Skip to main content Accessibility help
×
  • Cited by 20
Publisher:
Cambridge University Press
Online publication date:
February 2013
Print publication year:
2013
Online ISBN:
9781139524049

Book description

The rhythm of life on Earth includes several strong themes contributed by Kingdom Fungi. So why are fungi ignored when theorists ponder the origin of life? Casting aside common theories that life originated in an oceanic primeval soup, in a deep, hot place, or even a warm little pond, this is a mycological perspective on the emergence of life on Earth. The author traces the crucial role played by the first biofilms – products of aerosols, storms, volcanic plumes and rainout from a turbulent atmosphere – which formed in volcanic caves 4 billion years ago. Moore describes how these biofilms contributed to the formation of the first prokaryotic cells, and later, unicellular stem eukaryotes, highlighting the role of the fungal grade of organisation in the evolution of higher organisms. Based on the latest research, this is a unique account of the origin of life and its evolutionary diversity to the present day.

Awards

A Choice Outstanding Academic Title, 2013

Reviews

'In a wonderful introduction to this wide and exciting subject, and ensuring accessibility to non-specialist readers, key features of fungal biology are introduced, as is current thinking on the beginnings of the solar system, the formation of the Earth and its Moon, and the possible origins of the building blocks of life, including panspermia, the ET origin of life on earth. Central in this thought provoking book is a consideration of the definition of what is life, from the philosophical to the rigidly scientific. This definition is key to deciding on what was LUCA, the last universal common ancestor. Current views on this are well reviewed, critically analysed and dissected. A fascinating read, a myco-centric version of the origin of the eukaryotes, firmly dismissing the animal biased theories.'

J. L. Faull - Birkbeck, University of London

'Fungi and animals share a deep Precambrian root from which our unicellular ancestors diverged more than one billion years ago. This common beginning is evident when we look at similarities between fungus and animal at the level of genes and proteins, as well as the grander disjunction between both groups of eukaryotes and every other form of life on earth. Mycologist David Moore details the evolutionary history of the fungi in his new book and its relationship to the origins and subsequent development of life on land. This rich and compelling story provides a crucial mycological perspective on some of the biggest questions in modern biology.'

Nicholas Money - Miami University, Ohio

'Why are fungi ignored when theorists ponder the origins of life on Earth? This book provides a refreshing mycological perspective on this fascinating question. Moore presents well-supported arguments for the origin and emergence of life on this planet. This quite accessible book will change many a mind on this topic.'

Adele Kleine Source: chicagobotanic.org

'In this new and challenging book, David [Moore] aims to place fungi centre-stage in the origin and evolution of life … carefully researched and argued … original and stimulating thesis.'

Source: IMA Fungus

'This wonderful, refreshing take on origins-of-life studies reviews the present state of affairs, including the missing elements of fungal biology. Every biologist in this field needs to read this book. Moore provides a highly intelligent and reasoned assessment of the role of fungal biology in the discussion of the origins and early evolution of life on Earth. Highly recommended.'

P. K. Strother Source: Choice

'… pitched at a level where a very wide range of readers should feel rewarded by the many sage views clearly expressed, and the fair-handed discussions of multiple conflicting hypotheses about the subject matter … This volume is particularly recommended to those mycologists who focus on issues of fungal phylogeny.'

Richard A. Humber Source: The Quarterly Review of Biology

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Alpermann, T., Rüdel, K., Rüger, R., et al. (2010). Polymersomes containing iron sulfide (FeS) as primordial cell model for the investigation of energy providing redox reactions. Origins of Life and Evolution of Biospheres, 41: 103–119. DOI: .
Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. (2008). The Borealis basin and the origin of the martian crustal dichotomy. Nature, 453: 1212–1215. DOI: .
Arnaud-Haond, S., Duarte, C. M., Diaz-Almela, E., et al. (2012). Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrassPosidonia oceanica. PLoS ONE, 7: e30454. DOI: .
Arrhenius, S. (1908). Worlds in the Making: The Evolution of the Universe (translated by Borns, H). New York: Harper & Row. URL: .
Atkins, J. F., Gesteland, R. F. & Cech, T. R. (2010). RNA Worlds: From Life’s Origins to Diversity in Gene Regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. ISBN: 0879699469, 9780879699468.
Atlas of the Human Journey (2011). The Genographic Project of the National Geographic Society. URL: .
Bahadur, K., Ranganayaki, S. & Santamaria, L. (1958). Photosynthesis of amino-acids from paraformaldehyde involving the fixation of nitrogen in the presence of colloidal molybdenum oxide as catalyst. Nature, 182: 1668. DOI: .
Baltscheffsky, H., Blomberg, C., Liljenström, H., Lindahl, B. I. B. & Århem, P. (1997). On the origin and evolution of life: an introduction. Journal of Theoretical Biology, 187: 453–459. DOI: .
Baross, J. A. & Hoffman, S. E. (1985). Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life, 15: 327–345. DOI: .
Belbruno, E. & Gott, J. R. (2005). Where did the moon come from?The Astronomical Journal, 129: 1724–1745. DOI: .
Belloche, A., Garrod, R. T., Müller, H. S. P., et al. (2009). Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sagittarius B2(N). Astronomy & Astrophysics, 499: 215–232. DOI: .
Benner, S. A. (2010). Defining life. Astrobiology, 10: 1021–1030. DOI: .
Bernstein, M. P. (2006). Prebiotic materials from on and off the early Earth. Philosophical Transactions of the Royal Society of London, Series B, 361: 1689–1702. DOI: .
Bills, B. G. & Ray, R. D. (1999). Lunar orbital evolution: a synthesis of recent results. Geophysical Research Letters, 26: 3045–3048. DOI: .
Blackwell, M. (2000). Terrestrial life – fungal from the start?Science, 289: 1884–1885. DOI: .
Blank, J. G., Miller, G. H., Ahrens, M. J. & Winans, R. E. (2001). Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Origins of Life and Evolution of the Biosphere, 31: 15–51. DOI: .
Boal, D. & Ng, R. (2010). Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology, 36: 555–572. DOI: .
Bobe, R. & Behrensmeyer, A. K. (2004). The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology, 207: 399–420. DOI: .
Boyce, C. K., Hotton, C. L., Fogel, M. L., et al. (2007). Devonian landscape heterogeneity recorded by a giant fungus. Geology, 35: 399–402. DOI: .
Bracker, C. E. (1968). The ultrastructure and development of sporangia inGilbertella persicaria. Mycologia, 60: 1016–1067. DOI: .
Breaker, R. R. (2011). Riboswitches and the RNA world. Cold Spring Harbor Perspectives in Biology, 3: a003566. DOI: .
Brinkmann, H. & Philippe, H. (1999). Archaea sister-group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Molecular Biology and Evolution, 16: 817–825. URL: .
Buss, L. W. (1983). Evolution, development, and the units of selection. Proceedings of the National Academy of Sciences of the United States of America, 80: 1387–1391. Stable URL: .
Buss, L. W. (1987). The Evolution of Individuality. Princeton, NJ: Princeton University Press. ISBN: 0691084696, 9780691084695.
Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26: 386–404. DOI: .
Butterfield, N. J. (2005). Probable Proterozoic fungi. Paleobiology, 31: 165–182. DOI: .
Cady, S. L. (2001). Ancient microbes, extreme environments, and the origin of life. Advances in Applied Microbiology, 50: 3–35. DOI: .
Cairns-Smith, A. G. (1982). Genetic Takeover and the Mineral Origins of Life. Cambridge, UK: Cambridge University Press. ISBN: 0521346827, 9780521346825.
Callahan, M. P., Smith, K. E., Cleaves, H. J., et al. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 108: 13995–13998. DOI: .
Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. (2010). Detection of C60 and C70 in a young planetary nebula. Science, 329: 1180. DOI: .
Canfield, D. E., Rosing, M. T. & Bjerrum, C. (2006). Early anaerobic metabolisms. Philosophical Transactions of the Royal Society of London, Series B, 361: 1819–1836. DOI: .
Carballeira, N. M., Reyes, M., Sostre, A., et al. (1997). Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima. Journal of Bacteriology, 179: 2766–2768. URL: .
Carny, O. & Gazit, E. (2005). A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB Journal (The Journal of the Federation of American Societies for Experimental Biology), 19: 1051–1055. DOI: .
Casadevall, A. (2005). Fungal virulence, vertebrate endothermy, and dinosaur extinction: is there a connection?Fungal Genetics and Biology, 42: 98–106. DOI: .
Cavalier-Smith, T. (2006). Cell evolution and Earth history: stasis and revolution. Philosophical Transactions of the Royal Society of London, Series B, 361: 969–1006. DOI: .
Cavalier-Smith, T. (2010a). Deep phylogeny, ancestral groups and the four ages of life. Philosophical Transactions of the Royal Society of London, Series B, 365: 111–132. DOI: .
Cavalier-Smith, T. (2010b). Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biology Letters, 6: 342–345. DOI: .
Chyba, C. & Sagan, C. (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature, 355: 125–132. DOI: .
Chyba, C., Brookshaw, T. P. & Sagan, C. (1990). Cometary delivery of organic molecules to the early Earth. Science, 249: 366–373. DOI: .
Cockell, C., Corfield, R., Edwards, N. & Harris, N. (2008). An Introduction to the Earth-Life System. Cambridge and Milton Keynes: Cambridge University Press in association with the Open University. ISBN 9780521729536.
Cockell, C. S. (2004). Impact-shocked rocks: insights into Archean and extraterrestrial microbial habitats (and sites for prebiotic chemistry?). Advances in Space Research, 33: 1231–1235. DOI: .
Cody, G. D., Boctor, N. Z., Filley, T. R., et al. (2000). Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science, 289: 1337–1340. DOI: .
Conway Morris, S. (2003). Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge, UK: Cambridge University Press. ISBN: 0521603250, 9780521603256.
Crick, F. H. & Orgel, L. E. (1973). Directed panspermia. Icarus, 19: 341–348. DOI: .
Darwin, E. & Litchfield, H. (1915). Emma Darwin V2: A Century of Family Letters, 1792–1896. London: John Murray. Republished, 2010, by Kessinger Publishing, ISBN: 1166051900, 9781166051907 [and see: ].
Darwin, F. (ed.) (1887). The Life and Letters of Charles Darwin, Including an Autobiographical Chapter, Edited by his Son, Francis Darwin in Three Volumes. Volume 3 (see p. 18). London: John Murray. [and see: ].
Davies, P. (2006). The Origin of Life. Harmondsworth, UK: Penguin. ISBN: 978–0141013022.
Dawkins, R. (1986). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. London: W. W. Norton & Co. ISBN-10: 0393022161, ISBN-13: 978–0393022162.
Dawkins, R. (2006). The God Delusion. London: Transworld Publishers. ISBN-10: 055277331X, ISBN-13: 9780552773317.
Deamer, D. W. (1985). Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature, 317: 792–794. DOI: .
Deamer, D. W. & Weber, A. L. (2010). Bioenergetics and life’s origins. Cold Spring Harbor Perspectives in Biology, 2: a004929. DOI: .
Deamer, D. W., Dworkin, J. P., Sandford, S. A., Bernstein, M. P. & Allamandola, L. J. (2002). The first cell membranes. Astrobiology, 2: 371–381. DOI: .
Derenne, S., Robert, F., Skrzypczak-Bonduelle, A., et al. (2008). Molecular evidence for life in the 3.5 billion year old Warrawoona Chert. Earth and Planetary Science Letters, 272: 476–480. DOI: .
Dobson, C. M., Ellison, G. B., Tuck, A. F. & Vaida, V. (2000). Atmospheric aerosols. Proceedings of the National Academy of Sciences of the United States of America, 97: 11864–11868. DOI: .
Dobson, D. P. & Brodholt, J. P. (2005). Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature, 434: 371–374. DOI: .
Donaldson, D. J., Tervahattu, H., Tuck, A. F. & Vaida, V. (2004). Organic aerosols and the origin of life: an hypothesis. Origins of Life and Evolution of the Biosphere, 34: 57–67. DOI: .
Donaldson, D. J., Tuck, A. F. & Vaida, V. (2002). The asymmetry of organic aerosol fission and prebiotic chemistry. Origins of Life and Evolution of Biospheres, 32: 237–245. DOI: .
Dörfelt, H. & Schmidt, A. R. (2005). A fossil Aspergillus from Baltic amber. Mycological Research, 109: 956–960. DOI: .
Dyson, F. J. (1999). Origins of Life. Cambridge, UK: Cambridge University Press. ISBN: 0521626684, 9780521626682.
Earth Impact Database (2011). University of New Brunswick, Fredericton, New Brunswick, Canada: Planetary and Space Science Centre. URL: .
Ehrenfreund, P. & Cami, J. (2010). Cosmic carbon chemistry: from the interstellar medium to the early Earth. Cold Spring Harbor Perspectives in Biology, 2:(12): a002097. DOI: .
Ehrenfreund, P. & Foing, B. H. (2010). Fullerenes and cosmic carbon. Science, 329: 1159–1160. DOI: .
Ehrenfreund, P., Charnley, S. B. & Botta, O. (2005). A voyage from dark clouds to the early Earth. In Astrophysics of Life (Proceedings of the Space Telescope Science Institute Symposium held in Baltimore, Maryland, May 6–9, 2002), ed. Livio, M., Reid, I. N. & Sparks, W. B., pp. 1–22. Cambridge, UK: Cambridge University Press.
Ehrenfreund, P., Irvine, W., Becker, L., et al.& ISSI-Team ‘Prebiotic matter in space’ (2002). Astrophysical and astrochemical insights into the origin of life. Reports on Progress in Physics, 65: 1427–1487. DOI: .
Eichler, J. & Adams, M. W. W. (2005). Posttranslational protein modification in Archaea. Microbiology and Molecular Biology Reviews, 69: 393–425. DOI: .
Eigen, M. & Schuster, P. (1977). The hypercycle: a principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften, 64: 541–565. DOI: .
Eigen, M. & Schuster, P. (1978a). The hypercycle: a principle of natural self-organization. Part B: The abstract hypercycle. Naturwissenschaften, 65: 7–41. DOI: .
Eigen, M. & Schuster, P. (1978b). The hypercycle: a principle of natural self-organization. Part C: The realistic hypercycle. Naturwissenschaften, 65: 341–369. DOI: .
Farley, K. A., Montanari, A., Shoemaker, E. M. & Shoemaker, C. S. (1998). Geochemical evidence for a comet shower in the late Eocene. Science, 280: 1250–1253. DOI: .
Fenchel, T. (2002). The Origin & Early Evolution of Life. Oxford, UK: Oxford University Press. ISBN: 0198525338, 9780198525332.
Ferguson, B. A., Dreisbach, T. A., Parks, C. G., Filip, G. M. & Schmitt, C. L. (2003). Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Canadian Journal of Forest Research, 33: 612–623. DOI: .
Finlayson, C., Pacheco, F. G., Rodríguez-Vidal, J., et al. (2006). Late survival of Neanderthals at the southernmost extreme of Europe. Nature, 443: 850–853. DOI: .
Flemming, H. -C. & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8: 623–633. DOI: .
Flemming, H. -C., Wingender, J. & Szewzyk, U. (2011). Biofilm Perspectives. Volume 5 of Springer Series on Biofilms. Berlin and Heidelberg: Springer-Verlag GmbH & Co. KG. ISBN: 3642199399, 9783642199394.
Follmann, H. & Brownson, C. (2009). Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften, 96: 1265–1292. DOI: .
Fox, S. W. (1980). Life from an orderly cosmos. Naturwissenschaften, 67: 576–581. DOI: .
Fraser, C. L. & Folsome, C. E. (1975). Exponential kinetics of formation or organic microstructures. Origins of Life and Evolution of Biospheres, 6: 429–433. DOI: .
Gánti, T. (2003). The Principles of Life (with a commentary by James Griesemer & Eörs Szathmáry). Oxford, UK: Oxford University Press. ISBN: 0198507267, 9780198507260.
García-Hernández, D. A., Manchado, A., García-Lario, P., et al. (2010). Formation of fullerenes in H-containing planetary nebulae. Astrophysical Journal Letters, 724: L39–L43. DOI: .
Gilbert, W. (1986). The RNA world. Nature, 319: 618. DOI: .
Glass, N. L., Rasmussen, C., Roca, M. G. & Read, N. D. (2004). Hyphal homing, fusion and mycelial interconnectedness. Trends in Microbiology, 12: 135–141. DOI: .
Glavin, D. P. & Dworkin, J. P. (2009). Enrichment in L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy of Sciences of the United States of America, 106: 5487–5492. DOI: .
Gogarten-Boekels, M., Hilario, E. & Gogarten, P. (1995). The effects of heavy meteorite bombardment on the early evolution – the emergence of the three domains. Origins of Life and Evolution of the Biosphere, 25: 251–264. DOI: .
Gold, T. (1992). The deep, hot biosphere. Proceedings of the National Academy of Sciences of the United States of America, 89: 6045–6049. URL: .
Goldreich, P. (1966). History of the Lunar orbit. Reviews of Geophysics, 4: 411–439. DOI: .
Green, R. E., Krause, J., Briggs, A. W., et al. (2010). A draft sequence of the Neandertal genome. Science, 328: 710–722. DOI: .
Haldane, J. B. S. (1929). The origin of life. Rationalist Annual, 3: 3–10.
Harding, M. W., Marques, L. L. R., Howard, R. J. & Olson, M. E. (2009). Can filamentous fungi form biofilms?Trends in Microbiology, 17: 475–480. DOI: .
Hartman, H. (1975). Speculations on the origin and evolution of metabolism. Journal of Molecular Evolution, 4: 359–370. DOI: .
Hartmann, W. K. & Davis, D. R. (1975). Satellite-sized planetesimals and lunar origin. Icarus, 24: 504–515. DOI: .
Hazen, R. M. (2005). Genesis: The Scientific Quest for Life’s Origin. Washington, DC: Joseph Henry Press. ISBN: 0309094321, 9780309094320.
Hereward, F. V. & Moore, D. (1979). Polymorphic variation in the structure of aerial sclerotia of Coprinus cinereus. Journal of General Microbiology, 113: 13–18. DOI: .
Hibbett, D. S., Grimaldi, D. & Donoghue, M. J. (1995). Cretaceous mushrooms in amber. Nature, 377: 487. DOI: .
Hobbie, E. A. & Boyce, C. K. (2010). Carbon sources for the Palaeozoic giant fungus Prototaxites inferred from modern analogues. Proceedings of the Royal Society, Series B, 277: 2149–2156. DOI: .
Horneck, G. (1996). Exobiology. In Biological and Medical Research in Space: An Overview of Life Sciences Research in Microgravity, ed. Moore, D., Bie, P. & Oser, H., Chapter 7. Berlin, Heidelberg & New York: Springer-Verlag. ISBN: 354060636X, 9783540606369.
Horneck, G. (1999). European activities in exobiology in Earth orbit: results and perspectives. Advances in Space Research, 23: 381–386. DOI: .
Hoyle, F. & Wickramasinghe, N. C. (1982). Proofs that Life is Cosmic. Colombo, Sri Lanka: Colombo Government Press. URL: .
Huber, C. & Wächtershäuser, G. (1997). Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science, 276: 245–247. DOI: .
Hueber, F. M. (2001). Rotted wood-alga-fungus: the history and life of Prototaxites Dawson 1859. Review of Paleobotany and Palynology, 116: 123–148. DOI: .
Hull, D. L. (1988). Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science. Chicago, IL: University of Chicago Press. ISBN: 0226360512, 9780226360515.
Jacobs, B. F. (2004). Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philosophical Transactions of the Royal Society of London, Series B, 359: 1573–1583. DOI: .
Javaux, E. J., Knoll, A. H. & Walter, M. R. (2001). Morphological and ecological complexity in early eukaryotic ecosystems. Nature, 412: 66–69. DOI: .
Johnson, A. P., Cleaves, H. J., Dworkin, J. P., et al. (2008). The Miller volcanic spark discharge experiment. Science, 322: 404. DOI: .
Jutzi, M. & Asphaug, E. (2011). Forming the lunar farside highlands by accretion of a companion moon. Nature, 476: 69–72. DOI: .
Karatan, E. & Watnick, P. (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 73: 310–347. DOI: .
Kasting, J. F. (1993). Earth’s early atmosphere. Science, 259: 920–926. DOI: .
Kasting, J. F. & Howard, M. T. (2006). Atmospheric composition and climate on the early Earth. Philosophical Transactions of the Royal Society of London, Series B, 361: 1733–1742. DOI: .
Keeling, P. J., Burger, G., Durnford, D. G., et al. (2005). The tree of eukaryotes. Trends in Ecology and Evolution, 20: 670–676. DOI: .
Kelley, D. S., Carson, J. A., Blackman, D. K., et al. & the At3–60 Shipboard Party (2001). An off-axis hydrothermal vent field discovered near the Mid-Atlantic Ridge at 30°N. Nature, 412: 145–149. DOI: .
Kennett, D. J., Kennett, J. P., West, A., et al. (2009). Nanodiamonds in the Younger Dryas boundary sediment layer. Science, 323: 94. DOI: .
Koshland, D. E. (2002). The seven pillars of life. Science, 295: 2215–2216. DOI: .
Kwok, S. (2004). The synthesis of organic and inorganic compounds in evolved stars. Nature, 430: 985–991. DOI: .
Lane, N. (2010). Life Ascending: The Ten Great Inventions of Evolution. London: Profile Books Ltd. ISBN: 9781861978189.
Lane, N., Allen, J. F. & Martin, W. (2010). How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays, 32: 271–280. DOI: .
Lasaga, A. C., Holland, H. D. & Dwyer, M. J. (1971). Primordial oil slick. Science, 174: 53–55. DOI: .
Lazcano, A. (2010). Which way to life?Origins of Life and Evolution of Biospheres, 40: 161–167. DOI: .
Lazcano, A. & Miller, S. L. (1996). The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell, 85: 793–798. DOI: .
Lessie, P. E. & Lovett, J. S. (1968). Ultrastructural changes during sporangium formation and zoospore differentiation in Blastocladiella emersonii. American Journal of Botany, 55: 220–236. URL: .
Liu, Z., Pagani, M., Zinniker, D., et al. (2009). Global cooling during the Eocene-Oligocene climate transition. Science, 323: 1187–1190. DOI: .
Lopez, P., Forterre, P. & Philippe, H. (1999). The root of the tree of life in the light of the covarion model. Journal of Molecular Evolution, 49: 496–508. DOI: .
Luisi, P. L. (1998). About various definitions of life. Origins of Life and Evolution of the Biosphere, 28: 613–622. DOI: .
Luisi, P. L. (2006). The Emergence of Life: From Chemical Origins to Synthetic Biology. Cambridge, UK: Cambridge University Press. ISBN: 0521821177, 9780521821179.
Lunine, J. I. (2006). Physical conditions on the early Earth. Philosophical Transactions of the Royal Society of London, Series B, 361: 1721–1731. DOI: .
Lurquin, P. F. (2003). The Origins of Life and the Universe. New York: Columbia University Press. ISBN: 0231126557, 9780231126557.
Mackie, R. I. (2002). Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integrative & Comparative Biology, 42: 319–326. DOI: .
Maher, K. A. & Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331: 612–614. DOI: .
Margulis, L. (2004). Serial endosymbiotic theory (SET) and composite individuality: transition from bacterial to eukaryotic genomes. Microbiology Today, 31: 172–174. DOI: .
Martin, W. & Russell, M. J. (2007). On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society of London, Series B, 362: 1887–1926. DOI: .
Martin, W., Rotte, C., Hoffmeister, M., et al. (2003). Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. International Union of Biochemistry and Molecular Biology: Life, 55: 193–204. DOI: .
Martínez, I., Arsuaga, J. L., Quam, R., et al. (2008). Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain). Journal of Human Evolution, 54: 118–124. DOI: .
Martins, Z. (2011). Organic chemistry of carbonaceous meteorites. Elements, 7: 35–40. DOI: .
Maynard Smith, J. & Szathmáry, E. (1999). The Origins of Life: From the Birth of Life to the Origin of Language. Oxford, UK: Oxford University Press. ISBN: 019286209X.
Melosh, H. J. (1988). The rocky road to panspermia. Nature, 332: 687–688. DOI: .
Miller, S. L. (1953). Production of amino acids under possible primitive Earth conditions. Science, 117: 528–529. DOI: .
Miller, S. L. & Bada, J. L. (1988). Submarine hot springs and the origin of life. Nature, 334: 609–611. DOI: .
Moore, D. (1981). Developmental genetics of Coprinus cinereus: genetic evidence that carpophores and sclerotia share a common pathway of initiation. Current Genetics, 3: 145–150. DOI: .
Moore, D. (1998). Fungal Morphogenesis. New York: Cambridge University Press. ISBN: 0521552958, 9780521552950. DOI: .
Moore, D. (2000). Slayers, Saviors, Servants and Sex: An Exposé of Kingdom Fungi. New York: Springer-Verlag. ISBN-10: 0387951016, ISBN-13: 9780387951010. URL: .
Moore, D. (2005). Principles of mushroom developmental biology. International Journal of Medicinal Mushrooms, 7: 79–102. DOI: .
Moore, D. & Meškauskas, A. (2006). A comprehensive comparative analysis of the occurrence of developmental sequences in fungal, plant and animal genomes. Mycological Research, 110: 251–256. DOI: .
Moore, D. & Pöder, R. (2006). Are your children taught anything about fungi at school?Sydowia, 58: 1–2. URL: .
Moore, D., Pöder, R., Molitoris, H. P., et al. (2006). Crisis in teaching future generations about fungi. Mycological Research, 110: 626–627. DOI: .
Moore, D., Robson, G. D. & Trinci, A. P. J. (2011). 21st Century Guidebook to Fungi. Cambridge, UK: Cambridge University Press. ISBN: 9780521186957.
Newsom, H. E. & Taylor, S. R. (1989). Geochemical implications of the formation of the Moon by a single giant impact. Nature, 338: 29–34. DOI: .
Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. (2008). Implications of an impact origin for the martian hemispheric dichotomy. Nature, 453: 1220–1223. DOI: .
Nisbet, E. (2000). Palaeobiology: the realms of Archaen life. Nature, 405: 625–626. DOI: .
Nisbet, E., Zahnle, K., Gerasimov, M. V., et al. (2007). Creating habitable zones, at all scales, from planets to mud micro-habitats, on Earth and on Mars. Space Science Reviews, 24: 79–121. DOI: .
Oparin, A. I. (1957a). The Origin of Life on the Earth. 3rd edn, translated by Synge, Ann. London: Oliver and Boyd. ASIN: B001I4YTQI.
Oparin, A. I. (1957b). Biochemical processes in the simplest structures. In International Symposium on the Origin of Life on the Earth, ed. Oparin, A. I., Braunstein, A., Gelman, N., Deborin, G. & Passynsky, A., pp. 221–228. Moscow: The Publishing House of the Academy of Sciences of the USSR.
Orgel, L. E. (1998). The origin of life: a review of facts and speculations. Trends in Biochemical Sciences (TIBS), 23: 491–495. DOI: .
Orgel, L. E. (2004). Prebiotic adenine revisited: eutectics and photochemistry. Origins of Life and Evolution of Biospheres, 34: 361–369. DOI: .
Oró, J. (1961). Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190: 389–390. DOI: .
Parker, E. T., Cleaves, H. J., Dworkin, J. P., et al. (2011). Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proceedings of the National Academy of Sciences of the United States of America, 108: 5526–5531. DOI: .
Pennisi, E. (2004). The birth of the nucleus. Science, 305: 766–768. DOI: .
Penny, D. & Poole, A. (1999). The nature of the last universal common ancestor. Current Opinion in Genetics & Development, 9: 672–677. DOI: .
Pirozynski, K. A. (1976). Fungal spores in fossil record. Biological Memoirs, 1: 104–120.
Quan, C., Sun, C., Sun, Y. & Sun, G. (2009). High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretaceous Research, 30: 424–428. DOI: .
Read, N. D., Fleißner, A, Roca, M. G. & Glass, N. L. (2010). Hyphal fusion. In Cellular and Molecular Biology of Filamentous Fungi, ed. Borkovich, K. A. & Ebbole, D. J., pp. 260–273. Washington, DC: American Society for Microbiology Press. ISBN-10: 1555814735, ISBN-13: 978–1555814731.
Read, N. D., Lichius, A., Shoji, J. -Y. & Goryachev, A. B. (2009). Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12: 608–615. DOI: .
Redecker, D., Kodner, R. & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289: 1920–1921. DOI: .
Reynolds, T. B. & Fink, G. R. (2001). Bakers’ yeast, a model for fungal biofilm formation. Science, 291: 878–881. DOI: .
Rikkinen, J., Dörfelt, H., Schmidt, A. R. & Wunderlich, J. (2003). Sooty moulds from European Tertiary amber, with notes on the systematic position of Rosaria (‘Cyanobacteria’). Mycological Research, 107: 251–256. DOI: .
Riquelme, M. & Bartnicki-García, S. (2008). Advances in understanding hyphal morphogenesis: ontogeny, phylogeny and cellular localization of chitin synthases. Fungal Biology Reviews, 22: 56–70. DOI: .
Riquelme, M., Bartnicki-García, S., González-Prieto, J. M., et al. (2007). Spitzenkörper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryotic Cell, 6: 1853–1864. DOI: .
Robb, F. T. & Clark, D. S. (1999). Adaptation of proteins from hyperthermophiles to high pressure and high temperature. Journal of Molecular Biotechnology, 1: 101–105. URL: .
Robertson, M. P. & Joyce, G. F. (2011). The origins of the RNA world. Cold Spring Harbor Perspectives in Biology, 3: a003608v2. DOI: .
Ruiz-Bermejo, M., Menor-Salván, C., Osuna-Esteban, S. & Veintemillas-Verdaguer, S. (2007). The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges. Origins of Life and Evolution of Biospheres, 37: 507–521. DOI: .
Russell, M. J. (2010). The hazy details of early Earth’s atmosphere. Science, 330: 754. DOI: .
Russell, M. J. & Hall, A. J. (2002). From geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. The Geochemical News, Newsletter of the Geochemical Society, 113: 6–12. URL: .
Russell, M. J., Daniel, R. M., Hall, A. J. & Sherringham, J. (1994). A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. Journal of Molecular Evolution, 39: 231–243. DOI: .
Sagan, C. & Chyba, C. (1997). The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science, 276: 1217–1221. DOI: .
Sanders, W. B. (2001). Lichens: interface between mycology and plant morphology. BioScience, 51: 1025–1035. DOI: [1025:LTIBMA]2.0.CO;2.
Schopf, J. W. (1993). Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science, 260: 640–646. DOI: .
Schrödinger, E. (1944). What is Life? [reprinted 1992, with Mind and Matter and Autobiographical Sketches]. Cambridge, UK: Cambridge University Press. ISBN: 0521427088, 9780521427081.
Schultz, T. R. & Brady, S. G. (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 105: 5435–5440. DOI: .
Scott, E. C. (2009). Evolution vs. Creationism: An Introduction. 2nd revised edn. Berkeley and Los Angeles, CA: University of California Press. ISBN-10: 0520261879, ISBN-13: 978–0520261877.
Simoncini, E., Russell, M. J. & Kleidon, A. (2011). Modeling free energy availability from Hadean hydrothermal systems to the first metabolism. Origins of Life and Evolution of Biospheres. Epub ahead of print. DOI: .
Singh, R., Shivaprakash, M. R. & Chakrabarti, A. (2011). Biofilm formation by zygomycetes: quantification, structure and matrix composition. Microbiology. Online: ahead of print. DOI: .
Sorokin, Y. I. (1957). The evolution of chemosynthesis. In International Symposium on the Origin of Life on the Earth, ed. Oparin, A. I., Braunstein, A., Gelman, N., Deborin, G. & Passynsky, A., pp. 368–375. Moscow: The Publishing House of the Academy of Sciences of the USSR.
Steinberg, G. (2007). Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryotic Cell, 6: 351–360. DOI: .
Steinberg, G. & Schuster, M. (2011). The dynamic fungal cell. Fungal Biology Reviews, 25: 14–37. DOI: .
Stetter, K. O. (2006). Hyperthermophiles in the history of life. Philosophical Transactions of the Royal Society of London, Series B, 361: 1837–1843. DOI: .
Stott, L., Timmermann, A. & Thunell, R. (2007). Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science, 318: 435–438. DOI: .
Strömberg, C. A. E. & Feranec, R. S. (2004). The evolution of grass-dominated ecosystems during the late Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 207: 199–201. DOI: .
Sudarsan, N., Barrick, J. E. & Breaker, R. R. (2010). Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA, 9: 644–647. DOI: .
Sutherland, I. W. (2001). The biofilm matrix: an immobilized but dynamic microbial environment. Trends in Microbiology, 9: 222–227. DOI: .
Taylor, J. W., Jacobson, D. J. & Fisher, M. C. (1999). The evolution of asexual fungi: reproduction, speciation and classification. Annual Review of Phytopathology, 37: 197–246. DOI: .
Taylor, T. N., Hass, H. & Kerp, H. (1997). A cyanolichen from the Lower Devonian Rhynie Chert. American Journal of Botany, 84: 992–1004. Stable URL: .
Taylor, T. N., Klavins, S. D., Krings, M., et al. (2004). Fungi from the Rhynie chert: a view from the dark side. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 457–473. DOI: .
Taylor, T. N., Krings, M. & Kerp, H. (2006). Hassiella monospora gen. et sp. nov., a microfungus from the 400 million year old Rhynie chert. Mycological Research, 110: 628–632. DOI: .
Taylor, T. N., Taylor, E. L., Decombeix, A. -L., et al. (2010). The enigmatic Devonian fossil Prototaxites is not a rolled-up liverwort mat: comment on the paper by Graham et al. (AJB 97: 268–275). American Journal of Botany, 97: 1074–1078. DOI: .
Thaddeus, P. (2006). The prebiotic molecules observed in the interstellar gas. Philosophical Transactions of the Royal Society of London, Series B, 361: 1681–1687. DOI: .
Tucker, B. J. & Breaker, R. R. (2005). Riboswitches as versatile gene control elements. Current Opinion in Structural Biology, 15: 342–348. DOI: .
Urey, H. C. (1952). On the early chemical history of the earth and the origin of life. Proceedings of the National Academy of Sciences of the United States of America, 38: 351–363. URL: .
Vajda, V. & McLoughlin, S. (2004). Fungal proliferation at the Cretaceous-Tertiary boundary. Science, 303: 1489. DOI: .
van Wyhe, J. (2010). ‘Almighty God! What a wonderful discovery!’: Did Charles Darwin really believe life came from space?Endeavour, 34: 95–103. DOI: .
Vijh, U. P., Witt, A. N. & Gordon, K. D. (2005). Small polycyclic aromatic hydrocarbons in the Red Rectangle. Astrophysical Journal, 619: 368–378. DOI: .
Visscher, H., Brinkuis, H., Dilcher, D. L., et al. (1996). The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences of the United States of America, 93: 2155–2158. URL: .
von Frese, R. R. B., Potts, L. V., Wells, S. B., et al. (2009). GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica. Geochemistry, Geophysics, and Geosystems, 10: Q02014. DOI: .
Wächtershäuser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiological Reviews, 52: 452–484. URL: .
Wächtershäuser, G. (1992). Groundworks for an evolutionary biochemistry: the iron-sulphur world. Progress in Biophysics and Molecular Biology, 58: 85–201. DOI: .
Wächtershäuser, G.(2000). Life as we don’t know it. Science, 289: 1307–1308. DOI: .
Wächtershäuser, G.(2006). From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philosophical Transactions of the Royal Society of London, Series B, 361: 1787–1808. DOI: .
Ward, P. D. (2006). Impact from the deep. Scientific American, 295: 64–71. URL: .
Waters, H., Butler, R. D. & Moore, D. (1975). Structure of aerial and submerged sclerotia of Coprinus lagopus. New Phytologist, 74: 199–205. DOI: .
Waters, H., Moore, D. & Butler, R. D. (1975). Morphogenesis of aerial sclerotia of Coprinus lagopus. New Phytologist, 74: 207–213. DOI: .
Wellman, C. H. & Gray, J. (2000). The microfossil record of early land plants. Philosophical Transactions of the Royal Society of London, Series B, 355: 717–732. URL: .
Westall, F., deRonde, C. E. J., Southam, G., et al. (2006). Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philosophical Transactions of the Royal Society of London, Series B, 361: 1857–1875. DOI: .
Whittaker, R. H. (1969). New concepts of kingdoms of organisms. Science, 163: 150–160. DOI: .
Wickramasinghe, N. C. (2010). The astrobiological case for our cosmic ancestry. InternationalJournal of Astrobiology, 9: 119–129. DOI: .
Williams, D. R. (2010). Moon Fact Sheet, NASA Goddard Space Flight Center. URL: .
Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. (2004). Control of gene expression by a natural metabolite-responsive ribozyme. Nature, 428: 281–286. DOI: .
Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews, 51: 221–271. URL: .
Woese, C. R., Kandler, O. & Wheels, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87: 4576–4579. URL: .
Wood, W. B. (ed.) (1988). The Nematode, Caenorhabditis elegans. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. ISBN: 9780879694333.
Yuan, X., Xiao, S. & Taylor, T. N. (2005). Lichen-like symbiosis 600 million years ago. Science, 308: 1017–1020. DOI: .
Zahnle, K., Arndt, N., Cockell, C., et al. (2007). Emergence of a habitable planet. Space Science Reviews, 129: 35–78. DOI: .
Zahnle, K., Schaefer, L. & Fegley, B. (2010). Earth’s earliest atmospheres. Cold Spring Harbor Perspectives in Biology, 2: a004895. DOI: .
Zaug, A. J. & Cech, T. R. (1986). The intervening sequence RNA of Tetrahymena is an enzyme. Science, 231: 470–475. DOI: .

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.