Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T09:39:18.474Z Has data issue: false hasContentIssue false

5 - Receiving Gravitational Waves

from Part Two - New Window on the Universe: Gravitational Waves

Published online by Cambridge University Press:  05 June 2015

Beverly K. Berger
Affiliation:
International Society on Relativity and Gravitation
Karsten Danzmann
Affiliation:
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Gabriela Gonzalez
Affiliation:
Louisiana State University
Andrea Lommen
Affiliation:
Franklin & Marshall College
Guido Mueller
Affiliation:
University of Florida
Albrecht Rüdiger
Affiliation:
Albert Einstein Institute
William Joseph Weber
Affiliation:
University of Trento
Abhay Ashtekar
Affiliation:
Pennsylvania State University
Beverly K. Berger
Affiliation:
Formerly Program Director for Gravitational Physics, National Science Foundation
James Isenberg
Affiliation:
University of Oregon
Malcolm MacCallum
Affiliation:
University of Bristol
Get access

Summary

Introduction

Gravitational waves are a consequence of Einstein's General Theory of Relativity, first presented in 1915 and published in 1916 [1]. Einstein himself linearized his theory and derived wave equations and calculated the gravitational radiation produced by sources in the weak-field, slow-motion limit [2]. As described in the following Chapter, this initial insight has been greatly expanded so that, in general, it is possible to calculate either numerically or analytically the details of the gravitational radiation for a broad range of potential astronomical sources. Much later, in the 1970s, the discovery of the binary neutron star system PSR1913+16 by Hulse and Taylor [3] demonstrated through this natural experiment that gravitational waves carry away energy and angular momentum, causing the neutron star orbit to decay at precisely the predicted rate. Early cosmological gravitational waves imprint a polarization signature in the electromagnetic microwave background that several sensitive instruments may detect. See [4] but also [5] and references therein for further discussion.

These brief remarks gloss over a more complex history where it was unclear whether gravitational waves were real or just gauge artifacts. The theory was finally settled on the side of reality [6]. The standard next step in physics – to build a receiver to directly detect gravitational waves – proved to be extremely challenging. The analog of the Hertz experiment where artificially generated waves are detected within the wave zone will fail because of the undetectably small amplitude (see for example [7]). Astrophysical sources are much stronger but are, of course, more distant. Yet their detection may be possible because gravitational wave receivers respond to amplitude and not to intensity. Nonetheless, the numbers are daunting.

In the early 1960s, J. Weber followed through on a bold vision – that gravitational waves were detectable – by measuring the resonant excitation of acoustic modes in heavy metallic bars, as would be caused by a passing gravitational wave from relatively nearby astrophysical sources [8].

Type
Chapter
Information
General Relativity and Gravitation
A Centennial Perspective
, pp. 242 - 286
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Einstein, A. 1916. Annalen der Physik, 49, 769–823.
[2] Einstein, A. 1918. Sitzungsber. Preuss. Akad. Wiss., 154.
[3] Hulse, R. A., and Taylor, J. H. 1975. Astrophys. J. Lett., 195, L51.CrossRef
[4] Ade, P.A.R., et al. 2014. Phys. Rev. Lett., 112, 241101.CrossRef
[5] Ade, P.A.R., et al. 2014. A joint analysis of BICEP2/Keck Array and Planck. arXiv: 1502.00612 [Astro-ph.CO].
[6] Pirani, F. 1956. Acta Phys. Polon., 15, 389.
[7] Saulson, P. 1994. Fundamentals of interferometric gravitational wave detectors. Singapore: World Scientific.CrossRefGoogle Scholar
[8] Weber, J. 1960. Phys. Rev., 117, 306–313.CrossRef
[9] Weber, J. 1969. Phys. Rev. Lett., 12, 1320–1324.
[10] Kafka, R., and Schnupp, L. 1978. Astron. Astrophys., 70, 97–103.
[11] Aguiar, O. 2011. Res. Astron. Astrophys., 11, 1–42.CrossRef
[12] Gertsenshtein, M., and Pustovoit, V. 1963. Sov. Phys. JETP, 16, 433–135.
[13] Moss, G. E., Miller, L. R., and Forward, R. L. 1971. Appl. Optics, 10, 2495–2498.
[14] Weiss, R. 1972. Quarterly Progress Report of the Research Laboratory of Electronics of the Massachusetts Institute of Technology, 105, 54–76.
[15] Faller, J. E., and Bender, P. L. 1984. A possible laser gravitational-wave experiment in space. Pages 689-690 of: Precision measurements and fundamental constants II. NBS Special Publication 617.Google Scholar
[16] Faller, J. E. et al. 1985. Space antenna for gravitational wave astronomy. In: Proceedings of the Colloquium on Kilometric Optical Arrays in Space. ESA report SP-226.
[17] Sazhin, M. 1978. Soviet Astr., 22, 36.
[18] Detweiler, S. 1979. Astrophys. J., 234, 1100.CrossRef
[19] Astone, P., et al. 2013. Phys. Rev. D, 86, 082002.CrossRef
[20] Harry, G., et al. 2010. Class. Quant. Grav., 27, 084006.CrossRef
[21] Degallaix, J., et al. 2013. Astronomical Society of the Pacific Conference Series, 467, 151.
[22] Danzmann, K., et al. 2011. LISA, Unveiling a hidden Universe. ESA/SRE Report, see http://www.rssd.esa.int/index.php?project=LISA&page=LISA_doc.
[23] Danzmann, K., et al. 2013. The gravitational Universe: the eLISA whitepaper. ESA Report, see https://www.elisascience.org/whitepaper/.
[24] Demorest, P., et al. 2013. Astrophys. J., 762, 94.CrossRef
[25] Jenet, F.A., Lommen, A., Larson, S.L., and Wen, L. 2004. Astrophys. J., 606, 799.CrossRef
[26] Adhikari, R. 2014. Rev. Mod. Phys., 86, 121.CrossRef
[27] Aso, Y., et al. 2013. Phys. Rev. D, 88, 043007.CrossRef
[28] Punturo, M., et al. 2010. Class. Quant. Grav., 27, 194002.CrossRef
[29] Driggers, J. C., Harms, J., and Adhikari, R. X. 2012. Phys. Rev. D, 86, 102001.CrossRef
[30] Antonucci, F., et al. 2012. Class. Quant. Grav., 29, 124014.CrossRef
[31] Cutler, C., and Holz, D.E. 2009. Phys. Rev. D, 80, 104009.CrossRef
[32] Kawamura, S., et al. 2008. J. Phys.: Conf. Ser., 122, 012006.
[33] Bender, P. L., Begelmann, M. C., and Gair, J. R. 2013. Class. Quant. Grav., 30, 165017.CrossRef
[34] Burston, R., Gizon, L., Appourchaux, T., and Ni, W.-T. 2008. J. Phys.: Conf. Ser., 118, 012043.
[35] McKenzie, K., et al. 2011. Lagrange: a space-based gravitational-wave detector with geometric suppression of spacecraft noise. NASA-Document-URS225851.
[36] van Haasteren, R., et al. 2011. Mon. Not. R. Astr. Soc., 414,3117.CrossRef
[37] Yardley, D., et al. 2011. Mon. Not. R. Astr. Soc., 407, 1777.CrossRef
[38] Pitkin, M., Reid, S., Rowan, S., and Hough, J. 2011. Living Rev. Rel., 14, 5.CrossRef
[39] Abbott, B., et al. 2009. Rep. Prog. Phys., 72, 076901.CrossRef
[40] Abbott, B., et al. 2005. Phys. Rev. D, 72, 122004.CrossRef
[41] Abadie, J., et al. 2012. Sensitivity achieved by the LIGO and Virgo gravitational wave detectors during LIGO's sixth and Virgo's second and third science runs. arXiv:1203.2674 [gr-qc].
[42] Fairhurst, S. 2011. Class. Quant. Grav., 28, 105021.CrossRef
[43] LIGO Scientific Collaboration and others. 2014. LSC observational and instrument papers. https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html.
[44] Virgo Collaboration and others. 2014. Virgo publication list. https://www.ego-gw.it/editorialboard/list.aspx.
[45] Abbott, B., et al. B. 2008. Astrophys. J. Lett., 683, 45.CrossRef
[46] Abadie, J., et al. 2011. Astrophys. J., 737, 93.CrossRef
[47] Abadie, J., et al. 2009. Nature, 460, 990–994.
[48] Abbott, B., etal. 2008. Astrophys. J., 681, 1419.
[49] Abbott, B., et al. 2012. Astrophys. J., 755, 2.
[50] Aasi, J., et al. 2014. Prospects for localization of gravitational wave transients by the Advanced LIGO and Advanced Virgo observatories. arXiv:1304.0670 [gr-qc].
[51] Caves, C. 1980. Phys.Rev. Lett., 45, 75.CrossRef
[52] Caves, C. 1981. Phys. Rev. D, 23, 1693–1708.CrossRef
[53] McKenzie, K. et al. 2004. Phys. Rev. Lett., 93, 161105.CrossRef
[54] Vahlbruch, H., etal. 2008. Phys. Rev. Lett., 100, 033602.
[55] Schnabel, R., et al. 2011. Nature Physics, 7, 962–965.
[56] Aasi, J., et al. 2013. Nature Photonics, 7, 613–619.CrossRef
[57] Harry, G. M., Bodiya, T., and DeSalvo, R. (eds). 2012. Optical coatings and thermal noise in precision measurement. Cambridge: Cambridge University Press.
[58] Dolesi, R., et al. 2011. Phys. Rev. D, 84, 063007.CrossRef
[59] Willke, B., etal. 2006. J. Phys.: Conf. Ser., 32, 270–275.
[60] Kwee, P., et al. 2012. Optics Express, 20, 10617.CrossRef
[61] Rong, H., et al. 2002. Characterization of the LIGO input optics system. Pages 1837-1838 of: Gurzadyan, V. G., Jantzen, R. T., and Ruffini, R. (eds), Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity. Singapore: World Scientific.CrossRefGoogle Scholar
[62] Palashov, P., et al. 2012. JOSA B, 29, 1784–1792.CrossRef
[63] Dooley, K., et al. 2012. Rev. Sci. Instrum., 83, 033109.CrossRef
[64] Advanced LIGO Team. 2011. Advanced LIGO reference design. https://dcc.ligo.org/public/0001/M060056/002/AdL-reference-design-v2.pdf.
[65] Grote, H., et al. 2004. Class. Quant. Grav., 21, S473.CrossRef
[66] Arain, M., etal. 2008. Optics Express, 16, 10018–10032.
[67] Ward, R., etal. 2008. Class. Quant. Grav., 25, 114030.
[68] Fricke, T., et al. 2012. Class. Quant. Grav., 29, 065005.CrossRef
[69] Abbott, R., et al. 2010. T1000298: advanced LIGO length sensing and control final design. LIGO Document Control Center, https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?.submit=Number&docid=T1000298&version=.
[70] Black, E. 2001. Amer. J. Phys., 69, 79–87.CrossRef
[71] Strain, K., et al. 2003. Appl. Optics, 42, 1244–1256.CrossRef
[72] Mueller, G. 2005. Optics Express, 18, 7118–7132.
[73] Barsotti, L., et al. 2010. Class. Quant. Grav., 27, 084026.CrossRef
[74] Hello, P., et al. 1990. French J. Phys., 51, 2243–2261.
[75] Winkler, W., et al. 1991. Phys.Rev. A, 44, 7022–7036.CrossRef
[76] Mueller, G., et al. 2000. Optics Lett., 25, 266–268.CrossRef
[77] Brooks, A., etal. 2005. Gen. Rel. Grav., 37, 1575–1580.
[78] Goda, K., etal. 2004. Optics Lett., 29, 1452.
[79] Lawrence, R., et al. 2004. Optics Lett., 27, 2635–2637.
[80] Raab, F., and Coyne, D. 1997. Effect of microseismic noise on a LIGO interferometer. LIGO-T960187-01, http://www.ligo-wa.caltech.edu/ligo_science/museism.pdf.
[81] Acernese, F., etal. 2010. AstroparticlePhys., 33, 182–189.
[82] Losurdo, G., et al. 1999. Rev. Sci. Instrum., 70, 2507–2515.CrossRef
[83] Ballardin, G., et al. 2001. Rev. Sci. Instrum., 72, 3643.CrossRef
[84] Aston, S., et al. 2012. Class. Quant. Grav., 29, 235004.CrossRef
[85] Abbott, R., etal. 2004. Class. Quant. Grav., 21, S915.
[86] Abbott, R., etal. 2002. Class. Quant. Grav., 19, 1591–1597.
[87] Matichard, F., et al. 2010. Prototyping, testing and performance of the two-stage seismic isolation system for advanced LIGO gravitational wave detectors. American Society for Precision Engineering, Spring 2010 meeting.
[88] Grote, H., et al. 2013. Phys. Rev. Lett., 110, 181101.CrossRef
[89] Kimble, H., et al. 2001. Phys. Rev. D, 65, 022002.CrossRef
[90] Yamamoto, K., et al. 2006. Phys. Rev. D, 74, 022002.CrossRef
[91] Agatsuma, K., et al. 2010. Class. Quant. Grav., 27, 084022.CrossRef
[92] Bartusiak, M. 2000. Einstein's unfinished symphony. Washington: Joseph Henry Press.Google Scholar
[93] Danzmann, K., et al. 1998. LISA: Laser Interferometer Space Antenna. Pre-Phase-A Report, NASA, http://lisa.nasa.gov/Documentation/ppa2.08.pdf.
[94] Livas, J. 2013. Status of space-based gravitational-wave observatories (SGOs). https://conferences.lbl.gov/getFile.py/access?contribId=237&sessionId=30&resId=0&materialId=slides&confId=36.
[95] Weiss, R., et al. 2012. Gravitational-wave mission concept study final report. NASA Report, http://pcos.gsfc.nasa.gov/physpag/GW_Study_Rev3 _Aug2012-Final.pdf.
[96] Sathyaprakash, B. S., and Schutz, B. F. 2009. Living Rev. Rel., 12, 2.CrossRef
[97] Amaro-Seoane, P., et al. 2012. eLISA: astrophysics and cosmology in the millihertz regime. arXiv:1201.3621 [astro-ph.CO].
[98] Sutton, A., and Shaddock, D. 2008. Phys. Rev. D, 78, 082001.CrossRef
[99] Livas, J., et al. 2009. Class. Quant. Grav., 26, 094016.CrossRef
[100] Tinto, M., etal. 1999. Phys. Rev. D, 59, 102003.
[101] Shaddock, D., et al. 2004. Phys. Rev. D, 70, 081101.CrossRef
[102] Mitryk, S., etal. 2010. Class. Quant. Grav., 27, 084012.
[103] Mitryk, S., et al. 2012. Phys. Rev. D, 86, 122006.CrossRef
[104] Vitale, S. 2014. Space-borne gravitational wave observatories. arXiv:1404:3136 [gr-qc].
[105] Sutton, A., et al. 2010. Optics Express, 18, 20759–20773http://dx.doi.org/10.1364/OE.18. 020759.CrossRef
[106] Sweeney, D., et al. 2012. Optics Express, 20, 25603.CrossRef
[107] Armstrong, J. W., Iess, L., Tortora, P., and Bertotti, B. 2003. Astrophys. J., 599, 806–813.CrossRef
[108] Everitt, C., et al. 2011. Phys. Rev. Lett., 106, 221101.CrossRef
[109] Schumaker, B. 2003. Class. Quant. Grav., 20, S239-S254.CrossRef
[110] Stebbins, R., etal. 2004. Class. Quant. Grav., 21, S653-S660.
[111] Antonucci, F., et al. 2011. Class. Quant. Grav., 28, 094002.CrossRef
[112] Carbone, L., et al. 2007. Phys. Rev. D., 76, 102003.CrossRef
[113] Cavalleri, A., et al. 2009. Phys. Rev. Lett., 103, 140601.CrossRef
[114] Antonucci, F., et al. 2012. Phys. Rev. Lett., 108, 181101.CrossRef
[115] Cavalleri, A., et al. 2009. Class. Quant. Grav., 26, 094012.CrossRef
[116] Armano, M., et al. 2009. Class. Quant. Grav., 26, 094001.CrossRef
[117] Cavalleri, A., et al. 2009. Class. Quant. Grav., 26, 094017.CrossRef
[118] Jenet, F., et al. 2006. Astrophys. J., 653, 1571.CrossRef
[119] Stovall, K., Lorimer, D. R., and Lynch, R. S. 2013. Searching for millisecond pulsars: surveys, techniques and prospects. arXiv:1308.4612 [astro-ph.GA].
[120] Hobbs, G., et al. 2010. Class. Quant. Grav., 27, 084013.CrossRef
[121] Liu, K.etal. 2011. Mon. Not. R. Astr. Soc., 417,2916-2926.
[122] Smits, R. et al. 2011. Astron. Astrophys., 528, A108.CrossRef
[123] Manchester, R., etal. 2013. Publ. Astron. Soc. Australia, 30, 17.
[124] van Haasteren, R., and Levin, Y. 2013. Mon. Not. R. Astr. Soc., 428, 1147.CrossRef
[125] Burt, B. J., Lommen, A. N., and Finn, L. S. 2011. Astrophys. J., 730, 17.CrossRef
[126] Finn, L. S., and Lommen, A. N. 2010. Astrophys. J., 718, 1400.CrossRef
[127] Splaver, E. M. et al. 2005. Astrophys. J., 620, 405.CrossRef
[128] Sesana, A., Vecchio, A., and Volonteri, M. 2009. Mon. Not. R. Astr. Soc., 394, 2255.CrossRef
[129] Corbin, V., and Cornish, N. J. 2010. Pulsar timing array observations of massive black hole binaries. arXiv:1008.1782 [astro-ph.HE].
[130] Yardley, D., et al. 2010. Mon. Not. R. Astr. Soc., 407, 669.CrossRef
[131] Lee, K., et al. 2011. Mon. Not. R. Astr. Soc., 414, 3251.CrossRef
[132] Ellis, J., Jenet, F., and McLaughlin, M. 2012. Astrophys. J., 753, 96.CrossRef
[133] Hellings, R. W., and Downs, G. S. 1983. Astrophys. J. Lett., 265, L39.CrossRef
[134] Jenet, F. A., Creighton, T., and Lommen, A. 2005. Astrophys. J. Lett., 627, L125.CrossRef
[135] Lommen, A., and Demorest, P. 2013. Class. Quant. Grav., 30, 224001.CrossRef
[136] Champion, D., et al. 2010. Astrophys. J., 720, L201.CrossRef
[137] Lee, K., Jenet, F. A., and Price, R. H. 2008. Astrophys. J., 685, 1304.CrossRef
[138] Chamberlin, S. J., and Siemens, X. 2012. Phys. Rev. D, 85, 082001.CrossRef
[139] Lee, K. et al. 2010.Astrophys. J., 722, 1589.CrossRef
[140] Goldhaber, A. S., and Nieto, M. M. 1974. Phys. Rev. D, 9, 1119.CrossRef
[141] Goldhaber, A. S., and Nieto, M. M. 2010. Rev. Mod. Phys., 82, 939.CrossRef
[142] Siemens, X., Ellis, J., Jenet, F., and Romano, J. D. 2013. Class. Quant. Grav., 30, 224015.CrossRef
[143] Cutler, C. et al. 2014. Phys. Rev. D, 89, 042003.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×