Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T23:25:54.423Z Has data issue: false hasContentIssue false

7 - From the GRP Algorithm to Scientific Computing

Published online by Cambridge University Press:  20 August 2009

Matania Ben-Artzi
Affiliation:
Hebrew University of Jerusalem
Joseph Falcovitz
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

The GRP algorithm was developed in Part I and tested against a variety of analytical examples. The next challenge is to adapt it to the needs of “Scientific Computing,” that is, to implement it in the simulation of problems of physical significance. This is a formidable task for any numerical algorithm. The problems encountered in applications usually are multidimensional and involve complex geometries and additional physical phenomena. In this chapter we first describe in more detail some of these problems, as a general background for the following chapters. We then proceed to the main goal of the chapter, namely, the upgrading of the GRP algorithm (which is essentially one dimensional) to a two-dimensional, second-order scheme. To this end we recall (Section 7.2) Strang's method of “operator splitting” and then (Section 7.3) apply it to the (planar) fluid-dynamical case. Although the method can be further extended to the three-dimensional case, we confine our presentation to the two-dimensional setup, which serves in our numerical examples (Chapters 8 and 10).

General Discussion

In Part I we studied the mathematical basis of the GRP method. We also considered a variety of numerical examples for which analytic (or at least asymptotic) solutions were available. This provided us with some measure of the accuracy of the computational results, and helped identifiy potential difficulties (such as the resolution of contact discontinuities).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×