Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T02:09:10.371Z Has data issue: false hasContentIssue false

5 - Processing of Multifunctional Polymer Nanocomposites

from Part One - Fundamentals, Processing, and Characterization

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tomanek, E. and Enbody, R. J. (Eds.) (2000). Science and Application of Nanotubes. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. New York: John Wiley & Sons.Google Scholar
Krishnamoorti, R. and Vaia, R. A. (Eds.) (2001). Polymer Nanocomposites: Synthesis, Characterization, and Modeling. ACS Symposium Series 804. Washington, DC: ACS.CrossRefGoogle Scholar
Wang, Z. L., Liu, Y., and Zhang, Z. (Eds.) (2003). Handbook of Nanophase and Nanostructured Materials, Vol. 4: Materials Systems and Applications (II). New York: Kluwer Academic/Plenum Publishers.Google Scholar
Cao, G. (2004). Nanostructures & Nanomaterials Synthesis, Properties & Applications. London: Imperial College Press.CrossRefGoogle Scholar
Di Ventra, M., Evoy, S., and Heflin, J. R. Jr. (Eds.) (2004). Introduction to Nanoscale Science and Technology. New York: Kluwer Academic Publishers.CrossRefGoogle Scholar
Schulz, M. J., Kelkar, A. D., and Sundaresan, M. J. (Eds.) (2006). Nanoengineering of Structural, Functional, and Smart Materials. Boca Raton, FL: CRC.Google Scholar
Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties, and uses of a new class of materials. Material Science Engineering R28, 163.Google Scholar
Sanchez, C., Julian, B., Belleville, P., and Popall, M. (2005). Applications of hybrid organic-inorganic nanocomposites. Journal of Material Chemistry 15, 35593592.CrossRefGoogle Scholar
Lerner, M. and Oriakhi, C. (1997). Handbook of Nanophase Materials. New York: Mekker Decker.Google Scholar
Lagaly, B. (1999). Introduction from clay mineral-powder interactions to clay mineral-polymer nanocomposites. Applied Clay Science 15, 19.Google Scholar
Greenland, D. J. (1963). Adsorption of polyvinylalcohols by montmorillonite. Journal of Colloidal Science 18, 647664.CrossRefGoogle Scholar
Ogata, N., Kawakage, S., and Orgihara, T. (1997). Poly (vinyl alcohol)-clay and poly (ethylene oxide)-clay blend prepared using water as solvent. Journal of Applied Polymer Science 66, 573581.3.0.CO;2-W>CrossRefGoogle Scholar
Parfitt, R. L. and Greenland, D. L. (1970). Absorption of poly(ethylene glycols) on montmorillonites. Clay Mineral 8, 305323.CrossRefGoogle Scholar
Zhao, X., Urano, K., and Ogasawara, S. (1989). Adsorption of polyethylene glycol from aqueous solutions on montmorillonite clays. Colloidal Polymer Science 267, 899906.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Aranda, P., Casal, B., and Galvan, J. C. (1995). Nanocomposite materials with controlled ion mobility. Advanced Materials 7, 180184.CrossRefGoogle Scholar
Billingham, J., Breen, C., and Yarwood, J. (1997). Adsorption of polyamide, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIR. Vibrational Spectroscopy 14, 1934.CrossRefGoogle Scholar
Levy, R. and Francis, C. W. (1975). Interlayer adsorption of polyvinylpyrrolidone on montmorillonite. Journal of Colloid Interface Science 50, 442450.CrossRefGoogle Scholar
Wu, J. and Lerner, M. M. (1993). Structural, thermal, and electrically characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers. Chemistry of Materials 5, 835838.CrossRefGoogle Scholar
Harris, D. J., Bonagamba, T. J., and Schmidt-Rohr, K. (1999). Conformation of poly(ethylene oxide) intercalated in clay and MoS2 studied by two-dimensional double-quantum NMR. Macromolecules 32, 67186724.CrossRefGoogle Scholar
Yano, K., Usuki, A., Okada, A., Kurauchi, T., and Kamigaito, O. (1993). Synthesis and properties of polyimide-clay hybrid. Journal of Polymer Science Part A: Polymer Chemistry 31, 24932498.CrossRefGoogle Scholar
Yano, K., Usuki, A., and Okada, A. (1997). Synthesis and properties of polyimide-clay hybrid films. Journal of Polymer Science Part A: Polymer Chemistry 35, 22892294.3.0.CO;2-9>CrossRefGoogle Scholar
Shen, Z., Simon, G. P., and Cheng, Y. B. (2002). Comparison of solution intercalation and melt intercalation of polymer-clay nanocomposites. Polymer 43(15), 42514260.CrossRefGoogle Scholar
Chen, W. and Qu, B. (2003). Structural characteristics and thermal properties of Pe-G-Ma/Mgal-Ldh exfoliation nanocomposites synthesized by solution intercalation. Chemistry of Materials 15(16), 32083213.CrossRefGoogle Scholar
Vaia, R. A. and Giannelis, E. P. (1997). Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 80008009.CrossRefGoogle Scholar
Vaia, R. A., Ishii, H., and Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chemistry of Materials 5, 16941696.CrossRefGoogle Scholar
Dennis, H. R., Hunter, D. L., Chang, D., Kim, S., White, J. L., et al. (2001). Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23), 95139522.CrossRefGoogle Scholar
Burnside, S. D. and Giannelis, E. P. (1995). Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chemistry of Materials 7, 15971600.CrossRefGoogle Scholar
Li, Y. and Shimizu, H. (2009). Toward a stretchable, elastic, and electrically conductive nanocomposite: Morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42(7), 25872593.CrossRefGoogle Scholar
Blanski, R., Koo, J. H., Ruth, P., Nguyen, N., Pittman, C., and Phillips, S. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation – Ablation Performance. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIA, Columbia, MD.Google Scholar
Koo, J. H., Marchant, D., Wissler, G., Ruth, P., Barker, S., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation – Processing, Microstructure, and Mechanical Properties. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIA, Columbia, MD.Google Scholar
Ruth, P., Blanski, R., and Koo, J. H. (2004). Preparation of Polymer Nanocomposites for Solid Rocket Motor Insulation. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIA, Columbia, MD.Google Scholar
Blanski, R., Koo, J. H., Ruth, P., Nguyen, N., Pittman, C., and Phillips, S. (2004). Ablation Characteristics of Nanostructured Materials for Solid Rocket Motor Insulation. Proceedings of the National Space & Missile Materials Symposium, Seattle, WA, June 21–25.Google Scholar
Koo, J. H., Marchant, D., Wissler, G., Ruth, P., Barker, S., et al. (2004). Processing and Characterization of Nanostructured Materials for Solid Rocket Motors. Proceedings of the National Space & Missile Materials Symposium, Seattle, WA, June 21–25.Google Scholar
Marchant, D., Koo, J. H., Blanski, R., Weber, E. H., Ruth, P., et al. (2004). Flammability and Thermophysical Characterization of Thermoplastic Elastomer Nanocomposites. ACS National Meeting, Fire & Polymers Symposium, Philadelphia, PA, August 22–26.Google Scholar
Gupta, S. K., Schwab, J. J., Lee, A., Gu, B. X., and Hsiao, B. S. (2002). POSS® Reinforced Fire Retarding EVE Resins. Proceedings of the SAMPE 2002 ISSE, SAMPE, Covina, CA, pp. 1517–1526.Google Scholar
Yasmin, A., Abot, J. L., and Daniel, I. M. (2003). Processing of clay/epoxy nanocomposites with a three-roll mill machine. Materials Research Society Symposium Proceedings, 740, 7580.Google Scholar
Rosca, I. D. and Hoa, S. V. (2009). Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon 47(8), 19581968.CrossRefGoogle Scholar
Yasmin, A., Abot, J. L., and Daniel, I. M. (2003). Processing of clay/epoxy nanocomposites by shear mixing. Scripta Materialia 49(1), 8186.CrossRefGoogle Scholar
Seyhan, A. T., Tanoğlu, M., and Schulte, K. (2009). Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Materials Science and Engineering: A 523(1), 8592.CrossRefGoogle Scholar
Yuan, M., Johnson, B., Koo, J. H., and Bourell, D. (2014). Polyamide 11-MWNT nanocomposites: Thermal and electrical conductivity measurements. Journal of Composite Materials 48(15), 1833-1841.CrossRefGoogle Scholar
Lu, C., Krifa, M., and Koo, J. H. (2013). Conductive Poly(3,4 ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS)/Nickel Nanostrands Nanocomposites. Proceedings of the SAMPE 2013 ISSE, SAMPE, Covina, CA, May.Google Scholar
Hansen, N., Adams, D. O., and Fullwood, D. T. (2012). Quantitative methods for correlating dispersion and electrical conductivity in conductor-polymer nanostrand composites. Composites: Part A 43, 19391946.CrossRefGoogle Scholar
Lagaly, G. (1999). Introduction: From clay mineral-polymer interactions to clay mineral-polymer nanocomposites. Applied Clay Science 15, 19.Google Scholar
Eastman, M. P., Bain, E., Porter, T. L., Manygoats, K., Whitehorse, R., et al. (1999). The formation of poly(methyl-methacylate) on transition metal-exchanged hectorite. Applied Clay Science 15, 173185.CrossRefGoogle Scholar
Fukushima, Y., Okada, A., Kawasumi, M., Kurauchi, T., and Kamigaito, O. (1988). Swelling behavior of montmorillonite by poly-6-amide. Clay Mineral 23, 2734.CrossRefGoogle Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., et al. (1993). Synthesis of nylon-6-clay hybrid. Journal of Material Research 8, 11791183.CrossRefGoogle Scholar
Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., and Kamigaito, O. (1993). Swelling behavior of montmorillonite cation exchanged for ω-amino acid by ε-caprolatam. Journal of Material Research 8, 11741178.CrossRefGoogle Scholar
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., and Kamigaito, O. (1993). Synthesis of nylon-6-clay hybrid by montmorillonite intercalated with ε-caprolatam. Journal of Polymer Science Part A: Polymer Chemistry 31, 983986.CrossRefGoogle Scholar
Maneshi, A., Soares, J. B. P., and Simon, L. C.. (2011). An efficient in situ polymerization method for the production of polyethylene/clay nanocomposites: Effect of polymerization conditions on particle morphology. Macromolecular Chemistry and Physics 212(18), 2017–2028.CrossRefGoogle Scholar
Namazi, H., Mosadegh, M., and Dadkhah, A. (2009). New intercalated layer silicate nanocomposites based on synthesized starch-g-pcl prepared via solution intercalation and in situ polymerization methods: A comparative study. Carbohydrate Polymers 75(4), 665669.CrossRefGoogle Scholar
Messersmith, P. B. and Giannelis, E. P. (1994). Synthesis and characterization of layered silicate-epoxy nanocomposites. Chemistry of Materials 6, 17191725.CrossRefGoogle Scholar
Lan, T. and Pinnavaia, T. J. (1994). Clay-reinforced epoxy nanocomposites. Chemistry of Materials 6, 22162219.CrossRefGoogle Scholar
Lan, T., Kaviratna, P. D., and Pinnavaia, T. J. (1995). Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chemistry of Materials 7, 21442150.CrossRefGoogle Scholar
Lee, D. C. and Jang, L. W. (1996). Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization. Journal of Applied Polymer Science 62, 11171122.3.0.CO;2-P>CrossRefGoogle Scholar
Lee, D. C. and Jang, L. W. (1998). Characterization of epoxy-clay hybrid composite prepared by emulsion polymerization. Journal of Applied Polymer Science 68, 19972005.3.0.CO;2-P>CrossRefGoogle Scholar
Noh, M. W. and Lee, D. C. (1999). Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polymer Bulletin 42, 619626.CrossRefGoogle Scholar
Zhang, K., Wu, W., Meng, H., Guo, K., and Chen, J. F. (2009). Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology 190(3), 393400.CrossRefGoogle Scholar
Meneghetti, P. and Qutubuddin, S. (2006). Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochimica Acta 442(1), 7477.CrossRefGoogle Scholar
Frohlich, J., Thomann, R., Gryshchuk, O., Karger-Kocsis, J., and Mulhaupt, R. (2004). High-performance epoxy hybrid nanocomposites containing organophilic layered silicates and compatibilized liquid rubber. Journal of Applied Polymer Science 92, 30883096.CrossRefGoogle Scholar
Koo, J. H., Stretz, H., Bray, A., Wootan, W., Mulich, S., et al. (2002). Phenolic-Clay Nanocomposites for Rocket Propulsion System. Proceedings of the SAMPE 2002 ISSE, SAMPE, Covina, CA.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2003). Nanocomposites Rocket Ablative Materials: Processing, Characterization, and Performance. Proceedings of the SAMPE 2003 ISSE, SAMPE, Covina, CA, pp. 1156–1170.Google Scholar
Koo, J. H., Chow, W. K., Stretz, H., Cheng, A. C-K., Bray, A., and Weispfenning, J., (2003). Flammability Properties of Polymer Nanostructured Materials. Proceedings of the SAMPE 2003 ISSE, SAMPE, Covina, CA, pp. 954–964.Google Scholar
Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Subscale Ablation Test. Proceedings of the SAMPE 2004 ISSE, SAMPE, Covina, CA.Google Scholar
Koo, J. H., Pittman, C. U., Jr., Liang, K., Cho, H., Pilato, L. A., et al. (2003). Nanomodified Carbon/Carbon Composites for Intermediate Temperature: Processing and Characterization. Proceedings of the SAMPE 2003 ISTC, SAMPE, Covina, CA.Google Scholar
Koo, J. H., Pilato, L. A., Winzek, P., Shivakumar, S., Pittman, C. U., Jr., and Luo, Z. P. (2004). Thermo-Oxidative Studies of Nanomodified Carbon/Carbon Composites. Proceedings of the SAMPE 2004 ISSE, SAMPE, Covina, CA.Google Scholar
Koo, J. H., Pilato, L. A., Wissler, G., Lee, A., Abusafieh, A., and Weispfenning, J., (2005). Epoxy Nanocomposites for Carbon Fiber Reinforced Polymer Matrix Composites. Proceedings of the SAMPE 2005 ISSE, SAMPE, Covina, CA.Google Scholar
Wang, G., Chen, X. Y., Huang, R., and Zhang, L. (2002). Nano-CaCO3/polypropylene composites made with ultra-high-speed mixer. Journal of Materials Science Letters 21(13), 985986.CrossRefGoogle Scholar
Zunjarrao, S. C., Sriraman, R., and Singh, R. P. (2006). Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites. Journal of Materials Science 41(8), 22192228.CrossRefGoogle Scholar
Halder, S., Ghosh, P. K., and Goyat, M. S. (2012). Influence of ultrasonic dual mode mixing on morphology and mechanical properties of ZrO2-epoxy nanocomposite. High Performance Polymers 24(4), 331341.CrossRefGoogle Scholar
Heidarian, M. and Shishesaz, M. R. (2012). Study on effect of duration of the ultrasonication process on solvent-free polyurethane/organoclay nanocomposite coatings: Structural characteristics and barrier performance analysis. Journal of Applied Polymer Science 126, 20352048.CrossRefGoogle Scholar
Zhang, K., Lim, J. Y., Choi, H. J., Lee, J. H., and Chio, W. J. (2013). Ultrasonically prepared polystyrene/multi-walled carbon nanotube nanocomposites. Journal of Materials Science 48, 30883096.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×