Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: June 2015

12 - Quantum Gravity via Supersymmetry and Holography

from Part Four - Beyond Einstein

Summary

This chapter offers a survey of ideas and results in the approach to quantum gravity based on supersymmetry, strings, and holography.

Extra spatial dimensions appear naturally in this approach, so to set the stage we begin in Section 12.1 with a discussion of general relativity in more than four spacetime dimensions. In higher dimensions, one encounters a richness of structure with no parallel in 4D. Even in vacuum gravity, this includes black hole solutions with non-spherical horizon topologies, black hole non-uniqueness, and regular multi-horizon black holes. We give an overview of such solutions and their properties, both in the context of Kaluza–Klein theory and for asymptotically flat boundary conditions.

A very interesting extension of general relativity is to include matter in such a way that the action becomes invariant under supersymmetry transformations. Supersymmetry is a remarkable symmetry that relates bosons and fermions. It is the only possible extension of the Poincaré group for a unitary theory with non-trivial scattering processes. Supersymmetry is considered a natural extension of the standard model of particle physics; the study of how supersymmetry is broken at low energies, and its possible experimental consequences, is an important active research area in particle physics. Furthermore, independently of its potential phenomenology, supersymmetry offers strong calculational control and that makes it a tremendously powerful tool for analyzing fundamental properties of quantum field theories.

When supersymmetry and general relativity are combined, the result is supergravity. The metric field is accompanied by a spin-3/2 spinor field and this gives a beautiful and enticing playground for advancing our understanding of quantum gravity. Supergravity theories exist in spacetime dimensions D ≤ 11 and they provide a natural setting for studies of charged black holes. Certain extremal limits of charged black holes in super-gravity are invariant under supersymmetry; such ‘supersymmetric black holes’ are key for understanding the statistical mechanical nature of black hole thermodynamics, specifically the microstates responsible for the Hawking–Bekenstein entropy. An example of a super- symmetric black hole is the extremal Reissner–Nordström solution.

[1] F. R., Tangherlini, “Schwarzschild field in n dimensions and the dimensionality of space problem,”Nuovo Cim. 27 (1963) 636.
[2] M., BanadosC., Teitelboim and J., Zanelli, “The Black hole in three-dimensional space-time,”Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099].
[3] T., Kaluza, “On the Problem of Unity in Physics,”Sitzungsber. Preuss. Akad. Wiss. (1921) 966.
[4] O., Klein, “Quantum Theory and Five-Dimensional Theory of Relativity (in German and English),”Z. Phys. 37 (1926) 895 [Surveys High Energy Phys. 5 (1986) 241].
[5] R., Gregory and R., Laflamme, “Black strings and p-branes are unstable,”Phys. Rev. Lett. 70(1993) 2837 [hep-th/9301052].
[6] G. T., Horowitz and T., Wiseman, “General black holes in Kaluza-Klein theory,” in Blackholes in higher dimensions(G., Horowitz ed.), Cambridge: Cambridge University Press (2012); arXiv:1107.5563 [gr-qc].
[7] S. W., Hawking and G. F. R., Ellis, The large scale structure of space-time, Cambridge: Cambridge University Press, (1973).
[8] G. T., Horowitz and K., Maeda, “Fate of the black string instability,”Phys.Rev. Lett. 87 (2001) 131301 [hep-th/0105111].
[9] L., Lehner and F., Pretorius, “Final State of Gregory-Laflamme Instability,” arXiv:1106.5184 [gr-qc].
[10] V., Cardoso and O. J. C., Dias, “Rayleigh-Plateau and Gregory-Laflamme instabilities of black strings,”Phys. Rev. Lett. 96(2006) 181601 [hep-th/0602017].
[11] T., Wiseman, “Static axisymmetric vacuum solutions and nonuniform black strings,”Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051].
[12] H., Kudoh and T., Wiseman, “Properties of Kaluza-Klein black holes,”Prog. Theor. Phys. 111(2004) 475 [hep-th/0310104].
[13] B., KleihausJ., Kunz and E., Radu, “New nonuniform black string solutions,”JHEP 0606, 016 (2006) [hep-th/0603119].
[14] S., Deser and M., Soldate, “Gravitational Energy in Spaces With Compactified Dimensions,”Nucl. Phys. B 311 (1989) 739.
[15] D., Brill and H., Pfister, “States of Negative Total Energy in Kaluza-Klein Theory,”Phys. Lett. B 228 (1989) 359.
[16] D., Brill and G. T., Horowitz, “Negative energy in string theory,”Phys. Lett. B 262 (1991) 437.
[17] E., Witten, “Instability of the Kaluza-Klein Vacuum,”Nucl. Phys. B 195 (1982) 481.
[18] X., Dai, “A positive energy theorem for spaces with asymptotic SUSY compactification,”Commun. Math. Phys. 244 (2004) 335.
[19] H., Elvang and G. T., Horowitz, “When black holes meet Kaluza-Klein bubbles,”Phys. Rev. D 67 (2003) 044015 [hep-th/0210303].
[20] H., ElvangT., Harmark and N. A., Obers, “Sequences of bubbles and holes: New phases of Kaluza-Klein black holes,”JHEP0501 (2005) 003 [hep-th/0407050].
[21] R. C., Myers and M. J., Perry, “Black Holes in Higher Dimensional Space-Times,”Annals of Physics 172 (1986)304.
[22] R., Emparan and H. S., Reall, “A Rotating black ring solution in five-dimensions,”Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260].
[23] R., Emparan and H. S., Reall, “Black Rings,”Class. Quant. Grav. 23 (2006) R169 [hep-th/0608012].
[24] H., Elvang, “A Charged rotating black ring,”Phys. Rev. D 68 (2003) 124016 [hep-th/0305247].
[25] H., ElvangR., Emparan and A. Virmani, “Dynamics and stability of black rings,”JHEP 0612(2006) 074 [hep-th/0608076].
[26] H., ElvangR., Emparan and P., Figueras, “Phases of five-dimensional black holes,”JHEP 0705(2007) 056 [hep-th/0702111].
[27] A. A., Pomeransky and R. A., Sen'kov, “Black ring with two angular momenta,” hep-th/0612005.
[28] V. A., Belinsky and V. E., Zakharov, “Integration of the Einstein Equations by the Inverse Scattering Problem Technique and the Calculation of the Exact Soliton Solutions,”Sov. Phys. JETP 48 (1978) 985 [Zh. Eksp. Teor. Fiz. 75 (1978) 1953].
[29] V. A., Belinsky and V. E., Sakharov, “Stationary Gravitational Solitons with Axial Symmetry,”Sov. Phys. JETP 50 (1979) 1 [Zh. Eksp. Teor. Fiz. 77 (1979) 3].
[30] V., Belinski and E., Verdaguer, Gravitational solitons, Cambridge: Cambridge University Press (2001).
[31] H., Elvang and M.J., Rodriguez, “Bicycling Black Rings,”JHEP 0804 (2008) 045 [arXiv:0712. 2425 [hep-th]].
[32] H., Elvang and P., Figueras, “Black Saturn,”JHEP 0705 (2007) 050 [hep-th/0701035].
[33] P., T. Chruściel M., Eckstein and S.J., Szybka, “On smoothness of Black Saturns,”JHEP 1011 (2010) 048 [arXiv:1007.3668 [hep-th]].
[34] H., Iguchi and T., Mishima, “Black di-ring and infinite nonuniqueness,”Phys. Rev. D 75, 064018 (2007) [Erratum ibid.D 78, 069903 (2008] [hep-th/0701043].
[35] J., Evslin and C., Krishnan, “The Black Di-Ring: An Inverse Scattering Construction,”Class. Quant. Grav. 26, 125018 (2009) [arXiv:0706.1231 [hep-th]].
[36] K., Izumi, “Orthogonal black di-ring solution,”Prog. Theor. Phys. 119 (2008) 757 [arXiv:0712.0902 [hep-th]].
[37] H.S., Reall, “Higher dimensional black holes and supersymmetry,”Phys. Rev. D 68 (2003) 024024 [Erratum ibid. D 70 (2004) 089902] [hep-th/0211290].
[38] S., HollandsA., Ishibashi and R.M., Wald, “A Higher dimensional stationary rotating black hole must be axisymmetric,”Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106].
[39] V., Moncrief and J., Isenberg, “Symmetries of Higher Dimensional Black Holes,”Class. Quant. Grav. 25 (2008) 195015 [arXiv:0805.1451 [gr-qc]].
[40] R., EmparanT., HarmarkV., Niarchos and N.A., Obers, “New Horizons for Black Holes and Branes,”JHEP 1004 (2010) 046 [arXiv:0912.2352 [hep-th]].
[41] R., Emparan and R., C. Myers, “Instability of ultra-spinning black holes,”JHEP 0309 (2003) 025 [hep-th/0308056].
[42] R., Emparan and H., S. Reall, “Black Holes in Higher Dimensions,”LivingRev., Rel. 11 (2008) 6 [arXiv:0801.3471 [hep-th]].
[43] R., EmparanT., HarmarkV., NiarchosN.A., Obers and M.J., Rodriguez, “The Phase Structure of Higher-Dimensional Black Rings and Black Holes,”JHEP 0710, 110 (2007) [arXiv:0708.2181 [hep-th]].
[44] R., EmparanT., HarmarkV., Niarchos and N.A., Obers, “Essentials of Blackfold Dynamics,”JHEP 1003 (2010) 063 [arXiv:0910.1601 [hep-th]].
[45] R., EmparanT., HarmarkV., Niarchos and N.A., Obers, “World-Volume Effective Theory for Higher-Dimensional Black Holes,”Phys.Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427 [hep-th]].
[46] J., Camps and R., Emparan, “Derivation of the blackfold effective theory,”JHEP 1203 (2012) 038 [Erratum ibid. 1206 (2012) 155] [arXiv:1201.3506 [hep-th]].
[47] B., KleihausJ., Kunz and E., Radu, “Black rings in six dimensions,”Phys.Lett. B 718, 1073 (2013) [arXiv:1205.5437 [hep-th]].
[48] S.R., Coleman and J., Mandula, “All Possible Symmetries of the S Matrix,”Phys. Rev. 159 (1967) 1251.
[49] R., HaagJ., T.|Lopuszanski and M., Sohnius, “All Possible Generators of Supersymmetries of the S Matrix,”Nucl.Phys. B 88 (1975) 257.
[50] J., Wess and J., Bagger, Supersymmetry and supergravity, Princeton, NJ: Princeton University Press (1992).
[51] D.Z., Freedman and A., Van Proeyen, Supergravity, Cambridge: Cambridge University Press (2012).
[52] D.Z., FreedmanP., van Nieuwenhuizen and S., Ferrara, “Progress Toward a Theory of Supergravity,”Phys.Rev.|D 13 (1976) 3214.
[53] S., Deser and B., Zumino, “Consistent Supergravity,”Phys.Lett. B 62 (1976) 335.
[54] S., Ferrara and P., van Nieuwenhuizen, “Consistent Supergravity with Complex Spin 3/2 Gauge Fields,”Phys.Rev.|Lett. 37 (1976) 1669.
[55] E., Cremmer, “Supergravities in Five Dimensions,” in Superspace and supergravity. Proceedings, Nuffield Workshop, Cambridge, UK, June 16-July 12, 1980,” Eds. S. W., Hawking and M., Rocek, Cambridge: Cambridge University Press (1981).
[56] C., Fronsdal, “Massless Fields with Integer Spin,”Phys.Rev. D 18, 3624 (1978).
[57] E.S., Fradkin and M.A., Vasiliev, “Cubic Interaction in Extended Theories of Massless higher spin fields,”Nucl.Phys.|B 291, 141 (1987).
[58] M.A., Vasiliev, “Higher spin gauge theories: star product and AdS space,” in Shifman, M.A. (ed.): The many faces of the superworld, pp. 533–610 [hep-th/9910096].
[59] I.R., Klebanov and A.M., Polyakov, “AdS dual of the critical O(N) vector model,”Phys.Lett. B 550, 213 (2002) [hep-th/0210114].
[60] M.R., Gaberdiel and R., Gopakumar, “An AdS3 Dual for Minimal Model CFTs,”Phys.Rev. D 83, 066007 (2011) [arXiv:1011.2986 [hep-th]].
[61] E., CremmerB., Julia and J., Scherk, “Supergravity Theory in Eleven-Dimensions,”Phys.Lett. B 76 (1978) 409.
[62] M., GunaydinL.J., Romans and N.P., Warner, “Gauged N = 8 Supergravity in Five-Dimensions,”Phys.Lett. B 154 (1985) 268.
[63] E.B., Bogomol'nyi, “Stability of Classical Solutions,”Sov. J. Nucl. Phys. 24, 449 (1976) [Yad.|Fiz. 24, 861 (1976)].
[64] M.K., Prasad and C.M., Sommerfield, “An Exact Classical Solution for the't Hooft Monopole and the Julia-Zee Dyon,”Phys.Rev.|Lett. 35 (1975) 760.
[65] E., Witten, “A Simple Proof of the Positive Energy Theorem,”Commun.Math. Phys. 80 (1981) 381.
[66] G.W., Gibbons and C.M., Hull, “A Bogomol'nyi Bound for General Relativity and Solitons in N = 2 Supergravity,”Phys.Lett. B 109 (1982) 190.
[67] G.W., GibbonsD., KastorL.A.J., LondonP.K.|Townsend and J.H., Traschen, “Supersym-metric selfgravitating solitons,”Nucl.Phys. B 416 (1994) 850 [hep-th/9310118].
[68] M., Cvetic and D., Youm, “General rotating five-dimensional black holes of toroidally compactified heterotic string,”Nucl.Phys. B 476, 118 (1996) [hep-th/9603100].
[69] J.C., BreckenridgeR.C., MyersA.W., Peet and C., Vafa, “D-branes and spinning black holes,”Phys. Lett.B 391 (1997) 93 [hep-th/9602065].
[70] H., ElvangR., EmparanD., Mateos and H.S., Reall, “A Supersymmetric black ring,”Phys.Rev. Lett. 93 (2004) 211302 [hep-th/0407065].
[71] I., Bena and N.P., Warner, “One ring to rule them all… and in the darkness bind them?,”Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106].
[72] H., ElvangR., EmparanD., Mateos and H.S., Reall, “Supersymmetric black rings and three-charge supertubes,”Phys.Rev. D 71 (2005) 024033 [hep-th/0408120].
[73] J.P., Gauntlett and J.B., Gutowski, “General concentric black rings,”Phys.Rev. D 71 (2005) 045002 [hep-th/0408122].
[74] H., Elvang and Y.t., Huang, “Scattering Amplitudes,” arXiv:1308.1697 [hep-th].
[75] N., Arkani-HamedJ.L., BourjailyF., CachazoA.B., GoncharovA., Postnikov and J., Trnka, “Scattering Amplitudes and the Positive Grassmannian,” arXiv:1212.5605 [hep-th].
[76] H., KawaiD.C., Lewellen and S.H.H., Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,”Nucl.Phys. B 269, 1 (1986).
[77] Z., BernL.J., DixonM., Perelstein and J.S., Rozowsky, “Multileg one loop gravity amplitudes from gauge theory,”Nucl.Phys. B 546, 423 (1999) [hep-th/9811140].
[78] Z., Bern and A.K., Grant, “Perturbative gravity from QCD amplitudes,”Phys.Lett. B 457, 23 (1999) [hep-th/9904026].
[79] Z., BernL.J., DixonD.C., DunbarA.K., GrantM., Perelstein and J.S., Rozowsky, “On perturbative gravity and gauge theory,”Nucl. Phys. Proc.Suppl. 88, 194 (2000) [hep-th/0002078].
[80] W., Siegel, “Two vierbein formalism for string inspired axionic gravity,”Phys.Rev. D 47, 5453 (1993) [hep-th/9302036].
[81] Z., Bern, “Perturbative quantum gravity and its relation to gauge theory,”Living Rev. Rel. 5, 5 (2002) [gr-qc/0206071].
[82] Z., BernJ.J.M., Carrasco and H., Johansson, “New Relations for Gauge-Theory Amplitudes,”Phys.Rev. D 78, 085011 (2008) [arXiv:0805.3993 [hep-ph]].
[83] G., 't Hooft and M. J.G., Veltman, “One loop divergencies in the theory of gravitation,”Ann.Inst. Henri Poincare Phys.Theor. A 20, 69 (1974).
[84] M.H., Goroff and A., Sagnotti, “Quantum Gravity At Two Loops,”Phys.Lett. B 160,81 (1985).
[85] A. E.M., van de Ven, “Two loop quantum gravity,”Nucl.Phys. B 378, 309 (1992).
[86] S., Deser and P., van Nieuwenhuizen, “One Loop Divergences of Quantized Einstein-Maxwell Fields,”Phys.Rev. D 10, 401 (1974).
[87] M. T., GrisaruP., van Nieuwenhuizen and J.A.M., Vermaseren, “One Loop Renormalizability of Pure Supergravity and of Maxwell-Einstein Theory in Extended Supergravity,”Phys.Rev.|Lett. 37, 1662(1976).
[88] M.T., Grisaru, “Two Loop Renormalizability of Supergravity,”Phys.Lett. B 66, 75 (1977).
[89] E., Tomboulis, “On the Two Loop Divergences of Supersymmetric Gravitation,”Phys.Lett. B 67, 417 (1977).
[90] S., DeserJ.H., Kay and K.S., Stelle, “Renormalizability Properties of Supergravity,”Phys.Rev. Lett. 38, 527 (1977).
[91] Z., BernS., DaviesT., DennenA.V., Smirnov and V.A., Smirnov, “The Ultraviolet Properties of N = 4 Supergravity at Four Loops,” arXiv:1309.2498 [hep-th].
[92] Z., BernL.J., Dixon and R., Roiban, “Is N = 8 supergravity ultraviolet finite?,”Phys.Lett. B 644, 265 (2007) [hep-th/0611086].
[93] Z., BernJ. J., CarrascoL. J., DixonH., JohanssonD. A., Kosower and R., Roiban, “Three-Loop Superfiniteness of N = 8 Supergravity,”Phys.Rev. Lett. 98, 161303 (2007) [hep-th/0702112].
[94] Z., BernJ.J.M., CarrascoL. J., DixonH., Johansson and R., Roiban, “Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity,”Phys.Rev.D 78, 105019 (2008) [arXiv:0808.4112 [hep-th]].
[95] Z., BernJ. J., CarrascoL.J., DixonH., Johansson and R., Roiban, “The Ultraviolet Behavior of N = 8 Supergravity at Four Loops,”Phys.Rev.Lett. 103, 081301 (2009) [arXiv:0905.2326 [hep-th]].
[96] Z., BernJ.J.M., CarrascoL.J., DixonH., Johansson and R., Roiban, “The Complete Four-Loop Four-Point Amplitude in N = 4 Super-Yang-Mills Theory,”Phys.Rev. D 82, 125040 (2010) [arXiv:1008.3327 [hep-th]].
[97] H., ElvangD. Z., Freedman and M., Kiermaier, “A simple approach to counterterms in N = 8 supergravity,”JHEP 1011, 016 (2010) [arXiv:1003.5018 [hep-th]].
[98] J. M., DrummondP. J., Heslop and P.S., Howe, “A Note on N = 8 counterterms,” arXiv:1008.4939 [hep-th].
[99] H., Elvang and M., Kiermaier, “Stringy KLT relations, global symmetries, and E7(7) violation,”JHEP 1010, 108 (2010) [arXiv:1007.4813 [hep-th]].
[100] N., BeisertH., ElvangD.Z., FreedmanM., KiermaierA., Morales and S., Stieberger, “E7(7) constraints on counterterms in N = 8 supergravity,”Phys.Lett. B 694, 265 (2010) [arXiv:1009.1643 [hep-th]].
[101] M.B., GreenJ.G., Russo and P., Vanhove, “Modular properties of two-loop maximal supergravity and connections with string theory,”JHEP 0807, 126 (2008) [arXiv:0807.0389 [hep-th]].
[102] G., BossardP.S., HoweK.S., Stelle and P., Vanhove, “The vanishing volume of D = 4 superspace,”Class. Quant. Grav. 28, 215005 (2011) [arXiv:1105.6087 [hep-th]].
[103] B., Zwiebach, A first course in string theory, Cambridge: Cambridge University Press (2009).
[104] J., Polchinski, String theory. Vol. 1. An introduction to the bosonic string, Cambridge: Cambridge University Press (1998); String theory. Vol. 2. Superstring theory and beyond, Cambridge: Cambridge University Press (1998).
[105] K., BeckerM., Becker and J.H.Schwarz, Schwarz,String theory and M-theory: a modern introduction, Cambridge: Cambridge University Press (2007).
[106] F., GliozziJ., Sherk, and D., Olive, “Supersymmetry, supergravity, and the dual spinor model,”Nucl. Phys. B122 (1977) 253.
[107] C.G. Callan, Jr., E. J., MartinecM.J., Perry and D., Friedan, “Strings in Background Fields,”Nucl.|Phys. B 262 (1985) 593.
[108] E., Witten, “Noncommutative Geometry and String Field Theory,”Nucl. Phys. B268 (1986) 253.
[109] A., Sen, “Universality of the tachyon potential,”JHEP 9912 (1999) 027 [hep-th/9911116].
[110] N., Moeller and W., Taylor, “Level truncation and the tachyon in open bosonic string field theory,”Nucl. Phys. B 583 (2000) 105. [hep-th/0002237].
[111] E., Witten, “Superstring Perturbation Theory Revisited,” arXiv:1209.5461 [hep-th].
[112] E., Witten, “More On Superstring Perturbation Theory,” arXiv:1304.2832 [hep-th].
[113] P., CandelasG.T., HorowitzA., Strominger and E., Witten, “Vacuum Configurations for Superstrings,”Nucl. Phys. B 258 (1985) 46.
[114] A., GiveonM., Porrati and E., Rabinovici, “Target space duality in string theory,”Phys. Rept. 244 (1994) 77 [hep-th/9401139].
[115] W., LercheC., Vafa and N.P.Warner, Warner,“Chiral Rings in N = 2 Superconformal Theories,”Nucl. Phys. B 324 (1989) 427.
[116] B.R., Greene and M.R.Plesser, Plesser,“Duality in Calabi-Yau Moduli Space,”Nucl.|Phys. B 338 (1990) 15.
[117] P., CandelasX. C., De La OssaP.S., Green and L., Parkes, “A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory,”Nucl.|Phys. B 359 (1991) 21.
[118] P. S., AspinwallB. R., Greene and D.R., Morrison, “Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory,”Nucl. Phys. B 416 (1994) 414 [hep-th/9309097].
[119] J.H.Schwarz, Schwarz,“Superstring Theory,”Phys. Rept. 89 (1982) 223.
[120] D.J., GrossJ.A., HarveyE. J., Martinec and R., Rohm, “The Heterotic String,”Phys. Rev. Lett. 54 (1985)502.
[121] M. B., Green and J.H., Schwarz, “Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory,”Phys. Lett. B 149 (1984) 117.
[122] J., Polchinski, “Dirichlet Branes and Ramond-Ramond charges,”Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017].
[123] S., KachruR., KalloshA.D., Linde and S.P., Trivedi, “De Sitter vacua in string theory,”Phys.|Rev. D 68 (2003) 046005 [hep-th/0301240].
[124] E., Witten, “String theory dynamics in various dimensions,”Nucl. Phys. B 443 (1995) 85 [hep-th/9503124].
[125] T., BanksW., FischlerS. H., Shenker and L., Susskind, “M theory as a matrix model: a conjecture,”Phys. Rev. D 55 (1997) 5112 [hep-th/9610043].
[126] L., Susskind, “Some speculations about black hole entropy in string theory,” in Teitelboim, C. (ed.): The black hole, pp. 118–131 [hep-th/9309145].
[127] G. T., Horowitz and J., Polchinski, “A correspondence principle for black holes and strings,”Phys. Rev. D 55 (1997) 6189 [hep-th/9612146].
[128] A., Strominger and C., Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,”Phys. Lett. B 379 (1996) 99 [hep-th/9601029].
[129] C. G., Callan and J.M.Maldacena, Maldacena,“D-brane approach to black hole quantum mechanics,”Nucl. Phys. B 472 (1996) 591 [hep-th/9602043].
[130] G. T., Horowitz and A., Strominger, “Counting states of near extremal black holes,”Phys. Rev. Lett. 77 (1996) 2368 [hep-th/9602051].
[131] J. M., Maldacena and A., Strominger, “Statistical entropy of four-dimensional extremal black holes,”Phys. Rev. Lett. 77 (1996) 428 [hep-th/9603060].
[132] C. V., JohnsonR. R., Khuri and R.C.Myers, Myers,“Entropy of 4-D extremal black holes,”Phys. Lett. B 378 (1996) 78 [hep-th/9603061].
[133] G. T., HorowitzD. A., Lowe and J.M.Maldacena, Maldacena,“Statistical entropy of nonextremal four-dimensional black holes and U duality,”Phys. Rev. Lett. 77 (1996) 430 [hep-th/9603195].
[134] J.M., Maldacena and A., Strominger, “Black hole grey body factors and d-brane spectroscopy,”Phys. Rev. D 55 (1997) 861 [hep-th/9609026].
[135] S.R., Das and S.D.Mathur, Mathur,“Comparing decay rates for black holes and D-branes,”Nucl. Phys. B 478 (1996) 561 [hep-th/9606185].
[136] M., CyrierM., GuicaD., Mateos and A., Strominger, “Microscopic entropy of the black ring,”Phys.|Rev. Lett. 94, 191601 (2005) [hep-th/0411187].
[137] I., Bena and P., Kraus, “Microscopic description of black rings in AdS/CFT,”JHEP 0412, 070 (2004) [hep-th/0408186].
[138] I., Bena and P., Kraus, “Microstates of the D1-D5-KK system,”Phys. Rev. D 72, 025007 (2005) [hep-th/0503053].
[139] G., 't Hooft, “Dimensional reduction in quantum gravity,” gr-qc/9310026.
[140] L., Susskind, “The World as a hologram,”J.|Math. Phys. 36 (1995) 6377 [hep-th/9409089].
[141] S. J., AvisC.J., Isham and D., Storey, “Quantum Field Theory in anti-De Sitter space-time,”Phys.|Rev. D 18 (1978) 3565.
[142] S. W., Hawking and D.N.Page, Page,“Thermodynamics of Black Holes in anti-De Sitter space,”Commun.|Math. Phys. 87 (1983) 577.
[143] D., Marolf, “Unitarity and Holography in Gravitational Physics,”Phys.Rev.D 79 (2009) 044010 [arXiv:0808.2842 [gr-qc]].
[144] J.M.Maldacena, Maldacena,“The large N limit of superconformal field theories and supergravity,”Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].
[145] S. S., GubserI. R., Klebanov and A.W.Peet, Peet,“Entropy and temperature of black 3-branes,”Phys. Rev. D 54 (1996) 3915 [hep-th/9602135].
[146] S. S., GubserI. R., Klebanov and A.M.Polyakov, Polyakov,“Gauge theory correlators from noncritical string theory,”Phys. Lett. B 428 (1998) 105 [hep-th/9802109].
[147] E., Witten, “Anti-de Sitter space and holography,”Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150].
[148] N., Drukker and D.J.Gross, Gross,“An Exact prediction of N = 4 SUSYM theory for string theory,”J. Math. Phys. 42 (2001) 2896 [hep-th/0010274].
[149] D. Z., FreedmanS. S., GubserK., Pilch and N.P.Warner, Warner,“Renormalization group flows from holography supersymmetry and a c theorem,”Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017].
[150] D. E., BerensteinJ.M., Maldacena and H.S.Nastase, Nastase,“Strings in flat space and pp waves from N = 4 superYang-Mills,”JHEP 0204 (2002) 013 [hep-th/0202021].
[151] H., LinO., Lunin and J.M.Maldacena, Maldacena,“Bubbling AdS space and 1/2 BPS geometries,”JHEP 0410 (2004) 025 [hep-th/0409174].
[152] J. M., Maldacena and A., Strominger, “AdS(3) black holes and a stringy exclusion principle,”JHEP 9812 (1998) 005 [hep-th/9804085].
[153] J., McGreevyL., Susskind and N., Toumbas, “Invasion of the giant gravitons from anti-de Sitter space,”JHEP 0006 (2000) 008 [hep-th/0003075].
[154] R.C.Myers, Myers,“Dielectric branes,”JHEP 9912 (1999) 022 [hep-th/9910053].
[155] O., AharonyO., BergmanD.L., Jafferis and J., Maldacena, “N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,”JHEP 0810 (2008) 091 [arXiv:0806.1218 [hep-th]].
[156] I. R., Klebanov and E., Witten, “Superconformal field theory on three-branes at a Calabi-Yau singularity,”Nucl. Phys. B 536 (1998) 199 [hep-th/9807080].
[157] D., Martelli and J., Sparks, “The gravity dual of supersymmetric gauge theories on a biaxially squashed three-sphere,”Nucl.|Phys. B 866 (2013) 72 [arXiv:1111.6930 [hep-th]].
[158] D. Z., Freedman and S.S., Pufu, “The Holography of F-maximization,” arXiv:1302. 7310 [hep-th].
[159] S.W.Hawking, Hawking,“Breakdown of Predictability in Gravitational Collapse,”Phys.Rev.D 14(1976) 2460.
[160] S.D.Mathur, Mathur,“The Information paradox: A Pedagogical introduction,”Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038 [hep-th]].
[161] S.D.Mathur, Mathur,“Fuzzballs and the information paradox: A Summary and conjectures,” arXiv:0810.4525 [hep-th].
[162] A., AlmheiriD., MarolfJ., Polchinski and J., Sully, “Black Holes: Complementarity or Firewalls?,”JHEP 1302 (2013) 062 [arXiv:1207.3123 [hep-th]]; S.L.|Braunstein, “Black hole entropy as entropy of entanglement, or it's curtains for the equivalence principle,” [arXiv:0907.1190v1 [quant-ph]] published as S.L., BraunsteinS., Pirandola and K., Zyczkowski, “Better late than never: information retrieval from black holes,” Phys.|Rev. Lett. 110, 101301 (2013) for a similar prediction from different assumptions.
[163] V., Balasubramanian and P., Kraus, “A Stress tensor for Anti-de Sitter gravity,”Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121].
[164] G. T., Horowitz and R.C.Myers, Myers,“The AdS/CFT correspondence and a new positive energy conjecture for general relativity,”Phys. Rev. D 59 (1998) 026005 [hep-th/9808079].
[165] S., de HaroS.N., Solodukhin and K., Skenderis, “Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence,”Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230].
[166] P., KovtunD. T., Son and A.O.Starinets, Starinets,“Viscosity in strongly interacting quantum field theories from black hole physics,”Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231].
[167] A., AdamsP.M., Chesler and H., Liu, “Holographic turbulence,”Phys. Rev. Lett. 112 (2014) 15, 151602 [arXiv:1307.7267 [hep-th]].
[168] S.S.Gubser, Gubser,“Breaking an Abelian gauge symmetry near a black hole horizon,”Phys.|Rev. D 78 (2008) 065034 [arXiv:0801.2977 [hep-th]].
[169] S. A., HartnollC. P., Herzog and G.T., Horowitz, “Building a Holographic Superconductor,”Phys. Rev. Lett. 101 (2008)031601 [arXiv:0803.3295 [hep-th]].
[170] G. T., HorowitzJ. E., Santos and D., Tong, “Optical Conductivity with Holographic Lattices,”JHEP 1207 (2012) 168 [arXiv:1204.0519 [hep-th]].
[171] G. T., Horowitz and J.E.Santos, Santos,“General Relativity and the Cuprates,”JHEP 1306 (2013) 087 [arXiv:1302.6586 [hep-th]].
[172] S., Ryu and T., Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,”Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001].
[173] T., NishiokaS., Ryu and T., Takayanagi, “Holographic Entanglement Entropy: An overview,”J. Phys. A 42 (2009) 504008 [arXiv: 0905.0932 [hep-th]].
[174] A., Lewkowycz and J., Maldacena, “Generalized gravitational entropy,”JHEP 1308 (2013) 090 [arXiv:1304.4926 [hep-th]].
[175] M., Van Raamsdonk, “Building up space-time with quantum entanglement,”Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429][arXiv:1005.3035[hep-th]].