Skip to main content Accessibility help
×
Home
  • Print publication year: 2016
  • Online publication date: January 2017

2 - An Overview of Nanomaterials

from Part One - Fundamentals, Processing, and Characterization
1.Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. New York: John Wiley & Sons.
2.Krishnamoorti, R. and Vaia, R. A. (Eds.) (2001). Polymer Nanocomposites: Synthesis, Characterization, and Modeling. ACS Symposium Series 804, Washington, DC: American Chemistry Society.
3.Koo, J. H. (2006). Polymer Nanocomposites: Properties, Characterization, and Applications. New York: McGraw-Hill.
4.Morgan, A. B. and Wilkie, C. A. (Eds.) (2007). Flame Retardant Polymer Nanocomposites. Hoboken, NJ: Wiley.
5.Gupta, R. A., Kennel, E., and Kim, K. J. (Eds.) (2010). Polymer Nanocomposites Handbook. Boca Raton, FL: CRC Press.
6.Mittal, V. (Ed.) (2010). Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications. Hoboken, NJ: Wiley.
7.Mittal, V. (Ed.) (2010). Optimization of Polymer Nanocomposites Properties. Weinheim, Germany: Wiley-VCH.
8.Mittal, V. (Ed.) (2011). Thermally Stable and Flame Retardant Polymer Nanocomposites. Cambridge: Cambridge University Press.
9.Beall, G. W. and Powell, C. E. (2011). Fundamentals of Polymer-Clay Nanocomposites. Cambridge: Cambridge University Press.
10.Mittal, V. (Ed.) (2012). Characterization Techniques for Polymer Nanocomposites. Weinheim, Germany: Wiley-VCH.
11.Briell, B. (2000). Nanoclay – Counting on Consistency, presented at Nanocomposite 2000, Southern Clay Products, Gonzales, TX.
12.Southern Clay Products, Gonzales, TX (www.nanoclay.com).
13.Nanocor, Chicago, IL (www.nanocor.com).
14.Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene. Nature Materials (6), 183–191.
15.Jang, B. Z. and Zhamu, A. (2000). Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review. Journal of Materials Science 43, 50925101.
16.Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science 306, 666669.
17.Novoselov, K. S., Jiang, D., Schedin, F., et al. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences USA 102(30), 1045110452.
18.Jang, B. Z. and Huang, W. C. (2006). US Patent 7,071,258 (July 4).
19.Jang, B. Z. (2006). US Patent 11/442,903 (June 20); a divisional of 10/274,473 (October 22, 2002).
20.Schwalm, W., Schwalm, M., and Jang, B. Z. (2004). Local Density of States for Nanoscale Graphene Fragments. American Physical Society, Paper No. C1.157, Montreal, Canada, March 2004.
21.McAllister, M. J., Li, J. L., Adamson, D. H., et al. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials 19(18), 43964404.
22.Li, J. L., Kudin, K. N., McAllister, M. J., et al. (2006). Oxygen-driven unzipping of graphitic materials. Physical Review Letters 96(17), 176101176104.
23.Schniepp, H. C., Li, J. L., McAllister, M. J., et al. (2006). Functionalized single graphene sheets derived from splitting graphite oxide.Journal of Physical Chemistry B 110(17), 85358539.
24.Li, X., Wang, X., Zhang, L., Lee, S., et al. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 12291232.
25.Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197200.
26.Zhang, Y., and Ando, T. (2002). Hall conductivity of a two-dimensional graphite system. Physical Review Letters B 65(24), 245420245431.
27.Zhang, Y., Tan, Y. W., Stormer, H. L., et al. (2005). Experimental observation of the quantum Hall Effect and Berry’s phase in graphene. Nature 438, 201204.
28.Zhang, Y., Small, J. P., Amori, M. E., et al. (2005). Electric field modulation of Galvanomagnetic properties of mesoscopic graphite. Physical Review Letters 94(17), 176803(4pp). doi:10.1103/PhysRevLett.94.176803.
29.Berger, C., Song, Z., Li, T., et al. (2004). Ultrathin epitaxial graphite: 2D Electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B 108(52), 1991219916. doi: 10.1021/jp040650f.
30.Enoki, T. and Kobayashi, Y. (2005). Magnetic nanographite: an approach to molecular magnetism. Journal of Materials Chemistry 15, 39994002. doi: 10.1039/b500274p.
31.Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., et al. (2007). Bipolar supercurrent in graphene. Nature Letter 446, 5659. doi: 10.1038/nature05555.
32.Soon, Y. W., Cohen, M. L., and Louie, S. G. (2006). Half-metallic graphene nanoribbons. Nature Letter 444, 347349. doi: 10.1038/nature05180.
33.Meyer, J. C., Geim, A. K., Katsnelson, M. I., et al. (2007). The structure of suspended graphene sheets. Nature Letter 446, 6063. doi: 10.1038/nature 05545.
34.Bunnell, L. R., Sr. (1991). US Patent 987(4):175.
35.Bunnell, L. R., Sr. (1991). US Patent 019(5):446.
36.Bunnell, L. R., Sr. (1993). US Patent 186(5):919.
37.Zaleski, P. L., Derwin, D. J., Girkant, R. J., et al. (2001). US Patent 287(6):694.
38.Horiuchi, S., Gotou, T., Fujiwara, M., et al. (2004). Single graphene sheet detected in a carbon nanofilm. Applied Physics Letter 84, 24032405.
39.Horiuchi, S., Gotou, T., Fujiwara, M., et al. (2003). Carbon nanofilm with a new structure and property. Japan Journal of Applied Physics 42(Part 2), L1073L1076. doi:10.1143/JJAP.42.L1073.
40.Hirata, M. and Horiuchi, S. (2003). US Patent 596(6):396.
41.Hirata, M., Gotou, T., and Ohba, M. (2005). Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43, 503510. doi: 10.1016/j.carbon.2004.10.009.
42.Hirata, M., Gotou, T., Horiuchi, S., et al. (2004). Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles.Carbon 42, 29292937. doi: 10.1016/j.carbon.2004.07.003.
43.Udy, J. D. (2006). US Patent Application No. 11/243,285 (October 4); Pub. No. 2006/0269740 (November 30).
44.Chen, G. H., Weng, W., Wu, C., et al. (2004). Preparation and characterization of graphite nanosheets from ultrasonic powder technique. Carbon 42, 753759. doi:10.1016/j.carbon.2003. 12.074.
45.Jang, B. Z., Wong, S. C., and Bai, Y. (2005). US Patent Appl. No. 10/858,814 (June 3, 2004); Pub. No. US 2005/0271574 (December 8).
46.Petrik, V. I. (2006). US Patent Appl. No. 11/007,614 (December 7, 2004); Pub. No. US 2006/0121279 (June 8).
47.Drzal, L. T. and Fukushima, H. (2006). US Patent Appl. No. 11/363,336 (February 27); 11/361,255 (February 24); 10/659,577 (September 10, 2003).
48.Mack, J. J., Viculis, L. M., Kaner, R. B., et al. (2005). US Patent 872(6):330.
49.Viculis, L. M., Mack, J. J., O. M. Mayer, et al. (2005). Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Material Chemistry 15, 974978. doi: 10.1039/B413029D.
50.Lu, W., Soukiassian, P., and Boecki, J. (2012). Graphene: Fundamentals and functionalialities. MRS Bulletin (December), 37.
51.Muhopadhyay, P. and Gupta, R. K. (Eds.) (2013). Graphite, Graphene and Their Polymer Nanocomposites. Boca Raton, FL: CRC Press.
52.Jang, B. Z., Zhamu, A., and Song, L. (2006). US Patent Application No. 11/324,370 (January 4).
53.Song, L., Guo, J., Zhamu, A., et al. (2006). US Patent Application No. 11/328,880 (January 11).
54.Sullivan, M. J. and Ladd, D. A. (2006). US Patent 7,156,756 (January 2, 2007) and No. 7,025,696 (April 11).
55.Jang, B. Z. (2007). US Patent 186(7):474.
56.Szabo, T., Szeri, A., and Dekany, I. (2005). Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43, 8794. doi: 10.1016/j.carbon.2004.08.025.
57.Wang, X., Zhi, L., and Mullen, K. (2008). Transparent, conductive graphene electrodes for dyesensitized solar cells. Nano Letters 8(1), 323327. doi: 10.1021/nl072838r.
58.Koo, J. H., Pinero, D., Hao, A., Lao, S. C., Johnson, B., et al. (2013). Methodology for assessment of the morphological and thermal characteristics of nanographene platelets, AIAA-2013-1584. Presented at the 54th AIAA/ASME/ASCE/AHS/ASC, SDM, Boston, MA, April 8–11.
59.Ávila, A. F. of Universidade Federal de Minas Gerais, Department of Mechanical Engineering, Belo Horizonte, Brazil ().
60.Ávila, A. F. (2009). Composite Laminates Performance Enhancement by Nanoparticles Dispersion: An Investigation on Hybrid Nanocomposite. In Composites Performance and Trends, Columbus, F. (Ed.). Hauppauge, NY: Nova Science Publishers.
61.Miller, S. G. (2008). Effects of Nanoparticle and Matrix Interface on Nanocomposite Properties. Ph.D. dissertation, University of Akron, Akron, OH.
62.Schmidt, H. K. of Rice University, Chemical and Biomolecular Engineering Dept., Houston, TX ().
63.XG Sciences, Inc. at East Lansing, MI (www.xgsciences.com).
64.Angstron Materials, LLC at Dayton, OH (www.angstronmaterials.com).
65.Skyspring Nanomaterials, Inc., Houston, TX (www.ssnano.com).
66.Cheap Tubes, Inc., Brattleboron, VT (www.cheaptubesinc.com).
67.R. Ruoff of Dept. of Mechanical Engineering, The University of Texas at Austin (). Abundant technical information can be found in Professor Ruoff’s website: www.bucky-central.me.utexas.edu. Professor Ruoff has moved to Ulsan National Institute of Science and Technology (UNIST), Ulsan, S. Korea.
68.Nacional de Grafite, Sao Paulo, Brazil (www.grafite.com).
69.Qiu, L. and Qu, B. (2011). Polymer/Layered Double Hydroxide Flame Retardant Nanocomposites. In Thermally Stable and Flame Retardant Polymer Nanocomposites, Mittal, V. (Ed.). Cambridge: Cambridge University Press, pp. 332359.
70.Matusinovic, Z., and Wilkie, C. A. (2012). Fire retardancy and morphology of layered double hydroxide nanocomposites: A review. Journal of Material Chemistry 22, 1870118704.
71.Choudary, B. M., Bharathi, B., Reddy, C. V., Kantam, M. L., and Raghavan, K. V. (2001). The first example of catalytic n-oxidation of tertiary amines by tungstate-exchanged mg-al layered double hydroxide in water: a green protocol. Chemical Communications 18, 17361737.
72.Choy, J. H., Kwak, S. Y., Jeong, Y. J., and Park, J. S. (2000). Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie International Edition 39, 40424045.
73.Desigaux, L., Ben Belkacem, M., Richard, P., Cellier, J., Leone, P., et al. (2006). Self-assembly and characterization of layered double hydroxide/DNA hybrids. Nano Letters 6, 199204.
74.Lakraimi, M., Legrouri, A., Barroug, A., de Roy, A., and Besse, J. P. (1999). Removal of pesticides from water by anionic clays. Journal de Chimie Physique et de Physico-Chimie 96, 470478.
75.Yan, D., Lu, J., Wei, M., Ma, J., Evans, D. G., and Duan, X. (2009). A combined study based on experiment and molecular dynamics: Perylene tetracarboxylate intercalated in a layered double hydroxide matrix. Physical Chemistry Chemical Physics 11, 920929.
76.Tian, Y., Wang, G., Li, F., and Evans, D. G. (2007). Synthesis and thermo-optical stability of methyl red-intercalated Ni-Fe layered double hydroxide material. Materials Letters 61, 16621666.
77.Lukashin, A. V., Vertegel, A. A., Eliseev, A. A., Nikiforov, M. P., Gornert, P., and Tretyakov, Y. D. (2003). Chemical design of magnetic nanocomposites based on layered double hydroxides. Journal of Nanoparticle Research 5, 455464.
78.Mohan, D. and Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents: A critical review. Journal of Hazardous Materials 142, 153.
79.Tibbetts, G. G. (1984). Why are carbon filaments tubular? Journal of Crystal Growth 66, 632638.
80.Lake, M. L. and Ting, J.-M., (1999). Vapor Grown Carbon Fiber Composites. In Carbon Materials for Advanced Technologies, Burchell, T. D. (Ed.). Oxford: Pergamon, pp. 139-167.
81.Tibbetts, G. G., Finegan, J. C., McHugh, J. J., Ting, J.-M., Glasgow, D. G., and Lake, M. L. (2000). Applications Research on Vapor-Grown Carbon Fibers. In Science and Application of Nanotubes, Tomanek, E. and Enbody, R. J. (Eds.). New York: Kluwer Academic/Plenum Publishers, pp. 35-51.
82.Maruyama, B. and Alam, K. (2002). Carbon nanotubes and nanofibers in composite materials. SAMPE Journal 38(3), 5970.
83.Glasgow, D. G., Tibbetts, G. G., Matuszewski, M. J., Walters, K. R., and Lake, M. L. (2004). Surface Treatment of Carbon Nanofibers for Improved Composite Mechanical Properties. Proc. SAMPE 2004 Int’l Symposium, SAMPE, Covina, CA.
84.Tibbetts, G. G., Lake, M. L., Strong, K. L., and Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Computer Science and Technology 67(7–8), 17091718.
85.Terrones, M. (2003). Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Annual Review of Materials Research 33, 419501. doi: 10.1146/annurev.matsci.33.012802.100255.
86.Harris, P. J. F. (1999). Carbon Nanotubes and Related Structures, New Materials for the Twenty-First Century. Cambridge: Cambridge University Press.
87.Tanaka, K., Yamabe, T., and Fukui, K. (1999). The Science and Technology of Carbon Nanotubes. Amsterdam: Elsevier.
88.Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1998). Physical Properties of Carbon Nanotubes. London: Imperial College Press.
89.Dai, L. (Ed.) (2006). Carbon Nanotechnology. Amsterdam: Elsevier.
90.Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (1996). Science of Fullerenes and Carbon Nanotubes. San Diego, CA: Academic Press.
91.Ebbesen, T. W. (1994). Carbon Nanotubes. Annual Review of Materials Science 24, 235264. doi: 10.1146/annurev.ms.24.080194.001315.
92.Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E. (1995). Catalytic growth of single-walled nanotubes by laser vaporization. Journal Physics Letters 243, 4954. doi: 10.1016/0009-2614(95)00825-O.
93.Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W. (1993). The production and structure of pyrolytic carbon nanotubes. Journal Physics and Chemistry of Solids 54, 18411848.
94.Groning, O., Kuttel, O. M., Emmenegger, C., Groning, P., and Schlapbach, L. (1999). Field Emission Properties of Carbon Nanotubes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures B18, 665678. doi: 10.1116/1.591258.
95.Hsu, W. K., Hare, J. P., Terrones, M., Kroto, H. W., Walton, D. R. M., and Harris, P. J. F. (1995). Condensed-phase nanotubes. Nature 377, 687.
96.Hsu, W. K., Terrones, M., Hare, J. P., Terrones, H., Kroto, H. W., and Walton, D. R. W. (1996). Electrolytic formation of carbon nanostructures. Chemical Physics Letters 262, 161166.
97.Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 5658. doi: 10.1038/354056a0.
98.Iijima, S. and Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603605. doi: 10.1038/363603a0.
99.Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., et al. (1993). The discovery of single-wall carbon nanotubes at IBM. Nature 363, 605607.
100.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., et al. (1996). Crystalline ropes of metallic carbon nanotubes. Science 273, 483487. doi: 10.1126/science.273.5274.483.
101.Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 12121214. doi: 10.1126/science.265.5176.1212.
102.Kim, P., Shi, L., Majumdar, A., and McEuen, P. L. (2001). Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87(21), 215502(4pp).
103.Cao, G. (2004). Nanostructures & Nanomaterials: Synthesis, Properties & Applications. London: Imperial College Press.
104.Smith, K. (2005). Carbon Nanotechnologies, Inc., Houston, TX, personal communication, June.
105.Nanocyl, Sambreville, Belgium, Nanocyl™ SWNT, DWNT, MWNT (www.nanocly.com).
106.Bayer MaterialScience, Leverkusen, Germany, Baytubes® MWNT (www.baytubes.com).
107.Arkema, Lacq, France, Graphistrength® MWNT (www.graphistength.com).
108.Du, M., Guo, B., and Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International 59, 574582. doi:10.1002/pi.275.
109.Liu, M, Jia, Z., Jia, D, and Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science 39(8), 1498-1525. doi: 10.1016/j.progpolymsci.2014.04.004.
110.Yuan, P., Tan, D., and Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science 112113, 7593. doi: 10.1016/j.clay.2015.05.001.
111.Zhang, Y., Tang, A., Yang, H., and Quyang, J. (2016). Applications and interfaces of halloysite nanocomposites. Applied Clay Science 119, 817. doi: 10.1016/j.clay.2015.06.034.
112.Berthier, P. (1826). Analyse de l’halloysite. Annales de Chimie et de Physique 32, 332325.
113.Prudencio, M. I., Braga, M. A. S., Paquet, H., Waerenborgh, J. C., Pereira, L. C. J., and Gouveia, M. A. (2002). Clay mineral as severages in weathered basalt profiles from central and southern Portugal: Climate. Catena 49(1), 7789. doi: 10.1016/S0341-8162(02)00018-8.
114.Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., and Delvaux, B. (2005). Halloysite clay minerals-a review. Clay Minerals 40, 383-426.
115.Nakagaki, S. and Wypych, F. (2007). Nanofibrous and nanotubular supports for the immobilization of metalloporphyrins as oxidation catalysts. Journal of Colloid and Interface Science 315(1), 142157.
116.Wilson, I. R. (2004). Kaolin and halloysite deposits of China. Clay Minerals 39(1), 115.
117.Perruchot, A., Dupuis, C., Brouard, E., Nicaise, D., and Ertus, R. (1997). L’halloysite Kartstique: Comparaison des Gisements Types de Wallonie (Belgique) et du Perigord (France). Clay Minerals 32(2), 271287. doi: 10.1180/claymin.1997.032.2.08.
118.Kloprogge, J. T. and Frost, R. L. (1999). Raman microprobe spectroscopy of hydrated halloysite from Neogene Cryptokarst from Southern Belgium. Journal of Raman Spectroscopy 30, 10791085.
119.Churchman, G. J. and Theng, B. K. G. (2002). Clay research in Australia and New Zealand. Applied Clay Science 20(4-5), 153156.
120.Kautz, C. Q. and Ryan, P. C. (2003). The 10 Å and 7 Å halloysite transition in a tropical soil sequence, Costa Rica. Clays and Clay Minerals 51(3), 252263. doi: 10.1346/CCMN.2003.0510302.
121.Hillier, S. and Ryan, P. C. (2002). Identification of halloysite (7 Å) by ethylene glycol solvation: the ‘MacEwan effect.’ Clay Minerals 37, 487496. doi: 10.1180/0009855023730047.
122.Du, M. L., Guo, B. C., Cai, X. J., Jia, Z. X., Liu, M. X., and Jia, D. M. (2008). Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites. e-Polymers 130, 114.
123.Ye, Y. P., Chen, H. B., Wu, J. S., and Ye, L. (2007). High strength epoxy nanocomposites with natural nanotubes. Polymer 48, 64266433.
124.Liu, M. X., Guo, B. C., Du, M. L., Cai, X. J., and Jia, D. M. (2007). Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18, 455703 (9pp).
125.Imai, T., Naitoh, Y., Yamamoto, T., and Ohyanagi, M. (2006). Translucent nano mullite based ceramic fabricated by spark plasma. Journal of the Ceramic Society of Japan 114, 138140.
126.Am Ceram Soc Bull (2007): 86, pp. A19.
127.Du, M. L., Guo, B. C., Liu, M. X., and Jia, D. M. (2006). Preparation and characterization of polypropylene grafted halloysite and their compatibility effect of polypropylene/halloysite. Polymer Journal. 38, 11981204. doi: 10.1295/polyj.PJ2006038.
128.Ma, J., Xiang, P., Mai, Y. W., and Zhang, L. Q. (2004). A novel approach to high performance elastomer by using clay. Macromolecular Rapid Communication 25, 16921696.
129.Guo, B. C., Lei, Y. D., Chen, F., Liu, X. L., Du, M. L., and Jia, D. M. (2008). Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid. Applied Surface Science: 255, 2715-2722. doi: 10.1016/j.apsusc.2008.07.188.
130.Du, M. L., Guo, B. C., Lei, Y. D., Liu, M. X., and Jia, D. M. (2008). Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22), 48714876.
131.Guo, B. C., Chen, F., Lei, Y. D., Zhou, W. Y., and Jia, D. M. (2010). Tubular clay composites with high strength and transparency. Journal of Macromolecular Science B: Physics 49, 111121.
132.Liu, M. X., Guo, B. C., Du, M. L., Lei, Y. D., and Jia, D. M. (2008). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research 15, 205212.
133.Du, M. L., Guo, B. C., and Jia, D. M. (2006). Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal 42, 13621369. doi: 10.1016/j.eurpolymj.2005.12.006.
134.Labour, T., Gauthier, C., Seguela, R., Vigier, G., Bomal, Y., and Orange, G. (2001). Influence of the β crystalline phase of the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterization. Polymer 42, 71277135.
135.Tordjeman, P., Robert, C., Marin, G., and Gerard, P. (2001). The effect of α, β crystalline structure on the mechanical properties of polypropylene. European Physics Journal E 4, 459465.
136.Ning, N. Y., Yin, Q. J., Luo, F., Zhang, Q., Du, R., and Fu, Q. (2007). Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48, 73747384. doi: 10.1016/j.polymer.2007.10.005.
137.Du, M. L., Guo, B. C., Wan, J. J., Zou, Q. L., and Jia, D. M. (2010). Effects of halloysite nanotubes on kinetics and activation energy of non-isotherm crystallization of polypropylene. Journal of Polymer Research 17, 109118.
138.Nanostrand User Guide, Conductive Composites, Heber City, Utah (www.conductivecomposites.com).
139.Conductive Composites, Huber City, Utah, (www.conductivecomposites.com).
140.ANF Technology Ltd, Warlingham, Surrey, United Kingdom (www.nafen.eu).
141.Hybrid Plastics, Inc., Hattiesburg, Mississippi (www.hybridplastics.com).
142.Voronkov, M. G. and Vavrent’yev, V. I. (1982). Polyhedral oligosilsesquioxanes and their homo derivatives. Topics in Current Chemistry 102, 199236.
143.Agaskar, P. A., Klemperer, W. G. (1995). The higher hydridospherosiloxanes: synthesis and structures of HnSinO1.5n (n=12, 14, 16, 18). Inorganica Chimica Acta 229, 355364.
144.Baney, R. H., Itoh, M., Sakakibara, A., and Suzuki, T. (1995). Silsesquiosanes. Chemical Reviews 95(5), 14091430.
145.Lichtenhan, J. D. (1995). Polyhedral oligomeric silsesquioxanes: Building blocks for silsesquioxane-based polymers and hybrid materials. Comments on Inorganic Chemistry 17(2), 115130. doi: 10.1080/02603599508035785.
146.Lichtenhan, J. D., (1996). In Polymeric Materials Encyclopaedia, Salamore, J. C. (Ed.). Boca Raton, FL: CRC Press, pp. 77697778.
147.Li, G. Z., Wang, L. C., Ni, H. L., and Pittman, C. U. Jr.(2001). Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymers 11(3), 123154. doi: 10.1023/A: 1015287910502
148.Phillips, S. H., Haddad, T. S., and Tomczak, S. J. (2004). Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Current Opinion in Solid State & Materials Science 8, 2129. doi: 10.1016/j.cossms.2004.03.002.
149.Sorathia, U., and Perez, I. (2004). Improving fire performance characteristics of composite materials for naval applications. Polymeric Materials: Science & Engineering 91, 292296.
150.Hartman-Thompson, C. (Ed.) (2011). Applications of Polyhedral Oligomeric Silsesquioxanes. New York: Springer.
151.Technical Bulletin AEROSIL® No. 27, Degussa AG, D-63403 Hanau-Wolfgang, Germany, October 2001.
152.Technical Bulletin AEROSIL® No. 56, Degussa AG, D-63403 Hanau-Wolfgang, Germany, October 1990.
153.Technical Bulletin AEROSIL® Fumed Silica, Degussa AG, D-63403 Hanau-Wolfgang, Germany, September 2002.
154.Sprenger, S. and Pyrlik, M. (2004). Nanoparticles in Composites and Adhesives: Synergy with Elastomers. Proceedings of the 11th International Conference on Composites/Nano Engineering, Hilton Head Island, SC, August.
155.Yang, F., Yngard, R., and Nelson, G. L. (2005). Flammability of polymer-clay and polymer-silica nanocomposites. Journal of Fire Sciences 23, 209226.
156.U.S. Patent Application, 20040147029 (July 29, 2004).
157.Cinquin, J., Bechtel, S., Schmidtke, K., and Meer, T. (2004). Polymer Nano-Composites of Aeronautic Applications: From Dream to Reality? Proceedings of the 11th International Conference on Composites/Nano Engineering, Hilton Head Island, SC, August.
158.Pool, A. D. and Hahn, H. T. (2003). A Nanocomposite for Improved Stereolithography. Proceedings of the 2003 SAMPE ISSE, SAMPE, Covina, CA.
159.Inorganic Specialty Chemicals-Alumina Nano-particles, Sasol NA, Houston, TX.
160.Disperal®/Dispal®-High purity dispersible alumina. Technical datasheet, Sasol NA, Germany.
161.Huang, H., Tian, M., Liu, L., Liang, W., and Zhang, L. (2006). Effect of particle size of flame retardancy of Mg (OH)2-filled ethylene vinyl acetate copolymer composites. Journal of Applied Polymer Science 100, 44614469.
162.Chen, T. and Isarov, A. (2007). New Magnesium Hydroxides Enabling Low-Smoke Cable Compounds. 56th IWCS Conference, Pittsburg, PA, November.
163.Yong, V. and Hahn, H. T. (2004). Kevlar/Vinyl Ester Composites with SiC Nanoparticles. Proceedings of the 2004 SAMPE ISSE, SAMPE, Covina, CA.
164.Sakka, Y., Bidinger, D. D., and Aksay, I. A. (1995). Processing of silicon carbide-mullite-alumina nanocomposites. Journal of the American Ceramics Society 78(21), 479486.
165.Padhi, P. and Sachikanta, K. (2011). A Novel Route for Development of Bulk Al/SiC Metal Matrix Nano Composites. Department of Mechanical Engineering, Konark Institute of Science & Technology, Bhubaneswar, India & Central Tool Room of Training Center, Bhubaneswar, India.
166.Kassiba, A. et al. (2007). Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites. Journal of Physics: Conference Series Volume 79, doi:10.1088/1742–6596/79/1/012002.
167.Oldenburg, S. J. (2005). Silver Nanoparticles: Properties and Applications. San Diego, CA: nanoComposix.
168.Wang, Z. L. (2004). Zinc oxide nanostructures: Growth, properties and applications. Journal of Physics: Condensed Matter 16, R829R858.
169.Fan, Z. and Lu, J. G. (2005). Zinc oxide nanostructures: Synthesis and properties. Journal of Nanoscience and Nanotechnology 5(10), 113.
170.Ricker, A., Liu-Snyder, P., and Webster, T. J. (2008). The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. International Journal of Nanomedicine 3(1), 125132.
171.Aninwene, G., Stout, D., Yang, Z., and Webster, T. J. (2013). Nano-BaSO4: a novel antimicrobial additive to pellethane. International Journal of Nanomedicine 8, 11971205.
172.Aninwene, G., Stout, D. A., Yang, Z., and Webster, T. J. (2013). Nano BaSO4: A Novel Means to Create Antimicrobial Radiopaque Thermoplastics. Proceedings of the 2013 AlChE Annual Meeting, November 3–8, San Francisco, CA.
173.Chanmal, C. V. and Jog, J. P. (2008). Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polymer Letters 2(3), 294301.
174.Beltran, H., Maso, N., Cordoncillo, E., and West, A. R. (2007). Nanocomposite ceramics based on La-doped BaTi2O3 and BaTiO3 with high temperature-independent permittivity and low dielectric loss. Journal of Electroceramics 18(3–4), 277282.
175.Singh, K. C. and Jiten, C. (2013). Production of BaTiO2, nanocrystalline powders by high energy milling and piezoelectric properties of corresponding ceramics. Key Engineering Materials 547, 133138.
176.Chatterjee, A. and Mishra, S. (2013). Rheological, thermal, and mechanical properties of nano-calcium carbonate (CaCO3)/Poly(methyl methacrylate) (PMMC) core-shell nanoparticles reinforced polypropylene (PP) composites. Macromolecular Research 21(5), 474483.
177.Shelesh-Nezhad, K., Orang, H., and Motallebi, M. (2012). The Effects of Adding Nano-Calcium Carbonate Particles on the Mechanical and Shrinkage Characteristics and Molding Process Consistency of PP/nano-CaCO3 Nanocomposites. In Polypropylene, F. Dogan (Ed.), pp. 357–368, ISBN: 978-953-51-0636-4, InTech (www.intechopen.com). doi: 10.5772/35272. Available from: http://www.intechopen.com/books/polypropylene/the-effects-of-adding-nano-calcium-carbonate-particles-on-the-mechanical-and-shrinkage-character.
178.Sato, T. and Beaudoin, J. J. (2011). Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Advances in Cement Research 23(1), 3343.
179.Hu, C., Mou, Z., Lu, G., Chen, N., Dong, Z., et al. (2013). 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Physical Chemistry Chemical Physics 15, 1303813043.
180.Gu, H., Huang, Y., Zhang, X., Wang, Q., Zhu, J., et al. (2012). Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectric properties. Polymer 53, 801809.
181.Kalantari, K., Ahmad, M. B., Shemeli, K., and Khandanlou, R. K. (2013). Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method. International Journal of Nanomedicine 8, 18171823.
182.Mahapatra, A., Mishra, B. G., and Hota, G. (2013). Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient absorbent for removal of heavy metal ions from aqueous solution. Journal of Hazard Materials 258–259, 116123.
183.Ortega, D., Garitaonandia, J. S., Barrera-Solano, C., Ramirez-del-Solar, M., Blanco, E., and Dominguez, M. (2006). γ-Fe2O3/SiO2 nanocomposites for magneto-optical applications: Nanostructural and magnetic properties. Journal of Non-Crystalline Solids 352, 28012810.
184.Menon, L., Patibandla, S., Bhargava Ram, K., Shkuratov, S. I., Aurongzeb, D., et al. (2004). Ignition studies of Al/Fe2O3 energetic nanocomposites. Applied Physics Letters 84(23), 47354737.
185.Kidalov, S. V., Shakhov, F. M., and Vul, A. Y. (2007). Thermal conductivity of nanocomposites based on diamonds and nanodiamonds. Diamond and Related Materials 16(12), 20632066.
186.Mochalin, V. N., Shenderova, O., Ho, D., and Gogotsi, Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology 7, 1123. doi: 10.1038/nnao.2011.209.
187.Neitzel, I. (2012). Nanodiamond-Polymer Composites, Ph.D. dissertation, Drexel University, Dept. of Materials Engineering, Philadelphia, PA.
188.Pugh-Thomas, D., Walsh, B. M., and Gupta, M. C. (2011). CdSe (ZnS) nanocomposite luminescent high temperature sensor. Nanotechnology 22(18), 185503 (7pp). doi:10.1088/0957-4484/22/18/185503.
189.Pan, S. and Liu, Z. (2012). ZnS-Graphene nanocomposites: Synthesis, characterization and optical properties. Journal of Solid Chemistry 191, 5156.
190.Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., and Manuspiya, H. (2012). Hybrid organic-inorganic of ZnS embedded PVP nanocomposite film for photoluminescent application. Computes Rendus Physique 13(9–10), 9941000.
191.Patil, B. N. and Acharya, S. A. (2013). Preparation of ZnS-graphene nanocomposites and its photocatalytic behavior for dye degradation. Advanced Materials Letters (May 12). doi: 10.5185/amlett.2013.fdm.16.