Skip to main content Accessibility help
  • Print publication year: 2007
  • Online publication date: August 2009

32 - Common forms of visual handicap



The evolution, comparative structure and function of the eye have attracted the attention of many scientists, including Isaac Newton, who first showed that light could be split into different wavelengths, and later Charles Darwin, for whom the eye presented an interesting test of the evolutionary paradigm. Newton laid the foundations for the trichromatic theory of vision (Young, 1802), whereby different wavelengths of light are perceived by three distinct receptors within the retina, with overlapping sensitivities, now known to be the short-, medium- and long-wavelength cone opsins. The eye interacts with the environment in the most direct way, since it is constantly bombarded with electromagnetic radiation of many wavelengths and yet it specifically responds only to those in the 400–700 nm range. These wavelengths correspond closely to the solar spectrum measured below the surface of the sea, where the earliest visual systems are thought to have evolved (McIlwaine, 1996). An otherwise rare member of the carotenoid family, 11-cis retinal, an isomer of vitamin A aldehyde, has the important property of changing shape on absorbing a photon of light. This molecule combines with the different opsin apoproteins, which are members of the G-protein coupled receptor superfamily, to form the visual photopigment in all multicellular animals. In this way, light serves to generate a neural signal but at the same time renders the eye vulnerable to oxidative damage, which is a major factor in at least two of the major causes of global blindness.

Related content

Powered by UNSILO
Alward, W. L., Kwon, Y. H., Kawase, al. (2003). Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. Am J Ophthalmol, 136, 904–10.
Appel, G. B., Cook, H. T., Hageman, al. (2005). Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol, 16, 1392–403.
Argraves, W. S., Greene, L. M., Cooley, M. A. and Gallagher, W. M. (2003). Fibulins: physiological and disease perspectives. EMBO Rep, 4, 1127–31.
Aroca-Aguilar, J. D., Sanchez-Sanchez, F., Ghosh, S., Coca-Prados, M. and Escribano, J. (2005). Myocilin mutations causing glaucoma inhibit the intracellular endoproteolytic cleavage of myocilin between amino acids Arg226 and Ile227. J Biol Chem, 280, 21043–51.
Ayyagari, R., Griesinger, I. B., Bingham, al. (2000). Autosomal dominant hemorrhagic macular dystrophy not associated with the TIMP3 gene. Arch Ophthalmol, 118, 85–92.
Buhrmann, R. R., Quigley, H. A., Barron, al. (2000). Prevalence of glaucoma in a rural East African population. Invest Ophthalmol Vis Sci, 41, 40–8.
Congdon, N. G. and Taylor, H. R. (2003). Age-related cataract. In Johnson, G. J., Minassian, D. C., Weale, R. A. and West, S. K. (eds.), The epidemiology of eye disease, pp.105–19. London: Arnold.
Conley, Y. P., Erturk, D., Keverline, al. (2000). A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet, 66, 1426–31.
Crabb, J. W., Miyagi, M., Gu, al. (2002). Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA, 99, 14682–7.
Delaye, M. and Tardieu, A. (1983). Short-range order of crystallin proteins accounts for eye lens transparency. Nature, 302, 415–17.
Edwards, A. O., Ritter, R. 3rd, Abel, K. al. (2005). Complement factor H polymorphism and age-related macular degeneration. Science, 308, 421–4.
Evans, J. (2003). Age-related macular degeneration. In Johnson, G. J., Minassian, D. C., Weale, R. A. and West, S. K. (eds.), The epidemiology of eye disease, pp. 356–69. London: Arnold.
Fisher, S. A., Abecasis, G. R., Yashar, B. al. (2005). Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet, 14, 2257–64.
Francis, P., Berry, V., Bhattacharya, S. and Moore, A. (2000). Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQP0). Br J Ophthalmol, 84, 1376–9.
Freeman, L. J., Lomas, A., Hodson, al. (2005). Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem J, 388, 1–5.
Geirsdottir, A., Stefansson, E., Jonasson, al. (2005). Do all individuals with a family history of age-related maculopathy (ARM) develop age-related macular degeneration (AMD) if they live to be 100 years old?Invest Ophthalmol Vis Sci, A3310.
Giltay, R., Timpl, R. and Kostka, G. (1999). Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix Biol, 18, 469–80.
Gong, G., Kosoko-Lasaki, O., Haynatzki, G. R. and Wilson, M. R. (2004). Genetic dissection of myocilin glaucoma. Hum Mol Genet, 13 Spec No 1, R91–102.
Graw, J. (2004). Congenital hereditary cataracts. Int J Dev Biol, 48, 1031–44.
Hageman, G. S., Anderson, D. H., Johnson, L. al. (2005). A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA, 102, 7227–32.
Haines, J. L., Hauser, M. A., Schmidt, al. (2005). Complement factor H variant increases the risk of age-related macular degeneration. Science, 308, 419–21.
Hammond, C. J., Duncan, D. D., Snieder, al. (2001). The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmol Vis Sci, 42, 601–5.
Hammond, C. J., Snieder, H., Spector, T. D. and Gilbert, C. E. (2000). Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. N Engl J Med, 342, 1786–90.
Hammond, C. J., Webster, A. R., Snieder, al. (2002). Genetic influence on early age-related maculopathy: a twin study. Ophthalmology, 109, 730–6.
Harding, J. J. (1991). Cataract: biochemistry, epidemiology and pharmacology. London: Chapman and Hall.
Hayward, C., Shu, X., Cideciyan, A. al. (2003). Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration: a genetic model for age-related macular degeneration. Hum Mol Genet, 12, 2657–67.
Heijl, A., Leske, M. C., Bengtsson, al. (2002). Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol, 120, 1268–79.
Hejtmancik, J. F. and Kantorow, M. (2004). Molecular genetics of age-related cataract. Exp Eye Res, 79, 3–9.
Hejtmancik, J. F., Kaiser-Kupfer, M. I. and Piatigorsky, J. (2001). Molecular biology and inherited disorders of the eye lens. In Scriver, C. R. and Sly, W. S. (eds.), The metabolic basis of inherited disease, 8th edn, pp. 6033–62. New York: McGraw Hill.
Hendrickson, A. (2005). Organization of the adult primate fovea. In Penfold, P. L. and Provis, J. M. (eds.), Macular degeneration, pp.1–23. Berlin: Springer-Verlag.
Iyengar, S. K., Klein, B. E., Klein, al. (2004). Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study. Proc Natl Acad Sci USA, 101, 14485–90.
Johnson, L. V. and Anderson, D. H. (2004). Age-related macular degeneration and the extracellular matrix. N Engl J Med, 351, 320–2.
Johnstone, G. J. and Quigley, H. A. (2003). In Johnson, G. J., Minassian, D. C., Weale, R. A. and West, S. K. (eds.), The epidemiology of eye disease, pp. 222–39. London: Arnold.
Klein, R. J., Zeiss, C., Chew, E. al. (2005). Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385–9.
Klenotic, P. A., Munier, F. L., Marmorstein, L. Y. and Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. J Biol Chem, 279, 30469–73.
Lee, S. C., Wang, Y., Ko, G. al. (2001). Risk factors for cataract in Chinese patients with type 2 diabetes: evidence for the influence of the aldose reductase gene. Clin Genet, 59, 356–9.
Lotery, A. J., Avery, K., Goverdhan, S. al. (2005). Mutation analysis of fibulin 5 in a United Kingdom cohort of age-related macular degeneration patients. Invest Ophthalmol Vis Sci, A1150.
Marmorstein, L. Y., Munier, F. L., Arsenijevic, al. (2002). Aberrant accumulation of, EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci USA, 99, 13067–72.
Marshall, J., Hussain, A. A., Starita, C., Moore, D. J. and Patmore, A. L. (1998). Aging and Bruch's membrane. In Marmor, M. F. and Wolfensberger, T. J. (eds.), The retinal pigment epithelium, pp. 669–92. New York: Oxford University Press.
Martin, N., Boomsma, D. and Machin, G. (1997). A twin-pronged attack on complex traits. Nat Genet, 17, 387–92.
McIlwaine, J. T. (1996). An introduction to the biology of vision. Cambridge, MA: Cambridge University Press, pp. 3–5.
Nakamura, T., Lozano, P. R., Ikeda, al. (2002). Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature, 415, 171–5.
Nguyen, A. D., Itoh, S., Jeney, al. (2004). Fibulin-5 is a novel binding protein for extracellular superoxide dismutase. Circ Res, 95, 1067–74.
Nguyen, T. D., Chen, P., Huang, W. al. (1998). Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem, 273, 6341–50.
Okano, Y., Asada, M., Fujimoto, al. (2001). A genetic factor for age-related cataract: identification and characterization of a novel galactokinase variant, “Osaka,” in Asians. Am J Hum Genet, 68, 1036–42.
Pangburn, M. K., Pangburn, K. L., Koistinen, V., Meri, S. and Sharma, A. K. (2000). Molecular mechanisms of target recognition in an innate immune system: interactions among factor H, C3b, and target in the alternative pathway of human complement. J Immunol, 164, 4742–51.
Penfold, P. L. and Provis, J. M. (Eds.) (2005). Macular degeneration. Heidelberg: Springer-Verlag.
Qi, J. H., Ebrahem, Q., Moore, al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med, 9, 407–15.
Quigley, H. A. (2004). New paradigms in the mechanisms and management of glaucoma. Eye, Advance Online Publication 29 October, 2004.
Reddy, M. A., Francis, P. J., Berry, V., Bhattacharya, S. S. and Moore, A. T. (2004). Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol, 49, 300–15.
Reidy, A., Minassian, D. C., Vafidis, al. (1998). Prevalence of serious eye disease and visual impairment in a north London population: population based, cross sectional study. BMJ, 316, 1643–6.
Ren, Z., Li, A., Shastry, B. al. (2000). A 5-base insertion in the gammaC-crystallin gene is associated with autosomal dominant variable zonular pulverulent cataract. Hum Genet, 106, 531–7.
Resnikoff, S., Pascolini, D., Etya'ale, al. (2004). Global data on visual impairment in the year 2002. Bull World Health Organ, 82, 844–51.
Rezaie, T., Child, A., Hitchings, al. (2002). Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science, 295, 1077–9.
Rodriguez de Cordoba, S., Esparza-Gordillo, J., Goicoechea de Jorge, E., Lopez-Trascasa, M. and Sanchez-Corral, P. (2004). The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol, 41, 355–67.
Seddon, J. M., Cote, J., Page, W. F., Aggen, S. H. and Neale, M. C. (2005). The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol, 123, 321–7.
Shu, X., Tulloch, B., Lennon, al. (2006). Disease mechanisms in late-onset retinal macular degeneration associated with mutation in C1QTNF5. Hum Mol Genet, 15, 1680–9.
Stoilov, I., Akarsu, A. N. and Sarfarazi, M. (1997). Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet, 6, 641–7.
Stone, E. M., Braun, T. A., Russell, S. al. (2004). Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med, 351, 346–53.
Stone, E. M., Fingert, J. H., Alward, W. al. (1997). Identification of a gene that causes primary open angle glaucoma. Science, 275, 668–70.
Stone, E. M., Lotery, A. J., Munier, F. al. (1999). A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet, 22, 199–202.
Taylor, H. R., West, S. K., Rosenthal, F. al. (1998). Effect of ultraviolet radiation on cataract formation. N Engl J Med, 319, 1429–33.
Tielsch, J. M., Sommer, A., Katz, al. (1991). Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA, 266, 369–74.
Timpl, R., Sasaki, T., Kostka, G. and Chu, M. L. (2003). Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol, 4, 479–89.
United Nations (2001). World population prospects. The 2000 revision highlights.
Vincent, A. L., Billingsley, G., Buys, al. (2002). Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet, 70, 448–60.
Weber, B. H., Vogt, G., Pruett, R. C., Stohr, H. and Felbor, U. (1994). Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet, 8, 352–6.
West, S. K., Munoz, B., Schein, O. D., Duncan, D. D. and Rubin, G. S. (1998). Racial differences in lens opacities: the Salisbury Eye Evaluation (SEE) project. Am J Epidemiol, 148, 1033–9.
Wiggs, J. L., Auguste, J., Allingham, R. al. (2003). Lack of association of mutations in optineurin with disease in patients with adult-onset primary open-angle glaucoma. Arch Ophthalmol, 121, 1181–3.
Williams-Lyn, D., Flanagan, J., Buys, al. (2000). The genetic aspects of adult-onset glaucoma: a perspective from the Greater Toronto area. Can J Ophthalmol, 35, 12–7.
Yamada, K. M. and Geiger, B. (1997). Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol, 9, 76–85.
Young, T. (1802). On the theory of light and colours. Philos Trans R Soc London, 92, 12–48.
Zareparsi, S., Branham, K. E., Li, al. (2005). Strong Association of the Y402H Variant in Complement Factor H at 1q32 with Susceptibility to Age-Related Macular Degeneration. Am J Hum Genet, 77, 149–53.