Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2006
  • Online publication date: December 2009

6 - Role of arbuscular mycorrhizal fungi in carbon and nutrient cycling in grassland

    • By David Johnson, Department of Plant and Soil Science, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK, Jonathan R. Leake, Department of Animal and Plant Science, University of Sheffield Alfred, Denny Building Western Bank Sheffield S10 2TN, UK, David J. Read, Department of Animal and Plant Science, University of Sheffield Alfred, Denny Building Western Bank Sheffield S10 2TN, UK
  • Edited by Geoffrey Michael Gadd, University of Dundee
  • Publisher: Cambridge University Press
  • DOI:
  • pp 129-150



Arbuscular mycorrhizal fungi (AMF) are the most ancient, widespread and ubiquitous of all the groups of mycorrhiza: they have a global distribution in widely contrasting plant communities including the Tropics, the Boreal forest, arctic tundra and all types of grassland. Considerable effort has been made in recent years in order to set AMF within a robust phylogeny. Recent advances in molecular biological techniques have enabled scientists to place AMF in a new division, the Glomeromycota. At present, this division contains only about 150 species, which is remarkable given the enormous number of plant species the fungi readily colonize. The mutualistic symbioses that AMF form with their host plants give rise to a number of important benefits to both the plant and fungus. A brief glance at a standard mycorrhizal text will list many ecologically important attributes, such as improved disease resistance, water uptake, nutrient transfer and the ability of the fungus to be a major sink for photosynthate. Indeed, the importance of AMF for nutrient uptake and carbon allocation has been recognized for decades. The ability of AMF (and other mycorrhizal types) to utilize recent plant photosynthate and thus have access to a near continuous supply of energy immediately gives them a potential advantage over saprotrophic micro-organisms, which are forced to obtain their energy in the highly carbon-limited heterogeneous soil environment.

Ames, R. N., Mihara, K. L. & Baynes, H. G. (1989). Chitin-decomposing actinomycetes associated with a vesicular arbuscular mycorrhizal fungus from a calcareous grassland. New Phytologist, 111, 67–71.
Anderson, J. P. E. & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215–21.
Bago, B., Zipfel, W., Williams, R. al. (2002). Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiology, 128, 108–24.
Bago, B., Pfeffer, P. E., Abubaker, al. (2003). Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiology, 131, 1496–507.
Bardgett, R. D., Streeter, T. C. & Bol, R. (2003). Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology, 84, 1277–87.
Boddington, C. L., Bassett, E. E., Jakobsen, I. & Dodd, J. C. (1999). Comparison of techniques for the extraction and quantification of extraradical mycelium of arbuscular mycorrhizal fungi in soils. Soil Biology and Biochemistry, 31, 479–82.
Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 14, 319–29.
Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil-nitrogen – a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–42.
Clark, R. B. & Zeto, S. K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 23, 867–902.
Fitter, A. H., Graves, J. D., Watkins, N. K., Robinson, D. & Scrimgeour, C. (1998). Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Functional Ecology, 12, 406–12.
Francis, R. & Read, D. J. (1984). Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature, 307, 53–6.
Frey, B., Vilarino, A., Schuepp, H. & Arines, J. (1994). Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biology and Biochemistry, 26, 711–17.
Friese, C. F. & Allen, M. F. (1991). The spread of VA mycorrhizal fungal hyphae in soil: inoculum type and external hyphal architecture. Mycologia, 83, 409–18.
Gallaud, I. (1905). Etudes sur les mycorrhizes endotrophs. Revue Générale de Botanique, 17, 5–48, 66–83, 123–35, 223–39, 313–25, 425–33, 479–500.
Grime, J. P., Mackey, J. M. L., Hillier, S. H. & Read, D. J. (1987). Floristic diversity in a model system using experimental microcosms. Nature, 328, 420–2.
Hart, M. M. & Reader, R. J. (2002). Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist, 153, 335–44.
Hershey, A. D. & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36, 39–56.
Ho, I. & Trappe, J. M. (1973). Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature New Biology, 244, 30–1.
Hodge, A., Campbell, C. D. & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297–9.
Holtum, J. A. M. & Winter, K. (2003). Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2. Planta, 218, 152–8.
Jakobsen, I., Abbott, L. K. & Robson, A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytologist, 120, 371–80.
Jenkinson, D. S. & Powlson, D. S. (1976). The effects of biocidal treatments on metabolism in soil V. A method for measuring soil biomass. Soil Biology and Biochemistry, 8, 209–13.
Johnson, D., Leake, J. R. & Read, D. J. (2001). Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytologist, 152, 555–62.
Johnson, D., Leake, J. R., Ostle, N., Ineson, P. & Read, D. J. (2002a). In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelium to the soil. New Phytologist, 153, 327–34.
Johnson, D., Leake, J. R. & Read, D. J. (2002b). Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry, 34, 1521–4.
Joner, E. J., Magid, J., Gahoonia, T. S. & Jakobsen, I. (1995). P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis sativus L). Soil Biology and Biochemistry, 27, 1145–51.
Joner, E. J., Aarle, I. M. & Vosatka, M. (2000). Phosphatase activity of extraradical arbuscular mycorrhizal hyphae: a review. Plant and Soil, 226, 199–210.
Jongmans, A. G., Breemen, N., Lundstrom, al. (1997). Rock-eating fungi. Nature, 389, 682–3.
Kabir, Z. & Koide, R. T. (2002). Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant and Soil, 238, 205–15.
Kabir, Z., O'Halloran, I. P., Widden, P. & Hamel, C. (1998). Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza, 8, 53–5.
Knight, W. G., Allen, M. F., Jurinak, J. J. & Dudley, L. M. (1989). Elevated carbon-dioxide and solution phosphorus in soil with vesicular-arbuscular mycorrhizal western wheatgrass. Soil Science Society of America Journal, 53, 1075–82.
Knight, W. G., Dudley, L. M. & Jurinak, J. J. (1992). Oxalate effects on solution phosphorus in a calcareous soil. Arid Soil Research Rehabilitation, 6, 11–20.
Koide, R. T. & Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148, 511–17.
Kuzyakov, Y., Kretzschmar, A. & Stahr, K. (1999). Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil. Plant and Soil, 213, 127–36.
Kuzyakov, Y., Ehrensberger, H. & Stahr, K. (2001). Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biology and Biochemistry, 33, 61–74.
Langley, J. A. & Hungate, B. A. (2003). Mycorrhizal controls on below-ground litter quality. Ecology, 84, 2302–12.
Leake, J. R., Donnelly, D. P., Saunders, E. M., Boddy, L. & Read, D. J. (2001). Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labelling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiology, 21, 71–82.
Leake, J. R., Johnson, D., Donnelly, D. al. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem function. Canadian Journal of Botany, 82, 1016–45.
Lerat, S., Lapointe, L., Piche, Y. & Vierheilig, H. (2003). Variable carbon-sink strength of different Glomus mosseae strains colonizing barley roots. Canadian Journal of Botany, 81, 886–9.
Li, X. L., George, E. & Marschner, H. (1991). Phosphorus depletion and pH decrease at the root soil and hyphae soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist, 119, 397–404.
Linkins, A. E. & Neal, J. L. (1982). Soil cellulase, chitinase, and protease activity in Eriophorum vaginatum tussock tundra in Eashle Summit, Alaska. Holarctic Ecology, 5, 135–8.
Lueders, T., Wagner, B., Claus, P. & Friedrich, M. W. (2004). Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environmental Microbiology, 6, 60–72.
McGonigle, T. P. & Fitter, A. H. (1988). Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proceedings of the Royal Society of Edinburgh B, 94, 25–32.
McNaughton, S. J. & Oestenheld, M. (1990). Extramatrical mycorrhizal abundance and grass nutrition in a tropical grazing ecosystem, the Serengeti National Park, Tanzania. Oikos, 59, 92–6.
Martin, J. K. & Merckx, R. (1992). The partitioning of photosynthetically fixed carbon within the rhizosphere of mature wheat. Soil Biology and Biochemistry, 24, 1147–56.
Metcalfe, A. C., Krsek, M., Gooday, G. W., Prosser, J. I. & Wellington, E. M. H. (2002). Molecular analysis of a bacterial chitinolytic community in an upland pasture. Applied and Environmental Microbiology, 68, 5042–50.
Miller, R. M., Reinhardt, D. R. & Jastrow, J. D. (1995). External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103, 17–23.
Munkvold, L., Kjøller, R., Vestberg, M., Rosendahl, S. & Jakobsen, I. (2004). High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist, 164, 357–64.
Nehl, D. B., McGee, P. A., Torrisi, V., Pattinson, G. S. & Allen, S. J. (1999). Patterns of arbuscular mycorrhiza down the profile of a heavy textured soil do not reflect associated colonization potential. New Phytologist, 142, 495–503.
Olsrud, M. & Christensen, T. R. (2004). Carbon cycling in subarctic tundra; seasonal variation in ecosystem partitioning based on in situ14C pulse-labelling. Soil Biology and Biochemistry, 36, 245–53.
Olsson, P. A. & Wilhelmsson, P. (2000). The growth of external AM fungal mycelium in sand dunes and in experimental systems. Plant and Soil, 226, 161–9.
Olsson, P. A., Bååth, E., Jakobsen, I. & Söderström, B. (1995). The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycological Research, 99, 623–9.
Olsson, P. A., Larsson, L., Bago, B., Wallander, H. & Aarle, I. M. (2003). Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytologist, 159, 7–10.
Ostle, N., Ineson, P., Benham, D. & Sleep, D. (2000). Carbon assimilation and turnover in grassland vegetation using an in situ13CO2 pulse labelling system. Rapid Communications Mass Spectrometry, 14, 1345–50.
Paul, E. A. & Kucey, R. M. N. (1981). Carbon flow in plant microbial associations. Science, 213, 473–4.
Pfeffer, P. E., Douds, D. D., Becard, G. & Shachar-Hill, Y. (1999). Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology, 120, 587–98.
Powell, C. L. (1979). Spread of mycorrhizal fungi through soil. New Zealand Journal of Agricultural Research, 22, 335–9.
Radajewski, S., Ineson, P., Parekh, N. R. & Murrell, J. C. (2000). Stable-isotope probing as a tool in microbial ecology. Nature, 403, 646–9.
Read, D. J.(2002). Towards ecological relevance – progress and pitfalls in the path towards an understanding of mycorrhizal functions in nature. In Mycorrhizal Ecology, ed. Heijden, M. G. A. & Sanders, I. R.. Berlin: Springer-verlag, pp. 3–24.
Read, D. J., Koucheki, H. K. & Hodgson, J. (1976). Vesicular-arbuscular mycorrhiza in natural vegetation systems. I. The occurrence of infection. New Phytologist, 77, 641–53.
Rillig, M. C., Wright, S. F. & Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 238, 325–33.
Saggar, S., Hedley, C. & Mackay, A. D. (1997). Partitioning and translocation of photosynthetically fixed 14C in grazed hill pastures. Biology and Fertility of Soils, 25, 152–8.
Sparling, G. P. & Tinker, P. B. (1978). Mycorrhizal infection in Pennine grassland. I. Levels of infection in the field. Journal of Applied Ecology, 15, 943–950.
Staddon, P. L., Ostle, N., Dawson, L. A. & Fitter, A. H. (2003a). The speed of soil carbon throughput in an upland grassland is increased by liming. Journal of Experimental Botany, 54, 1461–1469.
Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. (2003b). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 300, 1138–1140.
Staddon, P. L., Thompson, K., Jakobsen, al. (2003c). Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biology, 9, 186–94.
Sylvia, D. M. (1988). Activity of external hyphae of vesicular-arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 20, 39–43.
Tarafdar, J. C. & Marschner, H. (1994). Phosphatase-activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biology and Biochemistry, 26, 387–95.
Tisdall, J. M. & Oades, J. M. (1979). Stabilization of soil aggregates by the root systems of ryegrass. Australian Journal of Soil Research, 17, 429–41.
Toal, M. E., Yeomans, C., Killham, K. & Meharg, A. A. (2000). A review of rhizosphere carbon flow modelling. Plant and Soil, 222, 263–81.
Treseder, K. K. & Allen, M. F. (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist, 147, 189–200.
Treseder, K. K., Egerton-Warburton, L. M., Allen, M. F., Cheng, Y. F. & Oechel, W. C. (2003). Alteration of soil carbon pools and communities of mycorrhizal fungi in chaparral exposed to elevated carbon dioxide. Ecosystems, 6, 786–96.
Heijden, M. G. A., Klironomos, J. N., Ursic, al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.
Hees, P. A. W., Godbold, D. L., Jentschke, G. & Jones, D. L. (2003). Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil. European Journal of Soil Science, 54, 697–706.
Vandenkoornhuyse, P., Leyval, C. & Bonnin, I. (2001). High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events. Heredity, 87, 243–53.
Vandenkoornhuyse, P., Baldauf, S. L., Leyval, C., Straczek, J. & Young, J. P. W. (2002). Extensive fungal diversity in plant roots. Science, 295, 2051.
Wagner, G. (1974). Observation of fungal growth in soil using a capillary pedoscope. Soil Biology and Biochemistry, 6, 327–33.
Warnock, A. J., Fitter, A. H. & Usher, M. B. (1982). The influence of a springtail Folsomia candida (Insecta, Collembola) on the mycorrhizal association of leek Allium porrum and the vesicular-mycorrhizal endophyte Glomus fasciculatus. New Phytologist, 90, 285–92.
Weigelt, A., King, R., Bol, R. & Bardgett, R. D. (2003). Inter-specific variability in organic nitrogen uptake of three temperate grassland species. Journal of Plant Nutrition and Soil Science, 166, 606–11.
Zhu, Y. G. & Miller, R. M. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science, 8, 407–9.