Skip to main content Accessibility help
×
Home
Fusion Systems in Algebra and Topology
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 43
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. This book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[Ad] J. F., Adams, Stable Homotopy and Generalized Homology, Univ. Chicago Press (1974).
[Al1] J., Alperin, Sylow intersections and fusion, J. Algebra, 6 (1967), 222–241.
[Al2] J., Alperin, Local Representation Theory, The Santa Cruz conference on finite groups, Proc. Symp. Pure Math., 37, Amer. Math. Soc., Providence (1980), 369–375.
[Al3] J. L., Alperin, Weights for finite groups, The Arcata Conference on Finite Groups, Proc. Sympos. Pure Math., 47, Amer. Math. Soc., Providence (1987), 369–379.
[ABG] J., Alperin, R., Brauer, and D., Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., 151 (1970), 1–261.
[AB] J. L., Alperin and M., Broué, Local methods in block theory, Ann. of Math., 110 (1979), 143–157.
[ABC] T., Altinel, A., Borovik, & G., Cherlin, Simple groups of finite Morley rank, Math. Surveys & Monogr., 145, American Math. Soc. (2008).
[AOV] K., Andersen, B., Oliver, & J., Ventura, Reduced, tame, and exotic fusion systems, preprint.
[A1] M., Aschbacher, A characterization of Chevalley groups over fields of odd order, Annals of Math., 106 (1975), 353-468.
[A2] M., Aschbacher, On finite groups of component type, Illinois J. Math., 19 (1975), 87-113.
[A3] M., Aschbacher, On finite groups of Lie type and odd characteristic, J. Algebra, 66 (1980), 400-424.
[A4] M., Aschbacher, Finite Group Theory, Cambridge Univ. Press (1986).
[A5] M., Aschbacher, Normal subsystems of fusion systems, Proc. London Math. Soc., 97 (2008), 239–271.
[A6] M., Aschbacher, The generalized Fitting subsystem of a fusion system, Memoirs Amer. Math. Soc., 209 (2011), nr. 986.
[A7] M., Aschbacher, Generation of fusion systems of characteristic 2-type, Invent. Math., 180 (2010), 225–299.
[A8] M., Aschbacher, S3-free 2-fusion systems, Proc. Edinburgh Math. Soc., (proceedings of the 2009 Skye conference on algebraic topology, group theory and representation theory, to appear).
[A9] M., Aschbacher, N-groups and fusion systems, preprint.
[AC] M., Aschbacher & A., Chermak, A group-theoretic approach to a family of 2-local finite groups constructed by Levi and Oliver, Annals of Math., 171 (2010), 881–978.
[ASm] M., Aschbacher and S., Smith, The Classification of the Quasithin Groups, American Mat. Soc., (2004).
[Ben]H., Bender, Finite groups with dihedral Sylow 2-subgroups, J. Algebra, 70 (1981), 216–228.
[BG] H., Bender and G., Glauberman, Characters of finite groups with dihedral Sylow 2-subgroups, J. Algebra, 70 (1981), 200–215.
[Be1] D., Benson, Representations and Cohomology I: Cohomology of Groups and Modules,Cambridge Univ. Press (1991).
[Be2] D., Benson, Representations and Cohomology II: Cohomology of Groups and Modules, Cambridge Univ. Press (1991).
[Be3] D., Benson, Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, Geometry and cohomology in group theory, London Math. Soc. Lecture notes ser. 252, Cambridge Univ. Press (1998). 10–23.
[Bo]R., Boltje, Alperin's weight conjecture in terms of linear source modules and trivial source modules, Modular representation theory of finite groups (Charlottesville, VA, 1998), de Gruyter, Berlin (2001), 147–155.
[BonD] V.M., Bondarenko, J.A., Drozd, The representation type of finite groupsZap. anchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 57 (1977) 24-41. English translation: J. Soviet Math., 20(1982), 2515–2528.
[Bf] P., Bousfield, On the p-adic completions of nonnilpotent spaces, Trans. Amer. Math. Soc., 331 (1992), 335–359.
[BK] P., Bousfield & D., Kan, Homotopy limits, completions, and localizations, Lecture notes in math., 304, Springer-Verlag (1972).
[Br1] R., Brauer, Investigations on group characters, Ann. of Math., (2) 42 (1941), 936–958.
[Br2] R., Brauer, Some applications of the theory of blocks of characters of finite groups IV, J. Algebra,17 (1971), 489–521.
[Br3] R., Brauer, On 2-blocks with dihedral defect groups, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, London (1974), 367–393.
[Br4] R., Brauer, On the structure of blocks of characters of finite groups, Proc. Second Intern. Conf. on Theory of Groups, Lecture Notes in Mathematics 372, Springer-Verlag, (1974).
[Bre] S., Brenner, Modular representations of p-groupsJ. Algebra, 15 (1970), 89-102.
[5a1] C., Broto, N., Castellana, J., Grodal, R., Levi, & B., Oliver, Subgroup families controlling p-local finite groups, Proc. London Math. Soc., 91 (2005), 325–354.
[5a2] C., Broto, N., Castellana, J., Grodal, R., Levi, & B., Oliver, Extensions of p-local finite groups, Trans. Amer. Math. Soc., 359 (2007), 3791-3858.
[BL] C., Broto & R., Levi, On spaces of self homotopy equivalences of p-completed classifying spaces of finite groups and homotopy group extensions, Topology, 41 (2002), 229–255.
[BLO1] C., Broto, R., Levi, & B., Oliver, Homotopy equivalences of p-completed classifying spaces of finite groups, Invent. Math., 151 (2003), 611–664.
[BLO2] C., Broto, R., Levi, & B., Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc., 16 (2003), 779–856.
[BLO3] C., Broto, R., Levi, & B., Oliver, Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups, Geometry and Topology, 11 (2007), 315-427.
[BLO4] C., Broto, R., Levi, & B., Oliver, A geometric construction of saturated fusion systems, An alpine anthology of homotopy theory (proceedings Arolla 2004), Contemp. math. 399 (2006), 11-39.
[BLO] C., Broto, R., Levi, & B., Oliver, The theory of p-local groups: A survey, Homotopy theory (Northwestern Univ. 2002), Contemp. math., 346, Amer. Math. Soc. (2004), 51–84.
[BM] C., Broto & J., Møller, Chevalley p-local finite groups, Algebr. & Geom. Topology, 7 (2007), 1809–1919.
[BMO] C., Broto, J., Møller, & B., Oliver, Equivalences between fusion systems of finite groups of Lie type, preprint.
[B2] M., Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque, 181-182 (1990) 61–92.
[BP1] M., Broué and L., Puig, A Frobenius theorem for blocks, Invent. Math., 56 (1980), no.2, 117–128.
[BP2] M., Broué and L., Puig, Characters and Local structures in G-Algebras, Journal of Algebra, 63, (1980), 51–59.
[Br] K., Brown, Cohomology of Groups, Springer-Verlag (1982).
[Bu] W., Burnside, The Theory of Groups of Finite Order, Cambridge Univ. Press (1897).
[Cm] N., Campbell, Pushing Up in Finite Groups, Thesis, Cal. Tech., (1979).
[Ca] G., Carlsson, Equivariant stable homotopy and Sullivan's conjecture, Invent. Math., 103 (1991), 497–525.
[CE] H., Cartan & S., Eilenberg, Homological Algebra, Princeton Univ. Press (1956).
[CL] N., Castellana & A., Libman, Wreath products and representations of p-local finite groups, Advances in Math., 221 (2009), 1302–1344.
[COS] A., Chermak, B., Oliver, & S., Shpectorov, The linking systems of the Solomon 2-local finite groups are simply connected, Proc. London Math. Soc., 97 (2008), 209–238.
[CP] M., Clelland & C., Parker, Two families of exotic fusion systems, J. Algebra, 323 (2010), 287–304.
[CPW]G., Cliff, W., Plesken, A., Weiss, Order-theoretic properties of the center of a block, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., 47, Part 1, Amer. Math. Soc., Providence, RI (1987), 413–420.
[Cr1] D., Craven, Control of fusion and solubility in fusion systems, J. Algebra, 323 (2010), 2429–2448.
[Cr2] D., Craven, The Theory of Fusion Systems: an Algebraic Approach, Cambridge Univ. Press (2011).
[Cr3] D., Craven, Normal subsystems of fusion systems, Journal London Math. Soc. (to appear).
[CG] D., Craven & A., Glesser, Fusion systems on small p-groups, Trans. Amer. Math. Soc. (to appear).
[CrEKL] D., Craven, C., Eaton, R., Kessar, M., Linckelmann, The structure of blocks with a Klein 4 defect group, Math. Z. (to appear).
[Cu] E., Curtis, Simplicial homotopy theory, Adv. in Math., 6 (1971), 107–209.
[CuR1] C. W., Curtis and I., Reiner. Representation theory of finite groups and associative algebras, Wiley-Interscience (1962).
[CuR2] C. W., Curtis and I., Reiner. Methods in representation theory, Vol. I, J. Wiley and Sons (1981).
[CuR3] C. W., Curtis and I., Reiner. Methods in representation theory, Vol. II, J. Wiley and Sons (1987).
[Da1] E.C., Dade, Blocks with cyclic defect groups, Ann. of Math., 84 (1966), 20–48.
[Da2] E.C., Dade, Counting characters in blocks I, Invent. Math., 109 (1992), no. 1, 187–210.
[Da3] E.C., Dade, Counting characters in blocks II, J. Reine Angew. Math., 448 (1994), 97–190.
[Da4] E.C., Dade, Counting characters in blocks, II.9, in Representation Theory of Finite Groups, Ohio State University Math Research Institute Publications, Vol. 6, de Gruyter, Berlin (1997), 45–59.
[DGMP1] A., Díaz, A., Glesser, N., Mazza, & S., Park, Control of transfer and weak closure in fusion systems, J. Algebra, 323 (2010), 382–392.
[DGMP2] A., Díaz, A., Glesser, N., Mazza, & S., Park, Glauberman's and Thompson's theorems for fusion systems, Proc. Amer. Math. Soc., 137 (2009), 495–503.
[DGPS] A., Díaz, A., Glesser, S., Park, & R., Stancu, Tate's and Yoshida's theorem for fusion systems, Journal London Math. Soc. (to appear).
[DN1] A., Díaz & A., Libman, Segal's conjecture and the Burnside ring of fusion systems, J. London Math. Soc., 80 (2009), 665–679.
[DN2] A., Díaz & A., Libman, The Burnside ring of fusion systems, Adv. Math., 222 (2009), 1943–1963.
[DRV] A., Díaz, A., Ruiz & A., Viruel, All p-local finite groups of rank two for odd prime p, Trans. Amer. Math. Soc., 359 (2007), 1725–1764.
[Dr] A., Dress, Induction and structure theorems for orthogonal representations of finite groups, Annals of Math., 102 (1975), 291–325.
[Dw] W., Dwyer, Homology decompositions for classifying spaces of finite groups, Topology, 36 (1997), 783–804.
[DK1] W., Dwyer & D., Kan, Realizing diagrams in the homotopy category by means of diagrams of simplicial sets, Proc. Amer. Math. Soc., 91 (1984), 456–460.
[DK2] W., Dwyer & D., Kan, Centric maps and realizations of diagrams in the homotopy category, Proc. Amer. Math. Soc., 114 (1992), 575–584.
[Er] K., Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, 1428, Springer-Verlag, Berlin (1990).
[Fe] W., Feit, The Representation Theory of Finite Groups, North Holland (1982).
[FT] W., Feit and J., Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775–1029; 218–270; 354–393.
[FF] R., Flores and R., Foote, Strongly closed subgroups of finite groups, Adv. in Math., 222 (2009), 453-484.
[F] R., Foote, A characterization of finite groups containing a strongly closed 2-subgroup, Comm. Alg., 25 (1997), 593–606.
[Fr] E., Friedlander, Étale Homotopy of Simplicial Schemes, Annals of Mathematics Studies, vol. 104, Princeton University Press (1982).
[Gl1] G., Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403–420.
[Gl2] G., Glauberman, Factorizations in local subgroups of finite groups, Regional Conference Series in Mathematics, 33, Amer. Math. Soc. (1977).
[GN] G., Glauberman & R., Niles, A pair of characteristic subgroups for pushing-up in finite groups, Proc. London Math. Soc., 46 (1983), 411–453.
[GZ] P., Gabriel & M., Zisman, Calculus of Fractions and Homotopy Theory, Springer-Verlag (1967).
[GJ] P., Goerss & R., Jardine, Simplicial Homotopy Theory, Birkhäauser Verlag (1999).
[Gd1] D., Goldschmidt, A conjugation family for finite groups, J. Algebra, 16 (1970), 138–142.
[Gd2] D., Goldschmidt, Strongly closed 2-subgroups of finite groups, Annals of Math., 102 (1975), 475–489.
[Gd3] D., Goldschmidt, 2-fusion in finite groups, Annals of Math., 99 (1974), 70-117.
[G1] D., Gorenstein, Finite groups, Harper & Row (1968).
[G2] D., Gorenstein, The Classification of the Finite Simple Groups, I, Plenum (1983).
[GH] D., Gorenstein and M., Harris, Finite groups with product fusion, Annals of Math., 101 (1975), 45–87.
[GL] D., Gorenstein and R., Lyons, Nonsolvable finite groups with solvable 2-local subgroups, J. Algebra, 38 (1976), 453–522.
[GLS3] D., Gorenstein, R., Lyons, and R., Solomon, The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, vol. 40, Amer. Math. Soc. (1998).
[GLS6] D., Gorenstein, R., Lyons, and R., Solomon, The Classification of the Finite Simple Groups, Number 6, Mathematical Surveys and Monographs, vol. 40, Amer. Math. Soc. (2005).
[GW1] D., Gorenstein and J., Walter, The characterization of finite simple groups with dihedral Sylow 2-subgroups, J. Algebra, 2 (1964), 85–151; 218–270; 354–393.
[GW2] D., Gorenstein and J., Walter, Balance and generation in finite groups, J. Algebra, 33 (1975), 224-287.
[GHL] D., Green, L., Héthelyi, & M., Lilienthal, On Oliver's p-group conjecture, Algebra Number Theory, 2 (2008), 969–977.
[GHM] D., Green, L., Héthelyi, & N., Mazza, On Oliver's p-group conjecture: II, Math. Annalen, 347 (2010), 111–122.
[Gr] J., Grodal, Higher limits via subgroup complexes, Annals of Math., 155 (2002), 405–457.
[Ht] A., Hatcher, Algebraic Topology, Cambridge Univ. Press (2002).
[H] D., Higman, Indecomposable representations at characteristic p, Duke J. Math., 21 (1954), 377–381.
[HV] J., Hollender & R., Vogt, Modules of topological spaces, applications to homotopy limits and E∞ structures, Arch. Math., 59 (1992), 115–129.
[IsNa] I.M., Isaacs and G., Navarro, New refinements of the McKay conjecture for arbitrary finite groups, Annals of Math., 156 (2002), 333–344.
[JM] S., Jackowski & J., McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology, 31 (1992), 113–132.
[JMO] S., Jackowski, J., McClure, & B., Oliver, Homotopy classification of self-maps of BG via G-actions, Annals of Math., 135 (1992), 183–270.
[JS] S., Jackowski & J., Stomińska, G-functors, G-posets and homotopy decompositions of G-spaces, Fundamenta Math., 169 (2001), 249–287.
[J] Z., Janko, Nonsolvable finite groups all of whose 2-local subgroups are solvable,I, J. Algebra, 21 (1972), 458–517.
[K1] R., Kessar, Introduction to block theory, Group Representation Theory, EPFL Press, Lausanne (2007) 47–77.
[Ke1] R., Kessar, The Solomon system FSol(3) does not occur as fusion system of a 2-blockJ. Algebra, 296, no. 2 (2006), 409–425.
[KL] R., Kessar & M., Linckelmann, ZJ-theorems for fusion systems, Trans. Amer. Math. Soc., 360 (2008), 3093–3106.
[KS] R., Kessar, R., Stancu, A reduction theorem for fusion systems of blocks, J. Algebra, 319 (2008), 806–823.
[KKoL] R., Kessar, S., Koshitani, M., Linckelmann, Conjectures of Alperin and Broué for 2-blocks with elementary abelian defect groups of order 8, J. Reine Angew. Math. (to appear).
[KKuM] R., Kessar, N., Kunugi, N., Mitsuhashi, On saturated fusion systems and Brauer indecomposability of Scott modules, J. Algebra (to appear).
[KR] R., Knörr and G. R., Robinson, Some remarks on a conjecture of Alperin, J. London Math. Soc. (2), 39 (1989), no. 1, 48–60.
[KoZ] S., Koenig, A., Zimmermann, Derived equivalences for group rings, Lecture Notes in Mathematics, 1685, Springer-Verlag, Berlin (1998).
[Ku] B., Küshammer, Lectures on block theory, London Mathematical Society Lecture Note Series 161, Cambridge Univ. Press, Cambridge (1991).
[KulP] B., Külshammer, L., Puig, Extensions of nilpotent blocks, Invent. Math., 102, no. 1 (1990), 17–71.
[KulOW] B., Külshammer, A., Watanabe, and T., Okuyama, A lifting theorem with applications to blocks and source algebras, J. Algebra, 232, no. 1 (2000), 299–309.
[La] J., Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. I.H.E.S., 75 (1992), 135–244.
[LS] I., Leary & R., Stancu, Realising fusion systems, Algebra & Number Theory, 1 (2007), 17–34.
[LO] R., Levi & B., Oliver, Construction of 2-local finite groups of a type studied by Solomon and Benson, Geometry & Topology, 6 (2002), 917–990.
[LO2] R., Levi & B., Oliver, Correction to: Construction of 2-local finite groups of a type studied by Solomon and Benson, Geometry & Topology, 9 (2005), 2395–2415.
[LR] R., Levi & K., Ragnarsson, p-local finite group cohomology, Homotopy, Homology, Appl. (to appear).
[Lb] A., Libman, The normaliser decomposition for p-local finite groups, Alg. Geom. Topology, 6 (2006), 1267–1288.
[LbS] A., Libman & N., Seeliger, Homology decompositions and groups inducing fusion systems, preprint.
[LV] A., Libman & A., Viruel, On the homotopy type of the non-completed classifying space of a p-local finite group, Forum Math., 21 (2009), 723–757.
[Li1] M., Linckelmann, The isomorphism problem for cyclic blocks and their source algebras. Invent. Math., 125 (1996), 265-283.
[Li2] M., Linckelmann, Fusion category algebras, J. Algebra, 277, no. 1 (2004), 222–235.
[Li3] M., Linckelmann, Simple fusion systems and the Solomon 2-local groups, J. Algebra, 296, no. 2 (2006), 385–401.
[Li4] M., Linckelmann, Alperin's weight conjecture in terms of equivariant Bredon cohomology, Math. Z., 250, no. 3 (2005), 495–513.
[Li5] M., Linckelmann, Trivial source bimodule rings for blocks and p-permutation equivalences, Trans. Amer. Math. Soc., 361 (2009), 1279–1316.
[Li6] M., Linckelmann, On H*(C:kx) for fusion systems, Homology, Homotopy Appl., 11, no. 1 (2009), 203–218.
[LP] J., Lynd & S., Park, Analogues of Goldschmidt's thesis for fusion systems, J. Algebra, 324 (2010), 3487–3493.
[McL] S., MacLane, Homology, Springer-Verlag (1975).
[MP1] J., Martino & S., Priddy, Stable homotopy classification of BGp. Topology, 34 (1995), 633–649.
[MP2] J., Martino & S., Priddy, Unstable homotopy classification of BGp, Math. Proc. Cambridge Phil. Soc., 119 (1996), 119–137.
[May] J.P., May, Simplicial Objects in Algebraic Topology, Univ. Chicago Press (1967).
[MSS] U., Meierfrankenfeld, B., Stellmacher, and G., Stroth, Finite groups of local characteristic p: an overview, Groups, Combinatorics, and Geometry (Durham 2001), World Sci. Publ. (2003), 155–192.
[Mi] H., Miller, The Sullivan conjecture on maps from classifying spaces, Annals of Math., 120 (1984), 39–87.
[Ms] G., Mislin, On group homomorphisms inducing mod-p cohomology isomorphisms, Comment. Math. Helv., 65 (1990), 454–461.
[NT] H., Nagao and Y., Tsushima, Representations of Finite Groups, Academic Press, Boston (1988).
[OW] T., Okuyama and M., Wajima, Irreducible characters of p-solvable groupsProc. Japan Acad. Ser. A Math. Sci., 55 (1979), no. 8, 309–312.
[O1] B., Oliver, Higher limits via Steinberg representations, Comm. in Algebra, 22 (1994), 1381–1402.
[O2] B., Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Camb. Phil. Soc., 137 (2004), 321–347.
[O3] B., Oliver, Equivalences of classifying spaces completed at the prime two, Memoirs Amer. Math. Soc., 848 (2006).
[O4] B., Oliver, Extensions of linking systems and fusion systems, Trans. Amer. Math.Soc., 362 (2010), 5483–5500.
[O5] B., Oliver, Splitting fusion systems over 2-groups, Proc. Edinburgh Math. Soc., proceedings of the 2009 Skye conference on algebraic topology, group theory and representation theory (to appear).
[OV1] B., Oliver & J., Ventura, Extensions of linking systems with p-group kernel, Math. Annalen, 338 (2007), 983-1043.
[OV2] B., Oliver & J., Ventura, Saturated fusion systems over 2-groups, Trans. Amer. Math. Soc., 361 (2009), 6661–6728.
[Ols] J. B., Olsson, On 2-blocks with quaternion and quasidihedral defect groupsJ. Algebra, 36 (1975), 212-241.
[Ols2] J. B., Olsson, On subpairs and modular representation theory, J. Algebra, 76 (1982), 261–279.
[OS] S., Onofrei and R., Stancu, A characteristic subgroup for fusion systems, J. Algebra, 322 (2009), 1705–1718.
[Pa1] S., Park, The gluing problem for some block fusion systems, J. Algebra, 323 (2010), 1690–1697.
[Pa2] S., Park, Realizing a fusion system by a single finite group, Arch. Math., 94 (2010), 405-410.
[P1] L., Puig, Structure locale dans les groupes finis, Bull. Soc. Math. France Suppl. Mém., 47 (1976).
[P2] L., Puig, Local fusions in block source algebras, J. Algebra, 104, no. 2 (1986), 358–369.
[P3] L., Puig, Nilpotent blocks and their source algebras, Invent. Math., 93, no. 1 (1988), 77–116.
[P4] L., Puig, The Nakayama conjecture and the Brauer pairsSeminaire sur les groupes finis III, Publications Matehmatiques De L'Université Paris VII, 171–189.
[P5] L., Puig, The hyperfocal subalgebra of a block, Invent. math., 141 (2000), 365–397.
[P6] L., Puig, Frobenius categories, J. Algebra, 303 (2006), 309–357.
[P7] L., Puig, Frobenius Categories versus Brauer Blocks, Birkhäser (2009).
[PUs] L., Puig and Y., Usami, Perfect isometries for blocks with abelian defect groups and cyclic inertial quotients of order 4, J. Algebra, 172 (1995), 205–213.
[Rg] K., Ragnarsson, Classifying spectra of saturated fusion systems, Algebr. Geom. Topol., 6 (2006), 195–252.
[RSt] K., Ragnarsson & R., Stancu, Saturated fusion systems as idempotents in the double Burnside ring, preprint.
[Ri1] J., Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra, 61, no. 3 (1989), 303–317.
[Ri2] J., Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. (3), 72, no. 2 (1996), 331–358.
[RS] K., Roberts & S., Shpectorov, On the definition of saturated fusion systems, J. Group Theory, 12 (2009), 679–687.
[Ro1] G. R., Robinson, Local structure, vertices and Alperin's conjecture, Proc. London Math. Soc., 72 (1996), 312–330.
[Ro2] G. R., Robinson, Weight conjectures for ordinary characters, J. Algebra, 276 (2004), 761–775.
[Ro3] G., Robinson, Amalgams, blocks, weights, fusion systems, and finite simple groups, J. Algebra, 314 (2007), 912–923.
[Rz] A., Ruiz, Exotic normal fusion subsystems of general linear groups, J. London Math. Soc., 76 (2007), 181–196.
[RV] A., Ruiz & A., Viruel, The classification of p-local finite groups over the extraspecial group of order p3 and exponent p, Math. Z., 248 (2004), 45–65.
[Sa1] B., Sambale, 2-blocks with mimimal non-abelian defect groups, J. Algebra (to appear).
[Sa2] B., Sambale, Blocks with defect group, J. Pure Appl. Algebra (to appear).
[Sa3] B., Sambale, Fusion systems on metacyclic 2-groups, preprint.
[Sg] G., Segal, Classifying spaces and spectral sequences, Publ. Math. I.H.E.S., 34 (1968), 105–112.
[Se1] J. P., Serre, Corps Locaux, Hermann (1968).
[Se2] J.-P., Serre, Trees, Springer-Verlag (1980).
[Sm] F., Smith, Finite simple groups all of whose 2-local subgroups are solvable, J. Algebra, 34 (1975), 481–520.
[So] R., Solomon, Finite groups with Sylow 2-subgroups of type .3, J. Algebra, 28 (1974), 182–198.
[Sta1] R., Stancu, Control of fusion in fusion systems, J. Algebra Appl., 5 (2006), 817–837.
[Sta2] R., Stancu, Equivalent definitions of fusion systems, preprint.
[Stn] R., Steinberg, Lectures on Chevalley Groups, Yale Lecture Notes (1967).
[St1] B., Stellmacher, A characteristic subgroup of S4-free groups, Israel J. Math., 94 (1996), 367–379.
[St2] B., Stellmacher, An application of the amalgam method: the 2-local structure of N-groups of characteristic 2-type, J. Algebra, 190 (1997), 11–67.
[Sw] R., Switzer, Algebraic Topology, Springer-Verlag (1975).
[Th] J., Thévenaz, G-Algebras and Modular Representation Theory, Oxford Science Publications (1995).
[Th1] J., Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, I, Bull. Amer. Math. Soc., 74 (1968), 383–437; II, Pacific J. Math., 33 (1970), 451–536; III, Pacific J. Math., 39 (1971), 483–534; IV, Pacific J. Math., 48(1973), 511–592; V, Pacific J. Math., 50 (1974), 215–297; VI, Pacific J. Math., 51 (1974), 573–630.
[Th2] J., Thompson, Simple 3′-groups, Symposia Math., 13 (1974), 517–530.
[Tu] A., Turull, Strengthening the McKay Conjecture to include local fields and local Schur indices, J. Algebra, 319 (2008), 4853–4868.
[Un] K., Uno, Conjectures on character degrees for the simple Thompson group, Osaka J. Math., 41 (2004), 11–36.
[W] J., Walter, The B-Conjecture; characterization of Chevalley groups, Memoirs Amer. Math. Soc., 61 no. 345 (1986), 1–196.
[Wb1] P., Webb, A split exact sequence of Mackey functors, Comment. Math. Helv., 66 (1991), 34–69.
[Wb2] P.J., Webb, Standard stratifications of EI categories and Alperin's weight conjecture, J. Algebra, 320 (2008), 4073–4091.
[Wei] C., Weibel, An Introduction to Homological Algebra, Cambridge Univ. Press (1994).
[Wh] G., Whitehead, Elements of Homotopy Theory, Springer-Verlag (1978).
[Wo] Z., Wojtkowiak, On maps from holim F to Z (Algebraic topology, Barcelona, 1986), Lecture notes in math., 1298, Springer-Verlag (1987), –227–236.
[Zi] K., Ziemiański, Homotopy representations of SO(7) and Spin(7) at the prime 2, Jour. Pure Appl. Algebra, 212 (2008), 1525–1541.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.