Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 9
  • Print publication year: 2006
  • Online publication date: December 2009

9 - Biodegradation and biodeterioration of man-made polymeric materials

Summary

Introduction

Man-made polymeric materials are ubiquitous in our everyday lives and have an enormous range of applications from man-made textiles to plastics, coatings, paints and additives. As a consequence, a vast array of man-made polymers accumulates in the environment and landfill waste sites where they cause considerable water and land pollution problems. Over the last few decades, plastics and plasticizers in particular, due to their wide production and distribution, have led to a large increased environmental burden (Bouwer, 1992). According to recent estimates, the annual production of plastics in the world exceeds more than 140 million tonnes per year (Shimao, 2001). Plastics possess a number of key characteristics including weight, inertness, flexibility and low production costs that make them widespread in many areas of human life. However, it is their inertness and durability, valuable during their use, that becomes a particular problem later during their disposal. Contrary to other synthetic chemicals and pesticides, synthetic polymers do not generally possess particular toxicological problems, unless supplied with protective agents such as biocides (Bentivegna & Piatkowski, 1998) or particular plasticizers, such as phthalates (Staples et al., 1997; Zeng et al., 2002). Plastics however contribute greatly to the amount of municipal solid waste (Palmisano & Pettigrew, 1992) and are an increasing problem due to improper disposal (Alexander, 1994). The UK alone consumed 4.7 million tonnes of plastics in 2002 with most of the material being used in packaging and the building/construction industries (Fig. 9.1).

References
Akutsu, Y., Nakajima-Kambe, T., Nomura, N. & Nakahara, T. (1998). Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64, 62–7.
Albertsson, A. C. & Karlsson, S. (1988). The 3 stages in degradation of polymers – polyethylene as a model substance. Journal of Applied Polymer Science, 35, 1289–302.
Albertsson, A. C., Barenstedt, C. & Karlsson, S. (1994). Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polymerica, 45, 97–103.
Alexander, M. (1994). Biodegradation and Bioremediation. London: Academic Press.
Allen, A. B., Hilliard, N. P. & Howard, G. T. (1999). Purification and characterization of a soluble polyurethane degrading enzyme from Comamonas acidovorans. International Biodeterioration and Biodegradation, 43, 37–41.
Andrady, A. L. (1994). Assessment of environmental biodegradation of synthetic-polymers. Journal of Macromolecular Science, 34, 25–76.
Andrews, J. H., Harris, R. F., Spear, R. N., Gee, W. L. & Nordheim, E. V. (1994). Morphogenesis and adhesion of Aureobasidium pullulans. Canadian Journal of Microbiology, 40, 6–17.
Augusta, J., Muller, R. J. & Widdecke, H. (1993). A rapid evaluation plate-test for the biodegradability of plastics. Applied Microbiology and Biotechnology, 39, 673–8.
Barratt, S. R., Ennos, A. R., Greenhalgh, M., Robson, G. D. & Handley, P. S. (2003). Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. Journal of Applied Microbiology, 95, 78–85.
Benedict, C. V., Cook, W. J., Jarrett, P.et al. (1983). Fungal degradation of polycaprolactones. Journal of Applied Polymer Science, 28, 327–34.
Bentham, R. H., Morton, L. H. G. & Allen, N. G. (1987). Rapid assessment of the microbial deterioration of polyurethanes. International Biodeterioration, 23, 377–86.
Bentivegna, C. S. & Piatkowski, T. (1998). Effects of tributyltin on medaka (Oryzias latipes) embryos at different stages of development. Aquatic Toxicology, 44, 117–28.
Booth, G. H. & Robb, J. A. (1968). Bacterial degradation of plasticised PVC – Effect of some physical properties. Journal of Applied Chemistry, 18, 194.
Booth, G. H., Cooper, A. W. & Robb, J. A. (1968). Bacterial degradation of plasticised PVC. Journal of Applied Bacteriology, 31, 305–10.
Boubendir, A. (1993). Purification and biochemical evaluation of polyurethane degrading enzymes of fungal origin. Dissertation Abstracts International, 53, 4632.
Bouwer, E. J. (1992). Bioremediation of organic contaminants in the subsurface. In Environmental Microbiology, ed. Mitchell, R.. New York: Wiley-Liss, pp. 287–318.
Breslin, V. T. & Swanson, R. L. (1993). Deterioration of starch-plastic composites in the environment. Journal of the Air and Waste Management Association, 43, 325–35.
Cain, R. B. (1992). Microbial degradation of synthetic polymers. In Microbial Control of Pollution, ed. Fry, J. C., Gadd, G. M., Herbert, R. A., Jones, C. W. & Watson-Craik, I. A.. Cambridge: Cambridge University Press, pp. 293–338.
Cameron, J. A., Bunch, C. L. & Huang, S. J. (1987). Microbial degradation of synthetic polymers. In Biodeterioration, 7th edn, ed. Houghton, D. R., Smith, R. N. & Eggins, H. O. W.. London: Elsevier Applied Science, pp. 553–61.
Catley, B. J. (1971). Role of pH and nitrogen limitation in the elaboration of the extracellular polysaccharide pullulan by Pullularia pullulans. Applied Microbiology, 22, 650–4.
Chandra, R. & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23, 1273–335.
Christensen, G. D., Baldassarri, L. & Simpson, W. A. (1995). Methods for studying microbial colonisation of plastics. Methods in Enzymology, 253, 477–500.
Cooke, W. B. (1959). An ecological life history of Aureobasidium pullulans (de Bary) Arnaud. Mycopathologia et Mycologia Applicata, 12, 1–45.
Crabbe, J. R., Campbell, J. R., Thompson, L., Walz, S. L. & Schultz, W. W. (1994). Biodegradation of a colloidal ester-based polyurethane by soil fungi. International Biodeterioration and Biodegradation, 33, 103–13.
Crang, R. E. & Pechak, D. G. (1978). Aureobasidium pullulans: fine structure and development. Journal of Coatings Technology, 50, 36–42.
Darby, R. T. & Kaplan, A. M. (1968). Fungal susceptibility of polyurethanes. Applied Microbiology, 16, 900–4.
De Henau, H. (1998). Biodegradation. In Handbook of Ecotoxicology, ed. Calow, P.. London: Blackwell Science, pp. 355–77.
Deguchi, T., Kakezawa, M. & Nishida, T. (1997). Nylon biodegradation by lignin-degrading fungi. Applied and Environmental Microbiology, 63, 329–31.
Deguchi, T., Kitaoka, Y., Kakezawa, M. & Nishida, T. (1998). Purification and characterization of a nylon-degrading enzyme. Applied and Environmental Microbiology, 64, 1366–71.
Eastwood, I. M. (1994). Problems with biocides and biofilms. In Bacterial Biofilms and their Control in Medicine and Industry, eds. Wimpenny, P. J., Nichols, W., Stickler, D. & Lappin-Scott, H.. Cardiff: Bioline, pp. 169–72.
Filip, Z. (1978). Decomposition of polyurethane in garbage landfill leakage water and by soil microorganisms. European Journal of Applied Microbiology and Biotechnology, 5, 225–31.
Filip, Z. (1979). Polyurethane as the sole nutrient source for Aspergillus niger and Cladosporium herbarum. European Journal of Applied Microbiology, 7, 277–80.
Flemming, H. C. (1998). Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polymer Degradation and Stability, 59, 309–15.
Gartshore, J., Cooper, D. G. & Nicell, J. A. (2003). Biodegradation of plasticizers by Rhodotorula rubra. Environmental Toxicology and Chemistry, 22, 1244–51.
Gaylarde, C. C. & Morton, L. H. G. (1999). Deteriogenic biofilms on buildings and their control: a review. Biofouling, 14, 59–74.
Griffin, G. J. L. (1980). Synthetic-polymers and the living environment. Pure and Applied Chemistry, 52, 399–407.
Griffin, G. J. L. & Uribe, M. (1984). Biodegradation of plasticised polyvinyl chloride. In Biodeterioration 6, Slough, UK: C. A. B. International, pp. 648–57.
Grima, S., Bellon-Maurel, V., Feuilloley, P. & Silvestre, F. (2000). Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulations. Journal of Polymers and the Environment, 8, 183–95.
Gross, R. A. & Kalra, B. (2002). Biodegradable polymers for the environment. Science, 297, 803–7.
Gu, J. D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration and Biodegradation, 52, 69–91.
Gumargalieva, K. Z., Zaikov, G. E., Semenov, S. A. & Zhdanova, O. A. (1999). The influence of biodegradation on the loss of a plasticiser from poly(vinyl chloride). Polymer Degradation and Stability, 63, 111–12.
Hamilton, N. F. (1983). Biodeterioration of flexible polyvinyl chloride films by fungal organisms. In Biodeterioration 5, ed. Oxley, T. A. & Barry, S.. Chichester: John Wiley & Sons, pp. 663–78.
Hazen, K. C. & Glee, P. M. (1995). Adhesion of fungi. Adhesion of microbial pathogens. Methods In Enzymology, 253, 414–24.
Howard, G. T. (2002). Biodegradation of polyurethane: a review. International Biodeterioration and Biodegradation, 49, 245–52.
Howard, G. T. & Blake, R. C. (1998). Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. International Biodeterioration and Biodegradation, 42, 213–20.
Howard, G. T., Ruiz, C. & Newton, N. P. (1999). Growth of Pseudomonas chlororaphis on a polyester-polyurethane and the purification and characterization of a polyurethanase-esterase enzyme. International Biodeterioration and Biodegradation, 43, 7–12.
Howard, G. T., Crother, B. & Vicknair, J. (2001). Cloning, nucleotide sequencing and characterization of a polyurethanase gene (pueB) from Pseudomonas chlororaphis. International Biodeterioration and Biodegradation, 47, 141–9.
Huang, S. J. & Byrne, C. A. (1980). Biodegradable polymers: photolysis and fungal degradation of poly(arylene keto esters). Journal of Applied Polymer Science, 35, 1951–60.
Imam, S. H. & Gould, J. M. (1990). Adhesion of an amylolytic arthrobacter sp to starch-containing plastic films. Applied and Environmental Microbiology, 56, 872–76.
Ishigaki, T., Sugano, W., Nakanishi, A.et al. (2004). The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere, 54, 225–33.
Jarerat, A. & Tokiwa, Y. (2001a). Degradation of poly(tetramethylene succinate) by thermophilic actinomycetes. Biotechnology Letters, 23, 647–51.
Jarerat, A. & Tokiwa, Y. (2001b). Degradation of poly(L-lactide) by a fungus. Macromolecular Bioscience, 1, 136–40.
Kalb, P. D., Heiser, J. H. & Colombo, P. (1993). Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes. ACS Symposium Series, 518, 439–49.
Karpagam, S. & Lalithakumari, D. (1999). Plasmid-mediated degradation of o- and p-phthalate by Pseudomonas fluorescens. World Journal of Microbiology and Biotechnology, 15, 565–9.
Kay, M. J., Morton, L. H. G. & Prince, E. L. (1991). Bacterial-degradation of polyester polyurethane. International Biodeterioration, 27, 205–22.
Kim, D. Y. & Rhee, Y. H. (2003). Biodegradation of microbial and synthetic polyesters by fungi. Applied Microbiology and Biotechnology, 61, 300–8.
Krochta, J. M. & Muler-Johnston, C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technology, 51, 61–74.
Kumar, C. G. & Anand, S. K. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 42, 9–27.
Kumar, C. G., Kalpagam, V. & Nandi, U. S. (1982). Biodegradable polymers: prospects, problems, and progress. Journal of Macromolecular Science, C22, 225–60.
Lorenz, J. (1990). Biostabilizers, In Plastics Additives Handbook, ed. Gachter, R. & Muller, H.. Munich: Henser Publishers, pp. 791–809.
Lugauskas, A., Levinskaite, L. & Peciulyte, D. (2003). Micromycetes as deterioration agents of polymeric materials. International Biodeterioration and Biodegradation, 52, 233–42.
McNeill, I. C. (1991). Fundamental aspects of polymer degradation. In Polymers in Conservation, ed. Allen, N. C., Edge, M. & Horie, C. V.. Cambridge: The Royal Society of Chemistry, pp. 15–17.
Meier, L. (1990). Plasticisers. In Plastics Additives Handbook, ed. Gachter, R. & Muller, H.. Munich: Henser Publishers, pp. 327–422.
Mohanty, A. K., Misra, M. & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering, 276, 1–24.
Morton, L. H. G. & Surman, S. B. (1994). Biofilms in biodeterioration – a review. International Biodeterioration and Biodegradation, 34, 203–21.
Muller, R. J., Kleeberg, I. & Deckwer, W. D. (2001). Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology, 86, 87–95.
Murphy, C. A., Cameron, J. A., Huang, S. J. & Vinopal, R. T. (1996). Fusarium polycaprolactone depolymerase is a cutinase. Applied and Environmental Microbiology, 62, 456–60.
Nakajima-Kambe, T., Onuma, F., Akutsu, Y. & Nakahara, T. (1995). Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans strain TB-35. Journal of Fermentation and Bioengineering, 83, 456–60.
Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Onuma, F. & Nakahara, T. (1999). Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Applied Microbiology and Biotechnology, 51, 134–40.
Owen, S., Otani, T., Masaoka, S. & Ohe, T. (1996). The biodegradation of low-molecular-weight urethane compounds by a strain of Exophiala jeanselmei. Bioscience Biotechnology and Biochemistry, 60, 244–8.
Palmisano, A. C. & Pettigrew, C. A. (1992). Biodegradability of plastics. Bioscience, 42, 680–5.
Pathirana, R. A. & Seal, K. J. (1984). Studies on polyurethane deteriorating fungi. 1. Isolation and characterization of the test fungi employed. International Biodeterioration, 20, 163–8.
Pavlath, A. E. & Robertson, G. H. (1999). Biodegradable polymers vs. recycling: what are the possibilities?Critical Reviews in Analytical Chemistry, 29, 231–41.
Pereira, P. T., Carvalho, M. M., Girio, F. M., Roseiro, J. C. & Amaral-Collaco, M. T. (2002). Diversity of microfungi in the phylloplane of plants growing in a Mediterranean ecosystem. Journal of Basic Microbiology, 42, 396–407.
Pommer, E. H. & Lorenz, G. (1985). The behaviour of polyester and polyether polyurethanes towards microorganisms. In Biodeterioration and Biodegradation of Polymers 1, ed. Seal, K. J.. New York: Biodeterioration Society, pp. 77–86.
Pranamuda, H., Tokiwa, Y. & Tanaka, H. (1995). Microbial degradation of an aliphatic polyester with a high-melting point, poly(tetramethylene succinate). Applied and Environmental Microbiology, 61, 1828–32.
Rabinovich, M. L., Melnik, M. S. & Boloboba, A. V. (2002). Microbial cellulases. Applied Biochemistry and Microbiology, 38, 305–21.
Rehm, T. (2002). Polyvinyl chloride (PVC). Kunststoffe – Plast Europe, 92, 22–3.
Roberts, W. T. & Davidson, P. M. (1986). Growth characteristics of selected fungi on polyvinyl chloride film. Applied and Environmental Microbiology, 51, 673–6.
Rowe, L. & Howard, G. T. (2002). Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. International Biodeterioration and Biodegradation, 50, 33–40.
Ruiz, C. & Howard, G. T. (1999). Nucleotide sequencing of a polyurethanase gene (pulA) from Pseudomonas fluorescens. International Biodeterioration and Biodegradation, 44, 127–31.
Ruiz, C., Hilliard, N. & Howard, G. T. (1999a). Growth of Pseudomonas chlororaphis on a polyester-polyurethane and the purification and characterization of a polyurethanase-esterase enzyme. International Biodeterioration and Biodegradation, 43, 7–12.
Ruiz, C., Main, T., Hilliard, N. P. & Howard, G. T. (1999b). Purification and characterization of two polyurethanase enzymes from Pseudomonas chlororaphis. International Biodeterioration and Biodegradation, 43, 43–7.
Sabev, H. A. (2004). Fungal biodeterioration and biodegradation of plasticised polyvinyl chloride in soil. Unpublished Ph.D. thesis, University of Manchester.
Samsonova, A. S., Aleshchenkova, Z. M., Syomochkina, N. F. & Baikova, S. V. (1996). Microbial decontamination of effluents from phthalate esters. In Biodeterioration and Biodegradation. Papers of the 10th International Biodeterioration and Biodegradation Symposium, DECHEMA Monographs, ed. Sand, W.. Frankfurt: Schon & Wetzler, pp. 607–10.
Sanchez, J. G., Tsuchii, A. & Tokiwa, Y. (2000). Degradation of polycaprolactone at 50 ℃ by a thermotolerant Aspergillus sp. Biotechnology Letters, 22, 849–53.
Sawada, H. (1998). ISO standard activities in standardization of biodegradability of plastics – development of methods and definitions. Polymer Degradation and Stability, 59, 365–70.
Scherer, T. M., Fuller, R. C., Lenz, R. W. & Goodwin, S. (1999). Hydrolase activity of an extracellular depolymerase from Aspergillus fumigatus with bacterial and synthetic polyesters. Polymer Degradation and Stability, 64, 267–75.
Schoeman, M. W. & Dickinson, D. J. (1996). Aureobasidium pullulans can utilize simple aromatic compounds as a sole source of carbon in liquid culture. Letters in Applied Microbiology, 22, 129–31.
Shimao, M. (2001). Biodegradation of plastics. Current Opinion in Biotechnology, 12, 242–7.
Silley, P. & Forsythe, S. (1996). Impedance microbiology – A rapid change for microbiologists. Journal of Applied Bacteriology, 80, 233–43.
Staples, C. A., Peterson, D. R., Parkerton, T. F. & Adams, W. J. (1997). The environmental fate of phthalate esters: a literature review. Chemosphere, 35, 667–749.
Starnecker, A. & Menner, M. (1996a). Assessment of biodegradability of plastics under simulated composting conditions in a laboratory test system. International Biodeterioration and Biodegradation, 37, 85–92.
Starnecker, A. & Menner, M. (1996b). Kinetics of aerobic microbial degradation of aliphatic polyesters. In Biodeterioration and Biodegradation. Papers of the 10th International Biodeterioration and Biodegradation Symposium, DECHEMA Monographs, ed. Sand, W.. Frankfurt: Schon & Wetzler, pp. 221–8.
Steinbuchel, A. (1996). Synthesis and production of biodegradable thermoplastics and elastomers: current state and outlook. Kautschuk Gummi Kunststoffe, 49, 120–4.
Stern, R. V. & Howard, G. T. (2000). The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiology Letters, 185, 163–8.
Stranger-Johannessen, M. (1985). Microbial degradation of polyurethane products in service. In Biodeterioration and Biodegradation of Polymers 1, ed. Seal, K. J.. New York: Biodeterioration Society, pp. 264–7.
Subrahmanyam, S., Kodandapani, N., Ahamarshan, J. N.et al. (2001). Amperometric biochemical characterization of isolated fungal strains. Electroanalysis, 13, 1454–8.
Sugatt, R. H., O′Grady, D. P., Banergee, S., Howard, P. H. & Gledhill, W. E. (1984). Shake flask biodegradation of 14 commercial phthalate esters. Applied and Environmental Microbiology, 47, 601–6.
Suyama, T., Tokiwa, Y., Ouichanpagdee, P., Kanagawa, T. & Kamagata, Y. (1998). Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Applied and Environmental Microbiology, 64, 5008–11.
Tansengo, M. L. & Tokiwa, Y. (1998). Thermophilic microbial degradation of polyethylene succinate. World Journal of Microbiology and Biotechnology, 14, 133–8.
Tirpak, G. (1970). Microbial degradation of plasticised PVC. Society of Plastic Engineering Journal, 26, 511–20.
Tokiwa, Y. & Jarerat, A. (2004). Biodegradation of poly(L-lactide). Biotechnology Letters, 26, 771–7.
Tokiwa, Y. & Suzuki, T. (1977). Microbial-degradation of polyesters 3. Purification and some properties of polyethylene adipate-degrading enzyme produced by Penicillium sp strain 14–3. Agricultural and Biological Chemistry, 41, 265–74.
Tokiwa, Y., Ando, T. & Suzuki, T. (1976). Degradation of polycaprolactone by a fungus. Journal of Fermentation Technology, 54, 603–8.
Tokiwa, Y., Suzuki, T. & Takeda, K. (1986). Hydrolysis of polyesters by Rhizopus arrhizus lipase. Agricultural and Biological Chemistry, 50, 1323–5.
Torres, A., Li, S. M., Roussos, S. & Vert, M. (1996). Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Applied and Environmental Microbiology, 62, 2393–7.
Turkovskii, I. I. & Yurlova, N. A. (2002). The photochemical and surface-active properties of melanins isolated from some black fungi. Microbiology, 71, 410–16.
Uchida, H., Kambe, T. N., Akutsu, Y. S.et al. (2000). Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiology Letters, 189, 25–9.
Upsher, F. J. & Roseblade, R. J. (1984). Assessment by tropical exposure of some fungicides in plasticized PVC. International Biodeterioration, 20, 243–52.
Valiente, N., Lalot, T., Brigodiot, M. & Marechal, E. (1998). Enzymic hydrolysis of phthalic unit containing copolyesters as a potential tool for block length determination. Polymer Degradation and Stability, 61, 409–15.
Wales, D. S. & Sager, B. F. (1985). Microbial degradation of synthetic polymers. In Biodeterioration and Biodegradation of Plastics and Polymers 1, ed. Seal, K. J.. New York: Biodeterioration Society, pp. 44–8.
Wales, D. S. & Sager, B. F. (1988). Mechanistic aspects of polyurethane biodeterioration. In Biodeterioration, 7th edn, ed. Houghton, D. R., Smith, R. N. & Eggins, H. O. W.. London: Elsevier Applied Science, pp. 351–8.
Webb, J. S., Mei, H. C., Nixon, M.et al. (1999). Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride. Applied and Environmental Microbiology, 65, 3575–81.
Webb, J. S., Nixon, M., Eastwood, I. M.et al. (2000). Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Applied and Environmental Microbiology, 66, 3194–200.
Whitney, P. J. (1996). A comparison of two methods for testing defined formulations of PVC for resistance to fungal colonization with two methods for the assessment of their biodegradation. International Biodeterioration and Biodegradation, 37, 205–13.
Zak, J. C. & Visser, S. (1996). An appraisal of soil fungal biodiversity: the crossroads between taxonomic and functional biodiversity. Biodiversity and Conservation, 5, 169–83.
Zeng, F., Cui, K. Y., Fu, J. M., Sheng, G. Y. & Yang, H. F. (2002). Biodegradability of di(2-ethylhexyl) phthalate by Pseudomonas fluorescens FS1. Water Air and Soil Pollution, 140, 297–305.