Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T08:29:14.113Z Has data issue: false hasContentIssue false

19 - A variational approach to general relativity

Published online by Cambridge University Press:  05 September 2012

M. P. Hobson
Affiliation:
University of Cambridge
G. P. Efstathiou
Affiliation:
University of Cambridge
A. N. Lasenby
Affiliation:
University of Cambridge
Get access

Summary

Most of classical and quantum physics can be expressed in terms of variational principles, and it is often when written in this form that the physical meaning is most clearly understood. Moreover, once a physical theory has been written as a variational principle it is usually straightforward to identify conserved quantities, or symmetries of the system of interest, that otherwise might have been found only with considerable effort. Conversely, by demanding that the variational principle be invariant under some symmetry, one ensures that the equations of motion derived from it also respect that symmetry. In this final chapter, we therefore present an introductory account of variational principles and the Lagrangian formalism. Our ultimate aim will be to derive afresh the field equations of general relativity from this new perspective. This will require us to consider some general aspects of classical field theory in flat and curved spacetimes. As a result, this chapter lies somewhat outside the mainstream discussion presented in preceding chapters and may be omitted on a first reading. Nevertheless the variational approach that we shall outline is extremely powerful and provides the basis for most current research into the formulation of classical (and quantum) field theories, including general relativity and other candidate theories of gravitation.

Hamilton's principle in Newtonian mechanics

To begin, let us remind ourselves of a familiar example of a physical variational principle, namely Hamilton's principle in Newtonian mechanics.

Type
Chapter
Information
General Relativity
An Introduction for Physicists
, pp. 524 - 554
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×