardial infarction (MI) and control subjects in Belfast and in France but is not a strong indicator of MI risk in the ECTIM study. Atherosclerosis, 119, 119–27.CrossRefGoogle Scholar
Lee, M. H., Lu, K., Hazard, S.et al. (2001). Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet, 27, 79–83.CrossRefGoogle ScholarPubMed
Lemaitre, V., O'Byrne, T. K., Borczuk, A. C.et al. (2001). ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest, 107, 1227–34.CrossRefGoogle ScholarPubMed
Lesnik, P., Haskell, C. A. and Charo, I. F. (2003). Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest, 111, 333–40.CrossRefGoogle Scholar
Lindpaintner, K., Pfeffer, M. A., Kreutz, R.et al. (1995). A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med, 332, 706–11.CrossRefGoogle ScholarPubMed
Linton, M. F., Pierotti, V. and Young, S. G. (1992). Reading-frame restoration with an apolipoprotein B gene frameshift mutation. Proc Natl Acad Sci USA, 89, 11431–5.CrossRefGoogle ScholarPubMed
Lusis, A. J. (2000). Atherosclerosis. Nature, 407, 233–41.CrossRefGoogle ScholarPubMed
Lusis, A. J. (2003). Genetic factors in cardiovascular disease. 10 questions. Trends Cardiovasc Med, 13, 309–16.CrossRefGoogle ScholarPubMed
Lutgens, E., Gorelik, L., Daemen, M. J.et al. (1999). Requirement for CD154 in the progression of atherosclerosis. Nat Med, 5, 1313–16.CrossRefGoogle ScholarPubMed
Mahley, R. W. and Rall, S. C. Jr. (2001). Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In Scriver, C. R., Beaudet, A. I., Sly, W. S.et al. (eds.), The metabolic and molecular basis of inherited diseases, 8th edn. New York: McGraw Hill, pp. 2835–62.Google Scholar
Marcil, M., Brooks-Wilson, A., Clee, S. M.et al. (1999). Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet, 354, 1341–6.CrossRefGoogle ScholarPubMed
Marks, D., Thorogood, M., Neil, H. A. and Humphries, S. E. (2003). A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis, 168, 1–14.CrossRefGoogle ScholarPubMed
Marotti, K. R., Castle, C. K., Boyle, T. P.et al. (1993). Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature, 364, 73–5.CrossRefGoogle ScholarPubMed
McKeigue, P. M., Ferrie, J. E., Pierpoint, T. and Marmot, M. G. (1993). Association of early-onset coronary heart disease in South Asian men with glucose intolerance and hyperinsulinemia. Circulation, 87, 152–61.CrossRefGoogle ScholarPubMed
Mehrabian, M., Wong, J., Wang, X.et al. (2001). Genetic locus in mice that blocks development of atherosclerosis despite extreme hyperlipidemia. Circ Res, 89, 125–30.CrossRefGoogle ScholarPubMed
Mehrabian, M., Allayee, H., Wong, J.et al. (2002). Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res, 91, 120–6.CrossRefGoogle ScholarPubMed
Miyaoka, K., Kuwasako, T., Hirano, K.et al. (2001). CD36 deficiency associated with insulin resistance. Lancet, 357, 686–7.CrossRefGoogle ScholarPubMed
Motulsky, A. G. and Brunzell, J. D. (2002). Genetics of Coronary Atherosclerosis. In King, R. A., Rotter, J. I. and Motulsky, A. G. (eds.), The genetic basis of common diseases, 2nd edn. Oxford: Oxford University Press, pp. 105–26.Google Scholar
Murray, C. J. and Lopez, A. D. (1997). Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet, 349, 1498–504.CrossRefGoogle ScholarPubMed
Myant, N. B. (1993). Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis, 104, 1–18.CrossRefGoogle ScholarPubMed
Nagano, M., Yamashita, S., Hirano, K.et al. (2002). Two novel missense mutations in the CETP gene in Japanese hyperalphalipoproteinemic subjects: high-throughput assay by Invader assay. J Lipid Res, 43, 1011–8.CrossRefGoogle ScholarPubMed
Naoumova, R. P., Bonney, S. A., Eichenbaum-Voline, S.et al. (2003). Confirmed Locus on Chromosome 11p and Candidate Loci on 6q and 8p for the triglyceride and cholesterol traits of combined hyperlipidemia. Arterioscler Thromb Vasc Biol, 23, 2070–7.CrossRefGoogle ScholarPubMed
Naoumova, R. P., Neuwirth, C., Lee, P.et al. (2004). Autosomal recessive hypercholesterolaemia: long-term follow up and response to treatment. Atherosclerosis, 174, 165–72.CrossRefGoogle ScholarPubMed
Naoumova, R. P., Tosi, I., Patel, D.et al. (2005). Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler Thromb Vasc Biol, 25, 2654–60.CrossRefGoogle ScholarPubMed
Navarro-Lopez, F. (2002). Genes and coronary heart disease. Rev Esp Cardiol, 55, 413–31.Google ScholarPubMed
Oram, J. F. (2002). ATP-binding cassette transporter A1 and cholesterol trafficking. Curr Opin Lipidol, 13, 373–81.CrossRefGoogle ScholarPubMed
Ozaki, K., Inoue, K., Sato, H.et al. (2004). Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature, 429, 72–5.CrossRefGoogle ScholarPubMed
Ozaki, K., Ohnishi, Y., Iida, A.et al. (2002). Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nature Genetics, 32, 650–4.CrossRefGoogle ScholarPubMed
Packard, C. J. and Shepherd, J. (1999). Physiology of the lipoprotein transport system: an overview of lipoprotein metabolism. In Betteridge, D. J., Illingworth, D. R. and Shepherd, J. (eds.), Lipoproteins in health and disease, 1st edn. London: Arnold.Google Scholar
Pajukanta, P., Terwilliger, J. D., Perola, M.et al. (1999). Genomewide scan for familial combined hyperlipidemia genes in finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. Am J Hum Genet, 64, 1453–63.CrossRefGoogle ScholarPubMed
Pajukanta, P., Cargill, M., Viitanen, L.et al. (2000). Two loci on chromosomes 2 and X for premature coronary heart disease identified in early- and late-settlement populations of Finland. Am J Hum Genet, 67, 1481–93.CrossRefGoogle Scholar
Pennacchio, L. A., Olivier, M., Hubacek, J. A.et al. (2001). An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science, 294, 169–73.CrossRefGoogle ScholarPubMed
Pimstone, S. N., Sun, X. M., du, S. C.et al. (1998). Phenotypic variation in heterozygous familial hypercholesterolemia: a comparison of Chinese patients with the same or similar mutations in the LDL receptor gene in China or Canada. Arterioscler Thromb Vasc Biol, 18, 309–15.CrossRefGoogle ScholarPubMed
Plump, A. S., Smith, J. D., Hayek, T.et al. (1992). Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell, 71, 343–53.CrossRefGoogle ScholarPubMed
Pravenec, M., Landa, V., Zidek, V.et al. (2001). Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nature Genetics, 27, 156–8.CrossRefGoogle ScholarPubMed
Pullinger, C. R., Eng, C., Salen, G.et al. (2002). Human cholesterol 7α-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest, 110, 109–17.CrossRefGoogle Scholar
Reaven, G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37, 1595–607.CrossRefGoogle ScholarPubMed
Rekhter, M. D. (2002). How to evaluate plaque vulnerability in animal models of atherosclerosis?Cardiovasc Res, 54, 36–41.CrossRefGoogle ScholarPubMed
Salen, G., Shefer, S., Nguyen, L.et al. (1992). Sitosterolemia. J Lipid Res, 33, 945–55.Google ScholarPubMed
Samani, N. J., Boultby, R., Butler, R., Thompson, J. R. and Gooddall, A. H. (2001). Telomere shortening in atherosclerosis. Lancet, 358, 472–3.CrossRefGoogle ScholarPubMed
Schaefer, J. R., Scharnagl, H., Baumstark, M. W.et al. (1997). Homozygous familial defective apolipoprotein B-100. Enhanced removal of apolipoprotein E-containing VLDLs and decreased production of LDLs. Arterioscler Thromb Vasc Biol, 17, 348–53.CrossRefGoogle ScholarPubMed
Seidah, N. G., Benjannet, S., Wickham, L.et al. (2003). The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA, 100, 928–33.CrossRefGoogle ScholarPubMed
Shachter, N. S., Hayek, T., Leff, T.et al. (1994). Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice. J Clin Invest, 93, 1683–90.CrossRefGoogle ScholarPubMed
Shachter, N. S., Ebara, T., Ramakrishnan, R.et al. (1996). Combined hyperlipidemia in transgenic mice overexpressing human apolipoprotein Cl. J Clin Invest, 98, 846–55.CrossRefGoogle ScholarPubMed
Shi, W., Wang, X., Shih, D. M.et al. (2002). Paradoxical reduction of fatty streak formation in mice lacking endothelial nitric oxide synthase. Circulation, 105, 2078–82.CrossRefGoogle ScholarPubMed
Shih, D. M., Xia, Y. R., Wang, X. P.et al. (2000). Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem, 275, 17527–35.CrossRefGoogle Scholar
Shoulders, C. C., Jones, E. L. and Naoumova, R. P. (2004). Genetics of familial combined hyperlipidemia and risk of coronary heart disease. Hum Mol Genet, 13 Spec No 1, R149–R160.CrossRefGoogle ScholarPubMed
Slack, J. (1969). Risks of ischaemic heart-disease in familial hyperlipoproteinaemic states. Lancet, 2, 1380–2.CrossRefGoogle ScholarPubMed
Smith, J. D., Trogan, E., Ginsberg, M.et al. (1995). Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA, 92, 8264–8.CrossRefGoogle ScholarPubMed
Sorensen, T. I., Nielsen, G. G., Andersen, P. K. and Teasdale, T. W. (1988). Genetic and environmental influences on premature death in adult adoptees. N Engl J Med, 318, 727–32.CrossRefGoogle ScholarPubMed
Soria, L. F., Ludwig, E. H., Clarke, H. R., Vega, G. L., Grundy, S. M. and McCarthy, B. J. (1989). Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA, 86, 587–91.CrossRefGoogle ScholarPubMed
Sun, X. M., Eden, E. R., Tosi, I.et al. (2005). Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum Mol Genet, 14, 1161–9.CrossRefGoogle ScholarPubMed
Tall, A. R. (1998). An overview of reverse cholesterol transport. Eur Heart J, 19 Suppl A, A31–A35.Google ScholarPubMed
Thompson, G. R. (1999). Familial hypercholesterolaemia. In Betteridge, D. J., Illingworth, D. R. and Shepherd, J. (eds.), Lipoproteins in health and disease, 1st edn. London: Arnold.Google Scholar
Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A. and Evans, R. M. (1998). PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 93, 241–52.CrossRefGoogle ScholarPubMed
Topol, E. J. (2005). The genomic basis of myocardial infarction. Journal of the American College of Cardiology, 46, 1456–65.CrossRefGoogle ScholarPubMed
Varret, M., Rabes, J. P., Saint-Jore, B.et al. (1999). A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet, 64, 1378–87.CrossRefGoogle ScholarPubMed
Venkatesan, S., Cullen, P., Pacy, P., Halliday, D. and Scott, J. (1993). Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler Thromb, 13, 1110–18.CrossRefGoogle ScholarPubMed
Eckardstein, A., Nofer, J. R. and Assmann, G. (2001). High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol, 21, 13–27.CrossRefGoogle Scholar
Voyiaziakis, E., Goldberg, I. J., Plump, A. S.et al. (1998). ApoA-I deficiency causes both hypertriglyceridemia and increased atherosclerosis in human apoB transgenic mice. J Lipid Res, 39, 313–21.Google ScholarPubMed
Walsh, A., Ito, Y. and Breslow, J. L. (1989). High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem, 264, 6488–94.Google ScholarPubMed
Wang, L., Fan, C., Topol, S. E., Topol, E. J. and Wang, Q. (2003). Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science, 302, 1578–81.CrossRefGoogle Scholar
Warden, C. H., Hedrick, C. C., Qiao, J. H., Castellani, L. W. and Lusis, A. J. (1993). Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II. Science, 261, 469–72.CrossRefGoogle ScholarPubMed
Zdravkovic, S., Wienke, A., Pedersen, N. L.et al. (2002). Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Intern Med, 252, 247–54.CrossRefGoogle ScholarPubMed
Zhang, S. H., Reddick, R. L., Piedrahita, J. A. and Maeda, N. (1992). Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 258, 468–71.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×