Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: January 2017

11 - Electrical Properties of Polymer Nanocomposites

from Part Two - Multifunctional Properties and Applications

Related content

Powered by UNSILO
1.Lew, C. Y. and Luizi, C. M. (2013). The Influence of Processing Conditions on the Electrical Properties of Polypropylene Nanocomposites Incorporating Multiwall Carbon Nanotube. Published on November 18 at
2.Krause, B., Pötschke, P., and Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology 69, 15051515.
3.Pujari, S., Ramanathan, T., Kasimatis, K., Masuda, J. I., Andrews, R., et al. (2009). Preparation and characterization of multiwalled carbon nanotube dispersions in polypropylene: Melt mixing versus solid-state shear pulverization. Journal of Polymer Science Part B: Polymer Physic 47, 14261436.
4.Villmow, T., Pötschke, P., Pegel, S., Häussler, L., and Kretzschmar, B. (2008). Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49, 35003509.
5.Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Pionteck, J. (2009). Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites. Polymer 50, 51035111.
6.Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, C., Vathauer, M., and Warth, H. (2004). Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45, 739748.
7.Socher, R., Krause, B., Boldt, R., Hermasch, S., Wursche, R., and Pötschke, P. (2011). Melt mixed nano composites of PA12 with MWNTs: Influence of MWNT and matrix properties on macrodispersion and electrical properties. Composites Science and Technology 71, 306314.
8.Carneiro, O. S., Covas, J. A., Bernardo, C. A., Caldeira, G., Van Hattum, F. W. J., et al. (1998). Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres. Composites Science and Technology 58, 401407.
9.Tibbetts, G. G., Lake, M. L., Strong, K. L., and Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology 67, 17091718.
10.Jimenez, G. A. and Jana, S. C. (2007). Oxidized carbon nanofiber/polymer composites prepared by chaotic mixing. Carbon 45, 20792091.
11.Jimenez, G. A. and Jana, S. C. (2007). Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites Part A: Applied Science and Manufacturing 38, 983993.
12.Kalaitzidou, K., Fukushima, H., and Drzal, L. T. (2007). A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composites Science and Technology 67, 20452051.
13.Li, Y. and Shimizu, H. (2008). Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of co-continuous and nanodispersion structures. Macromolecules 41, 53395344.
14.Kilbride, B. E., Coleman, J. N., Fraysse, J., Fournet, P., Cadek, M., et al. (2002). Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics 92, 40244030.
15.Wang, W.-P., Liu, Y., Li, X.-X., and You, Y.-Z. (2006). Synthesis and characteristics of poly(methyl methacrylate)/expanded graphite nanocomposites. Journal of Applied Polymer Science 100, 14271431.
16.Goyal, R. K., Samant, S. D., Thakar, A. K., and Kadam, A. (2010). Electrical properties of polymer/expanded graphite nanocomposites with low percolation. Journal of Physics D-Applied Physics, 43 (36), 365404(7 pp.).
17.Zheng, W. and Wong, S.-C. (2003). Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology 63, 225235.
18.Pan, Y.-X., Yu, Z.-Z., Ou, Y.-C., and Hu, G.-H. (2000). A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. Journal of Polymer Science Part B: Polymer Physics 38, 16261633.
19.Via, M. D., King, J. A., Keith, J. M., and Bogucki, G. R. (2012). Electrical conductivity modeling of carbon black/polycarbonate, carbon nanotube/polycarbonate, and exfoliated graphite nanoplatelet/polycarbonate composites. Journal of Applied Polymer Science 124, 182189.
20.Zhang, S. M., Lin, H., Deng, H., Gao, X., Bilotti, E., et al. (2012). Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. eXPRESS Polymer Letters 6, 159168.
21.Sun, Y., Bao, H.-D., Guo, Z.-X., and Yu, J. (2008). Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42, 459463.
22.Puglia, D., Valentini, L., and Kenny, J. M. (2003). Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. Journal of Applied Polymer Science 88, 452458.
23.Christodoulou, L. and Venables, J. D. (2006). Multifunctional material systems: The first generation. Journal of Materials 55, 3945.
24.Battisti, A., Skordos, A. A., and Partridge, I. K. (2010). Percolation threshold of carbon nanotubes filled unsaturated polyesters. Composites Science and Technology 70, 633637.
25.Vera-Agullo, J., Glória-Pereira, A., Varela-Rizo, H., Gonzalez, J. L., and Martin-Gullon, I. (2009). Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Composites Science and Technology 69, 15211532.
26.Martin, C. A., Sandler, J. K. W., Shaffer, M. S. P., Schwarz, M. K., Bauhofer, W., et al. (2004). Formation of percolating networks in multi-wall carbon nanotube–epoxy composites. Composites Science and Technology 64, 23092316.
27.Thostenson, E. T., Ziaee, S., and Chou, T.-W. (2009). Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Science and Technology 69, 801804.
28.Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., and Windle, A. H. (2003). Ultra-low electrical percolation threshold in carbon nanotube–epoxy composites. Polymer 44, 58935899.
29.Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Kinloch, I. A., Bauhofer, W., et al. (2006). Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 20362045.
30.Moisala, A., Li, Q., Kinloch, I. A., and Windle, A. H. (2006). Thermal and electrical conductivity of single- and multi-walled carbon nanotube–epoxy composites. Composites Science and Technology 66, 12851288.
31.Gojny, F. H., Wichmann, M. H. G.,Kopke, U., Fiedler, B., &Schulte (2004), K.. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology 64, 23632371.
32.Gojny, F. H., Wichmann, M. H. G.,Kopke, U., Fiedler, B., &Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology 65, 23002313.
33.Moniruzzaman, M. and Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 51945205.
34.Lao (2013)., S. C. Multifunctional Cyanate Ester/MWNT Nanocomposites: Processing and Characterization. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, Dec.
35.Liang, K., Li, G., Toghiani, H., Koo, J. H., Pittman, C. U. Jr., andDave, C. (2006). Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: Synthesis and characterization. Chemistry of Materials 18(2), 301312.
36.Cho, H. S., Liang, K., Chatterjee, S., andPittman, C. U. Jr. (2005). Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate ester matrices. Journal of Inorganic and Organometallic Polymers and Materials 15(4), 541553.
37.Liang, K., Toghiani, H., Li, G., Pittman, C. U. Jr., and Dave, C. (2005). Synthesis, morphology, and viscoelastic properties of cyanate ester/polyhedral oligomeric silsesquioxane nanocomposites. Journal of Polymer Science, Part A: Polymer Chemistry 43(17), 38873898.
38.Fundamentals of Electrostatic Discharge, Part One – An Introduction to ESD (2010), ESD Association, Rome, NY.
39.Hu, N., Masuda, Z., and Fukunaga, H. (2009). Carbon Nanotubes: New Research, Nova Science Publishers, Inc., New York, NY, pp. 175222.
40.Ma, P.-C., Siddiqui, N. A., Marom, G., andKim, J.-K. (2010). Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A Review. Composites: Part A 41, 13451367.
41.Smrutisikha, B. (2010). Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Materials & Design 31, 24062413.
42.Ardanuy, M., Rodríguez-Perez, M. A., and Algaba, I. (2011). Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Composites Part B: Engineering 42, 675681.
43.Cipriano, B. H., Kota, A. K., Gershon, A. L., Laskowski, C. J., Kashiwagi, T., et al. (2008). Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 49, 48464851.
44.Knite, M., Teteris, V., Polyakov, B., and Erts, D. (2002). Electric and elastic properties of conductive polymeric nanocomposites on macro- and nanoscales. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 19, 1519.
45.Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., and Loos, J. (2010). Latex-based concept for the preparation of graphene-based polymer nanocomposites. Journal of Materials Chemistry 20, 30353039.
46.Chen, G.-H., Wu, D.-J., Weng, W.-G., He, B., and Yan, W.-L. (2001). Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization. Polymer International 50, 980985.
47.Zhao, Y. F., Xiao, M., Wang, S. J., Ge, X. C., and Meng, Y. Z. (2007). Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Composites Science and Technology 67, 25282534.
48.Kim, S. and Drzal, L. T. (2009). Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems. Journal of Adhesion Science and Technology 23, 16231638.
49.Kalaitzidou, K., Fukushima, H., and Drzal, L. T. (2007). Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Composites: Part A 38, 16751682.
50.Tlili, R., Boudenne, A., Cecen, V., Ibos, L., Krupa, I., and Candau, Y. (2010). Thermophysical and electrical properties of nanocomposites based on ethylene-vinylacetate copolymer (EVA) filled with expanded and unexpanded graphite. International Journal of Thermophysics 31, 936948.
51.Sumfleth, J., Adroher, X., and Schulte, K. (2009). Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. Journal of Materials Science 44, 32413247.
52.Zhang, S. M., Lin, L., Deng, H., Gao, X., Bilotti, E., et al. (2012). Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Express Polymer Letters 6, 159168.
53.Ma, P.-C., Liu, M.-Y., Zhang, H., Wang, S.-Q., Wang, R., et al. (2009). Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Applied Materials & Interfaces 1, 10901096.
54.Karttunen, M., Ruuskanen, P., Pitkanen, V., and Albers, W. M., (2008). Electrically conductive metal polymer nanocomposites for electronics applications. Journal of Electronic Materials 37, 951954.
55.Li, Y. J. and Shimizu, H. (2009). Toward a stretchable, elastic, and electrically conductive nanocomposite: Morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42, 25872593.
56.Koerner, H., Price, G., Pearce, N. A., Alexander, M., and Vaia, R. A. (2004). Remotely actuated polymer nanocomposites – stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Materials 3, 115120.
57.Koerner, H., Liu, W. D., Alexander, M., Mirau, P., Dowty, H., and Vaia, R. A. (2005). Deformation-morphology correlations in electrically conductive carbon nanotube thermoplastic polyurethane nanocomposites. Polymer 46, 44054420.
58.Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., and Someya, T. (2008). A rubberlike stretchable active matrix using elastic conductors. Science 321, 14681472.
59.Chen, G.-X., Li, Y., and Shimizu, H. (2007). Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon 45, 23342340.