Skip to main content Accessibility help
×
Home
Fundamentals of Nonparametric Bayesian Inference
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 23
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.

Reviews

'Probabilistic inference of massive and complex data has received much attention in statistics and machine learning, and Bayesian nonparametrics is one of the core tools. Fundamentals of Nonparametric Bayesian Inference is the first book to comprehensively cover models, methods, and theories of Bayesian nonparametrics. Readers can learn basic ideas and intuitions as well as rigorous treatments of underlying theories and computations from this wonderful book.'

Yongdai Kim - Seoul National University

'Bayesian nonparametrics has seen amazing theoretical, methodological, and computational developments in recent years. This timely book gives an authoritative account of the current state of the art by two leading scholars in the field. They masterfully cover all major aspects of the discipline, with an emphasis on asymptotics, and achieve the rare feat of being simultaneously broad and deep, while preserving the utmost mathematical rigor. This book is, without doubt, a must-read for Ph.D. students and researchers in statistics and probability.'

Igor Prünster - Università Commerciale Luigi Bocconi, Milan

'Worth waiting for, this book gives a both global and precise overview on the fundamentals of Bayesian nonparametrics. It will be extremely valuable as a textbook for Masters and Ph.D. students, along with more experienced researchers, as the authors have managed to gather, link together, and present with great clarity a large part of the major advances in Bayesian nonparametric modeling and theory.'

Judith Rousseau - Université Paris-Dauphine

'This book can serve as a textbook for a graduate course on Bayesian nonparametrics. It can also be used as a reference book for researchers in both statistics and machine learning, as well as application areas such as econometrics and biostatistics.'

Yuehua Wu Source: MathSciNet

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
Albert, J., and S., Chib (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88(422), 669–679.
Aldous, D. (1985). Exchangeability and related topics. In École d'été de probabilités de Saint-Flour, XIII— 1983, Volume 1117 of Lecture Notes in Math., pp. 1–198. Berlin: Springer.
Amewou-Atisso,, M., S., Ghosal, J., Ghosh, and R., Ramamoorthi (2003). Posterior consistency for semiparametric regression problems. Bernoulli 9(2), 291–312.
Andersen, P., O., Borgan, R., Gill, and N., Keiding (1993). Statistical Models Based on Counting Processes. Springer Series in Statistics. New York: Springer-Verlag.
Antoniak, C. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2, 1174–.
Arratia, R., L., Goldstein, and L., Gordon (1990). Poisson approximation and the Chen–Stein method. Statist. Sci. 5(4), 403–434. With comments and a rejoinder by the authors.
Barrios, E., A., Lijoi, L., Nieto-Barajas, and I., Pruenster (2013). Modeling with normalized random measure mixture models. Stat. Sci. 277, 334–.
Barron, A. (1986). Discussion of “on the consistency of Bayes estimates” by P. Diaconis and D. Freedman. Ann. Statist. 14(1), 26–30.
Barron, A. (1999). Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems. In Bayesian Statistics, 6 (Alcoceber, 1998), pp. 27–52. New York: Oxford Univ. Press.
Barron, A., M., Schervish, and L., Wasserman (1999). The consistency of posterior distributions in nonparametric problems. Ann. Statist. 27(2), 536–561.
Bauer, H. (2001). Measure and Integration Theory, Volume 26 of de Gruyter Studies in Mathematics. Berlin: Walter de Gruyter & Co. Translated from the German by Robert B., Burckel.
Beal, M., and Z., Ghahramani (2003). The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. In Bayesian Statistics, 7 (Tenerife, 2002), pp. 453– 463. New York: Oxford Univ. Press.
Begun, J., W., Hall W.-M., Huang, and J., Wellner (1983). Information and asymptotic efficiency in parametric–nonparametric models. Ann. Statist. 11(2), 432–452.
Belitser, E., and S., Ghosal (2003). Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution. Ann. Statist. 31(2), 536–559. Dedicated to the memory of Herbert E. Robbins.
Bennett, B. (1962). On multivariate sign tests. J. Roy. Statist. Soc. Ser. B 24, 161–.
Berger, J., and A., Guglielmi (2001). Bayesian and conditional frequentist testing of a parametric model versus nonparametric alternatives. J. Amer. Statist. Assoc. 96(453), 174–184.
Bernardo, J., and A., Smith (1994). Bayesian Theory. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Chichester: John Wiley & Sons Ltd.
Bertoin, J. (1996). Lévy Processes, Volume 121 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press.
Bhattacharya, A., and D., Dunson (2010). Nonparametric Bayesian density estimation on manifolds with applications to planar shapes. Biometrika 97(4), 851–865.
Bickel, P., C., Klaassen Y., Ritov and J., Wellner (1998). Efficient and Adaptive Estimation for Semiparametric Models. New York: Springer-Verlag. Reprint of the 1993 original.
Bickel, P., and B., Kleijn (2012). The semiparametric Bernstein–von Mises theorem. Ann. Statist. 40(1), 206–237.
Bickel, P., and M., Rosenblatt (1973). On some global measures of the deviations of density function estimates. Ann. Statist. 1, 1095–.
Billingsley, P. (1968). Convergence of Probability Measures. New York: John Wiley & Sons Inc.
Billingsley, P. (1979). Probability and Measure. New York–Chichester–Brisbane: John Wiley & Sons. Wiley Series in Probability and Mathematical Statistics.
Birgé, L. (1979). Sur les tests de deux ensembles convexes compacts de probabilités. C. R. Acad. Sci. Paris Sér. A-B 289(3), A237–A240.
Birgé, L. (1983a). Approximation dans les espaces métriques et théorie de l'estimation. Z. Wahrsch. Verw. Gebiete 65(2), 181–237.
Birgé, L. (1983b). Robust testing for independent nonidentically distributed variables and Markov chains. In Specifying Statistical Models (Louvain-la-Neuve, 1981), Volume 16 of Lecture Notes in Statist., pp. 134–162. New York: Springer.
Blackwell, D. (1973). Discreteness of Ferguson selections. Ann. Statist. 1, 358–.
Blackwell, D., and L., Dubins (1962). Merging of opinions with increasing information. Ann. Math. Statist. 33, 886–.
Blackwell, D., and J., MacQueen (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1, 355–.
Blei, D., and M., Jordan (2006). Variational inference for Dirichlet process mixtures. Bayesian Anal. 1(1), 121–143 (electronic).
Borell, C. (1975). The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30(2), 207–216.
Breiman, L., L. Le, Cam, and L., Schwartz (1964). Consistent estimates and zero-one sets. Ann. Math. Statist. 35, 161–.
Brown, L., and M., Low (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24(6), 2384–2398.
Brunner, L. (1992). Bayesian nonparametric methods for data from a unimodal density. Statist. Probab. Lett. 14(3), 195–199.
Brunner, L., and A., Lo (1989). Bayes methods for a symmetric unimodal density and its mode. Ann. Statist. 17(4), 1550–1566.
Carter, C., and R., Kohn (1997). Semiparametric Bayesian inference for time series with mixed spectra. J. Roy. Statist. Soc. Ser. B 59(1), 255–268.
Castillo, I. (2008). Lower bounds for posterior rates with Gaussian process priors. Electron. J. Stat. 2, 1299–.
Castillo, I. (2012a). Semiparametric Bernstein–von Mises theorem and bias, illustrated with Gaussian process priors. Sankhya A 74(2), 194–221.
Castillo, I. (2012b). A semiparametric Bernstein–von Mises theorem for Gaussian process priors. Probab. Theory Related Fields 152(1–2), 53–99.
Castillo, I. (2014). On Bayesian supremum norm contraction rates. Ann. Statist. 42(5), 2058–2091.
Castillo, I., and R., Nickl (2013). Nonparametric Bernstein–von Mises theorems in Gaussian white noise. Ann. Statist. 41(4), 1999–2028.
Castillo, I., and R., Nickl (2014). On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures. Ann. Statist. 42(5), 1941–1969.
Castillo, I., and J., Rousseau (2015). A general Bernstein–von Mises theorem in semiparametric models. Ann. Statist. 43(6), 2353–2383.
Catoni, O. (2004). Statistical Learning Theory and Stochastic Optimization, Volume 1851 of Lecture Notes in Mathematics. Berlin: Springer-Verlag. Lecture notes from the 31st Summer School on Probability Theory held in Saint-Flour, July 8–25, 2001.
Cerquetti, A. (2007). A note on Bayesian nonparametric priors derived from exponentially tilted Poisson– Kingman models. Statist. Probab. Lett. 77(18), 1705–1711.
Cerquetti, A. (2008). On a Gibbs characterization of normalized generalized gamma processes. Statist. Probab. Lett. 78(18), 3123–3128.
Chen, L. (1975). Poisson approximation for dependent trials. Ann. Probab. 3(3), 534–545.
Chen, L., L., Goldstein and Q.-M., Shao (2011). Normal Approximation by Stein's Method. Probability and Its Applications. New York, Heidelberg: Springer.
Choi, T., and R., Ramamoorthi (2008). Remarks on consistency of posterior distributions. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, Volume 3 of Inst.Math. Stat. Collect., pp. 170–186. Beachwood, OH: Inst. Math. Statist.
Choi, T., and M., Schervish (2007). On posterior consistency in nonparametric regression problems. J. Multivariate Anal. 98(10), 1969–1987.
Choudhuri, N. (1998). Bayesian bootstrap credible sets for multidimensional mean functional. Ann. Statist. 26(6), 2104–2127.
Choudhuri, N., S., Ghosal and A., Roy (2004a). Bayesian estimation of the spectral density of a time series. J. Amer. Statist. Assoc. 99(468), 1050–1059.
Choudhuri, N., S., Ghosal and A., Roy (2004b). Contiguity of the Whittle measure for a Gaussian time series. Biometrika 91(1), 211–218.
Choudhuri, N., S., Ghosal and A., Roy (2007). Nonparametric binary regression using a Gaussian process prior. Stat. Methodol. 4(2), 227–243.
Chung,, K.-L. (2001). A Course in Probability Theory (Third ed.). San Diego, CA: Academic Press Inc.
Chung, Y., and D., Dunson (2011). The local Dirichlet process. Ann. Inst. Statist. Math. 63(1), 59–80.
Cifarelli, D., and E., Regazzini (1978). Problemi statistici non parametrici in condizioni di scambiabilita parziale e impiego di medie associative. Quad. Istit. Mat. Finanz. Univ. Torino 3, 13–.
Cifarelli, D., and E., Regazzini (1990). Distribution functions of means of a Dirichlet process. Ann. Statist. 18(1), 429–442.
Cohen, A., I., Daubechies and P., Vial (1993). Wavelets on the interval and fast wavelet transforms. Applied and Computational Harmonic Analysis 1(1), 54–81.
Connor, R., and J., Mosimann (1969). Concepts of independence for proportions with a generalization of the Dirichlet distribution. J. Amer. Statist. Assoc. 64, 206–.
Coram, M., and S., Lalley (2006). Consistency of Bayes estimators of a binary regression function. Ann. Statist. 34(3), 1233–1269.
Cox, D., D. (1993). An analysis of Bayesian inference for nonparametric regression. Ann. Statist. 21(2), 903–923.
Cox, D., R. (1972). Regression models and life-tables. J. Roy. Statist. Soc. Ser. B 34, 220–. With discussion by F., Downton, R., Peto, D., Bartholomew, D., Lindley, P., Glassborow, D., Barton, S., Howard, B., Benjamin, J., Gart, L., Meshalkin, A., Kagan, M., Zelen, R., Barlow, J., Kalbfleisch, R., Prentice and N., Breslow, and a reply by D. R., Cox.
Cseke, B., and T., Heskes (2011). Approximate marginals in latent Gaussian models. J. Mach. Learn. Res. 12, 454–.
Csörgʺo, M., and P., Révész (1975). A new method to prove Strassen type laws of invariance principle. I, II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31, 259–.
Csörgʺo, M., and P., Révész (1981). Strong Approximations in Probability and Statistics. Probability and Mathematical Statistics. New York: Academic Press Inc.
Dalal, S. (1979). Dirichlet invariant processes and applications to nonparametric estimation of symmetric distribution functions. Stochastic Process. Appl. 9(1), 99–107.
Daley, D., J., and D., Vere-Jones (2003). An Introduction to the Theory of Point Processes. Vol. I (Second ed.). Probability and Its Applications (New York). Springer-Verlag, New York. Elementary theory and methods.
Daley, D., J., and D., Vere-Jones (2008). An Introduction to the Theory of Point Processes. Vol. II (Second ed.). Probability and Its Applications (New York). New York: Springer. General theory and structure.
Damien, P., P., Laud, and A., Smith (1995). Approximate random variate generation from infinitely divisible distributions with applications to Bayesian inference. J. Roy. Statist. Soc., Ser. B. 57(3), 547–563.
Damien, P., P., Laud, and A., Smith (1996). Implementation of Bayesian non-parametric inference based on beta processes. Scand. J. Statist. 23(1), 27–36.
Dass, S., and J., Lee (2004). A note on the consistency of Bayes factors for testing point null versus nonparametric alternatives. J. Statist. Plann. Inference 119(1), 143–152.
Daubechies, I. (1992). Ten Lectures on Wavelets, Volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).
de Acosta, A. (1983). Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Probab. 11(1), 78–101.
De Blasi, P., S., Favaro, A., Lijoi, R., Mena, I., Prünster, and M., Ruggiero (2015). Are Gibbs-type priors the most natural generalization of the Dirichlet process? IEEE Trans. Pattern Anal. Machine Intell. 37, 229–.
De Blasi, P., A., Lijoi, and I., Prünster (2013). An asymptotic analysis of a class of discrete nonparametric priors. Statistica Sinica 23(3), 1299–1321.
De Blasi, P., G., Peccati, and I., Prünster (2009). Asymptotics for posterior hazards. Ann. Statist. 37(4), 1906–1945.
de Boor, C. (1978). A Practical Guide to Splines, Volume 27 of Applied Mathematical Sciences. New York: Springer-Verlag.
de Boor, C., and J., Daniel (1974). Splines with nonnegative B-spline coefficients. Mathematics of Computation 28(126), 565–568.
de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7(1), 1–68.
de Jonge, R., and H. van, Zanten (2010). Adaptive nonparametric Bayesian inference using location-scale mixture priors. Ann. Statist. 38(6), 3300–3320.
DeVore, R., A., and G. G., Lorentz (1993). Constructive Approximation, Volume 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer- Verlag.
Dey, D., P., Müller, and D., Sinha (1998). Practical Nonparametric and Semiparametric Bayesian Statistics. Springer Heidelberg.
Dey, J., R., Erickson, and R., Ramamoorthi (2003). Some aspects of neutral to right priors. Int. Stat. Rev. 71(2), 383–401.
Diaconis, P., and D., Freedman (1986a). On inconsistent Bayes estimates of location. Ann. Statist. 14(1), 68–87.
Diaconis, P., and D., Freedman (1986b). On the consistency of Bayes estimates. Ann. Statist. 14(1), 1–67. With a discussion and a rejoinder by the authors.
Diaconis, P., and D., Freedman (1993). Nonparametric binary regression: a Bayesian approach. Ann. Statist. 21(4), 2108–2137.
Diaconis, P., and J., Kemperman (1996). Some new tools for Dirichlet priors. In Bayesian Statistics, 5 (Alicante, 1994), Oxford Sci. Publ., pp. 97–106. New York: Oxford Univ. Press.
Doksum, K. (1974). Tail-free and neutral random probabilities and their posterior distributions. Ann. Probab. 2, 201–.
Doksum, K., and A., Lo (1990). Consistent and robust Bayes procedures for location based on partial information. Ann. Statist. 18(1), 443–453.
Doob, J. (1949). Application of the theory of martingales. In Le Calcul des probabilités et ses applications, Colloques Internationaux du Centre National de la Recherche Scientifique, no. 13, pp. 23–27. Paris: Centre National de la Recherche Scientifique.
Doss, H. (1985a). Bayesian nonparametric estimation of the median. I. Computation of the estimates. Ann. Statist. 13(4), 1432–1444.
Doss, H. (1985b). Bayesian nonparametric estimation of the median. II. Asymptotic properties of the estimates. Ann. Statist. 13(4), 1445–1464.
Doss, H., and T., Sellke (1982). The tails of probabilities chosen from a Dirichlet prior. Ann. Statist. 10(4), 1302–1305.
Drăghici, L., and R., Ramamoorthi (2000). A note on the absolute continuity and singularity of Pólya tree priors and posteriors. Scand. J. Statist. 27(2), 299–303.
Drăghici, L., and R., Ramamoorthi (2003). Consistency of Dykstra–Laud priors. Sankhyā 65(2), 464–481.
Dubins, L., and D., Freedman (1963). Random distribution functions. Bull. Amer. Math. Soc. 69, 551–.
Dudley, R. (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis 1, 330–.
Dudley, R. (2002). Real Analysis and Probability, Volume 74 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press. Revised reprint of the 1989 original.
Dudley, R., M. (1984). A course on empirical processes. In École d'été de probabilités de Saint-Flour, XII—1982, Volume 1097 of Lecture Notes in Math., pp. 1–142. Berlin: Springer.
Dudley, R., M. (2014). Uniform Central Limit Theorems (Second ed.), Volume 142 of Cambridge Studies in Advanced Mathematics. New York: Cambridge University Press.
Dunson, D., and J.-H., Park (2008). Kernel stick-breaking processes. Biometrika 95(2), 307–323.
Dykstra, R., and P., Laud (1981). A Bayesian nonparametric approach to reliability. Ann. Statist. 9(2), 356–367.
Edmunds, D., and H., Triebel (1996). Function Spaces, Entropy Numbers, Differential Operators, Volume 120 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press.
Efroĭmovich, S., and M., Pinsker (1984). A self-training algorithm for nonparametric filtering. Avtomat. i Telemekh. (11), 58–65.
Eichelsbacher, P., and A., Ganesh (2002). Moderate deviations for Bayes posteriors. Scand. J. Statist. 29(1), 153–167.
Escobar, M. (1994). Estimating normal means with a Dirichlet process prior. J. Amer. Statist. Assoc. 89(425), 268–277.
Escobar, M., and M., West (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90(430), 577–588.
Fabius, J. (1964). Asymptotic behavior of Bayes' estimates. Ann. Math. Statist. 35, 856–.
Favaro, S., A., Lijoi, R., Mena, and I., Prünster (2009). Bayesian non-parametric inference for species variety with a two-parameter Poisson–Dirichlet process prior. J. Roy. Stat. Soc. Ser. B 71(5), 993–1008.
Favaro, S., A., Lijoi, and I., Prünster (2012a). Asymptotics for a Bayesian nonparametric estimator of species variety. Bernoulli 18(4), 1267–1283.
Favaro, S., A., Lijoi, and I., Prünster (2012b). On the stick-breaking representation of normalized inverse Gaussian priors. Biometrika 99(3), 663–674.
Favaro, S., and Y., Teh (2013). MCMC for normalized random measure mixture models. Stat. Sci 28, 335– 350.
Feller, W. (1968). An Introduction to Probability Theory and Its Applications. Vol. I. (Third ed.). New York: John Wiley & Sons Inc.
Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. (Second ed.). New York: John Wiley & Sons Inc.
Feng, S. (2010). The Poisson–Dirichlet Distribution and Related Topics:Models and Asymptotic Behaviors. Probability and its Applications. New York, Heidelberg: Springer.
Ferguson, T. (1967). Mathematical Statistics: A Decision Theoretic Approach. Probability and Mathematical Statistics, Vol. 1. New York: Academic Press.
Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 230–.
Ferguson, T. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2, 629–.
Ferguson, T. (1983). Bayesian density estimation by mixtures of normal distributions. In Recent Advances in Statistics, pp. 287–302. New York: Academic Press.
Ferguson, T., and M., Klass (1972). A representation of independent increment processes without Gaussian components. Ann. Math. Statist. 43, 1643–.
Ferguson, T., and E., Phadia (1979). Bayesian nonparametric estimation based on censored data. Ann. Statist. 7(1), 163–186.
Freedman, D. (1963). On the asymptotic behavior of Bayes' estimates in the discrete case. Ann. Math. Statist. 34, 1403–.
Freedman, D. (1965). On the asymptotic behavior of Bayes estimates in the discrete case. II. Ann. Math. Statist. 36, 456–.
Freedman, D. (1999). On the Bernstein–von Mises theorem with infinite-dimensional parameters. Ann. Statist. 27(4), 1119–1140.
Freedman, D., and P., Diaconis (1982). On inconsistent M-estimators. Ann. Statist. 10(2), 454–461.
Fristedt, B., and W., Pruitt (1971). Lower functions for increasing random walks and subordinators. Z. Wahrsch. Verw. Gebiete 18, 182–.
Gaenssler, P., P., Molnár, and D., Rost (2007). On continuity and strict increase of the CDF for the supfunctional of a Gaussian process with applications to statistics. Results Math. 51(1–2), 51–60.
Ganesh, A., and N., O'Connell (2000). A large-deviation principle for Dirichlet posteriors. Bernoulli 6(6), 1021–1034.
Gangopadhyay, A., B., Mallick, and D., Denison (1999). Estimation of spectral density of a stationary time series via an asymptotic representation of the periodogram. J. Statist. Plann. Inference 75(2), 281–290.
Gasparini, M. (1996). Bayesian density estimation via Dirichlet density processes. J. Nonparametr. Statist. 6(4), 355–366.
Gelfand, A., and A., Kottas (2002). A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models. J. Comput. Graph. Statist. 11(2), 289–305.
Ghorai, J., and H., Rubin (1982). Bayes risk consistency of nonparametric Bayes density estimates. Austral. J. Statist. 24(1), 51–66.
Ghosal, S. (2001). Convergence rates for density estimation with Bernstein polynomials. Ann. Statist. 29(5), 1264–1280.
Ghosal, S., J., Ghosh, and R., Ramamoorthi (1997). Non-informative priors via sieves and packing numbers. In Advances in Statistical Decision Theory and Applications, Stat. Ind. Technol., pp. 119–132. Boston, MA: Birkhäuser Boston.
Ghosal, S., J., Ghosh, and R., Ramamoorthi (1999a). Consistent semiparametric Bayesian inference about a location parameter. J. Statist. Plann. Inference 77(2), 181–193.
Ghosal, S., J., Ghosh, and R., Ramamoorthi (1999b). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27(1), 143–158.
Ghosal, S., J., Ghosh, and T., Samanta (1995). On convergence of posterior distributions. Ann. Statist. 23(6), 2145–2152.
Ghosal, S., J., Ghosh, and A. van der, Vaart (2000). Convergence rates of posterior distributions. Ann. Statist. 28(2), 500–531.
Ghosal, S., J., Lember, and A. van der, Vaart (2003). On Bayesian adaptation. In Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part II (2002), Volume 79, pp. 165–175.
Ghosal, S., J., Lember, and A. van der, Vaart (2008). Nonparametric Bayesian model selection and averaging. Electron. J. Stat. 2, 89–.
Ghosal, S., and A., Roy (2006). Posterior consistency of Gaussian process prior for nonparametric binary regression. Ann. Statist. 34(5), 2413–2429.
Ghosal, S., A., Roy, and Y., Tang (2008). Posterior consistency of Dirichlet mixtures of beta densities in estimating positive false discovery rates. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen, Volume 1 of Inst. Math. Stat. Collect., pp. 105–115. Beachwood, OH: Inst. Math. Statist.
Ghosal, S., and Y., Tang (2006). Bayesian consistency for Markov processes. Sankhyā 68(2), 227–239.
Ghosal, S., and A. van der, Vaart (2001). Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities. Ann. Statist. 29(5), 1233–1263.
Ghosal, S., and A. van der, Vaart (2003). Discussion of “new tools for consistency in Bayesian nonparametrics” by Gabriella Salinetti. In Bayesian Statistics, 7 (Tenerife, 2002), pp. 382. New York: Oxford Univ. Press.
Ghosal, S., and A. van der, Vaart (2007a). Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Statist. 35(1), 192–223.
Ghosal, S., and A. van der, Vaart (2007b). Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Statist. 35(2), 697–723.
Ghosh, J., S., Ghosal, and T., Samanta (1994). Stability and convergence of the posterior in non-regular problems. In Statistical Decision Theory and Related Topics, V (West Lafayette, IN, 1992), pp. 183–199. New York: Springer.
Ghosh, J., and R., Ramamoorthi (1995). Consistency of Bayesian inference for survival analysis with or without censoring. In Analysis of Censored Data (Pune, 1994/1995), Volume 27 of IMS Lecture Notes Monogr. Ser., pp. 95–103. Hayward, CA: Inst. Math. Statist.
Ghosh, J., and R., Ramamoorthi (2003). Bayesian Nonparametrics. Springer Series in Statistics. New York: Springer-Verlag.
Ghosh, J., and S., Tokdar (2006). Convergence and consistency of Newton's algorithm for estimating mixing distribution. In Frontiers in Statistics, pp. 429–443. London: Imp. Coll. Press.
Gilks, W., A., Thomas, and D., Spiegelhalter (1994). A language and program for complex Bayesian modelling. The Statistician, 169–177.
Gill, R., and S., Johansen (1990). A survey of product-integration with a view toward application in survival analysis. Ann. Statist. 18(4), 1501–1555.
Giné, E., and R., Nickl (2015). Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge University Press.
Gnedin, A. (2010). A species sampling model with finitely many types. Electron. Commun. Probab. 15, 88–.
Gnedin, A., and J., Pitman (2006). Exchangeable Gibbs partitions and Stirling triangles. Journal of Mathematical Sciences 138(3), 5674–5685.
Grenander, U. (1981). Abstract Inference. New York: John Wiley & Sons Inc. Wiley Series in Probability and Mathematical Statistics.
Griffin, J., and M., Steel (2006). Order-based dependent Dirichlet processes. J. Amer. Statist. Assoc. 101(473), 179–194.
Griffiths, T., and Z., Ghahramani (2006). Infinite latent feature models and the indian buffet process. Volume 18 of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press.
Gu, J., and S., Ghosal (2008). Strong approximations for resample quantile processes and application to ROC methodology. J. Nonparametr. Stat. 20(3), 229–240.
Gurland, J. (1948). Inversion formulae for the distribution of ratios. Ann. Math. Statist. 19, 237–.
Hansen, B., and J., Pitman (2000). Prediction rules for exchangeable sequences related to species sampling. Statist. Probab. Lett. 46(3), 251–256.
Hanson, T., and W., Johnson (2002). Modeling regression error with a mixture of Pólya trees. J. Amer. Statist. Assoc. 97(460), 1020–1033.
Härdle, W., G., Kerkyacharian, A., Tsybakov, and D., Picard (1998). Wavelets, Approximation and Statistical Applications. New York: Springer-Verlag.
Helson, H. (1983). Harmonic Analysis. Reading, MA: Addison-Wesley Publishing Company Advanced Book Program.
Hesthaven, J., S., Gottlieb, and D., Gottlieb (2007). Spectral Methods for Time Dependent Problems. Cambridge, UK: Cambridge University Press.
Hjort, N. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist. 18(3), 1259–1294.
Hjort, N. (1996). Bayesian approaches to non- and semiparametric density estimation. In Bayesian Statistics, 5 (Alicante, 1994), Oxford Sci. Publ., pp. 223–253. New York: Oxford University Press.
Hoppe, F. (1984). Pólya-like urns and the Ewens' sampling formula. J. Math. Biol. 20(1), 91–94.
Huang, T.-M. (2004). Convergence rates for posterior distributions and adaptive estimation. Ann. Statist. 32(4), 1556–1593.
Ibragimov, I. (1962). On stationary Gaussian processes with a strong mixing property. Dokl. Akad. Nauk SSSR 147, 1282–1284.
Ibragimov, I., and R., Has'minskiĭ (1981). Statistical Estimation: Asymptotic Theory, Volume 16 of Applications of Mathematics. New York: Springer-Verlag. Translated from the Russian by Samuel Kotz.
Ibragimov, I., and R., Has'minskiĭ (1982). An estimate of the density of a distribution belonging to a class of entire functions. Teor. Veroyatnost. i Primenen. 27(3), 514–524.
Ishwaran, H., and L., James (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96(453), 161–173.
Ishwaran, H., and M., Zarepour (2002). Dirichlet prior sieves in finite normal mixtures. Statist. Sinica 12(3), 941–963.
Jackson, D. (1912). On approximation by trigonometric sums and polynomials. Trans. Amer. Math. Soc. 13(4), 491–515.
Jacobsen, M. (1989). Existence and unicity of MLEs in discrete exponential family distributions. Scand. J. Statist. 16(4), 335–349.
Jacod, J., and A., Shiryaev (2003). Limit Theorems for Stochastic Processes (Second ed.), Volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag.
James, I., and J., Mosimann (1980). A new characterization of the Dirichlet distribution through neutrality. Ann. Statist. 8(1), 183–189.
James, L. (2005). Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages. Ann. Statist. 33(4), 1771–1799.
James, L. (2008). Large sample asymptotics for the two-parameter Poisson-Dirichlet process. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, Volume 3 of Inst. Math. Stat. Collect., pp. 187–199. Beachwood, OH: Institute of Mathematical Statistics.
James, L., A., Lijoi, and I., Prünster (2006). Conjugacy as a distinctive feature of the Dirichlet process. Scand. J. Statist. 33(1), 105–120.
James, L., A., Lijoi, and I., Prünster (2008). Distributions of linear functionals of two parameter Poisson- Dirichlet random measures. Ann. Appl. Probab. 18(2), 521–551.
James, L., A., Lijoi, and I., Prünster (2009). Posterior analysis for normalized random measures with independent increments. Scand. J. Stat. 36(1), 76–97.
James, L., A., Lijoi, and I., Prünster (2010). On the posterior distribution of classes of random means. Bernoulli 16(1), 155–180.
Jang, G., J. Lee, and S. Lee (2010). Posterior consistency of species sampling priors. Statist. Sinica 20(2), 581–593.
Jara, A. (2007). Applied Bayesian non-and semi-parametric inference using dppackage. R News 7, 26–.
Jara, A., T., Hanson, F., Quintana, P., Müller, and G., Rosner (2015). Package dppackage.
Jiang, W. (2007). Bayesian variable selection for high dimensional generalized linear models: convergence rates of the fitted densities. Ann. Statist. 35(4), 1487–1511.
Kalbfleisch, J. (1978). Non-parametric Bayesian analysis of survival time data. J. Roy. Statist. Soc. Ser. B 40(2), 214–221.
Kallenberg, O. (1986). Random Measures (Fourth ed.). Berlin: Akademie-Verlag.
Karlin, S. (1967). Central limit theorems for certain infinite urn schemes. J. Math. Mech. 17, 401–.
Kim, Y. (1999). Nonparametric Bayesian estimators for counting processes. Ann. Statist. 27(2), 562–588.
Kim, Y. (2001). Mixtures of beta processes priors for right censored survival data. J. Korean Statist. Soc. 30(1), 127–138.
Kim, Y. (2006). The Bernstein–von Mises theorem for the proportional hazard model. Ann. Statist. 34(4), 1678–1700.
Kim, Y., and J., Lee (2001). On posterior consistency of survival models. Ann. Statist. 29(3), 666–686.
Kim, Y., and J., Lee (2003a). Bayesian analysis of proportional hazard models. Ann. Statist. 31(2), 493–511. Dedicated to the memory of Herbert E. Robbins.
Kim, Y., and J., Lee (2003b). Bayesian bootstrap for proportional hazards models. Ann. Statist. 31(6), 1905– 1922.
Kim, Y., and J., Lee (2004). A Bernstein–von Mises theorem in the nonparametric right-censoring model. Ann. Statist. 32(4), 1492–1512.
Kimeldorf, G., and G., Wahba (1970). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Statist. 41, 502–.
Kingman, J. (1967). Completely random measures. Pacific J. Math. 21, 78–.
Kingman, J. (1975). Random discrete distribution. J. Roy. Statist. Soc. Ser. B 37, 22–. With a discussion by S. J., Taylor, A. G., Hawkes, A. M., Walker, D. R., Cox, A. F. M., Smith, B. M., Hill, P. J., Burville, T., Leonard, and a reply by the author.
Kingman, J. (1978). The representation of partition structures. J. London Math. Soc. (2) 18(2), 374–380.
Kingman, J. (1982). The coalescent. Stochastic Process. Appl. 13(3), 235–248.
Kingman, J. (1993). Poisson Processes, Volume 3 of Oxford Studies in Probability. New York: The Clarendon Press Oxford University Press. Oxford Science Publications.
Kleijn, B., and A. van der, Vaart (2006). Misspecification in infinite-dimensional Bayesian statistics. Ann. Statist. 34(2), 837–877.
Knapik, B., T., B. T., Szabó, A. W. van der, Vaart, and J. H. van, Zanten (2016). Bayes procedures for adaptive inference in inverse problems for the white noise model. Probab. Theory Related Fields 164(3-4), 771–813.
Knapik, B., A. van der, Vaart, and H. van, Zanten (2011). Bayesian inverse problems with Gaussian priors. Ann. Statist. 39(5), 2626–2657.
Kolmogorov, A., and V., Tihomirov (1961). ε-entropy and ε-capacity of sets in functional space. Amer.Math. Soc. Transl. (2) 17, 364–.
Komlós, J., P., Major, and G., Tusnády (1975). An approximation of partial sums of independent RVs and the sample DF. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32, 131–.
Korwar, R., and M., Hollander (1973). Contributions to the theory of Dirichlet processes. Ann. Probab. 1, 711–.
Kraft, C. (1964). A class of distribution function processes which have derivatives. J. Appl. Probab. 1, 388–.
Kruijer, W., J., Rousseau, and A. van der, Vaart (2010). Adaptive Bayesian density estimation with locationscale mixtures. Electron. J. Stat. 4, 1257–.
Kruijer, W., and A. van der, Vaart (2008). Posterior convergence rates for Dirichlet mixtures of beta densities. J. Statist. Plann. Inference 138(7), 1981–1992.
Kruijer, W., and A. van der, Vaart (2013). Analyzing posteriors by the information inequality. In From Probability to Statistics and Back: High-Dimensional Models and Processes – A Festschrift in Honor of Jon A. Wellner. IMS.
Kuelbs, J., and W., Li (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116(1), 133–157.
Kuelbs, J., W., Li, and W., Linde (1994). The Gaussian measure of shifted balls. Probab. Theory Related Fields 98(2), 143–162.
Kuo, L. (1986). Computations of mixtures of Dirichlet processes. SIAM J. Sci. Statist. Comput. 7(1), 60–71.
Lavine, M. (1992). Some aspects of Pólya tree distributions for statistical modelling. Ann. Statist. 20(3), 1222–1235.
Lavine, M. (1994). More aspects of Pólya tree distributions for statistical modelling. Ann. Statist. 22(3), 1161–1176.
Le Cam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes' estimates. Univ. California Publ. Statist. 1, 329–.
Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer Series in Statistics. New York: Springer-Verlag.
Leahu, H. (2011). On the Bernstein–von Mises phenomenon in the Gaussian white noise model. Electron. J. Stat. 5, 404–.
Ledoux, M., and M., Talagrand (1991). Probability in Banach spaces, Volume 23. Berlin: Springer-Verlag.
Lee, J. (2007). Sampling methods of neutral to the right processes. J. Comput. Graph. Statist. 16(3), 656–671.
Lee, J., and Y., Kim (2004). A new algorithm to generate beta processes. Comput. Statist. Data Anal. 47(3), 441–453.
Lee, J., F., Quintana, P., Müller, and L., Trippa (2013). Defining predictive probability functions for species sampling models. Stat. Sci. 28(2), 209–222.
Lember, J., and A. van der, Vaart (2007). On universal Bayesian adaptation. Statist. Decisions 25(2), 127–152.
Lenk, P. (1988). The logistic normal distribution for Bayesian, nonparametric, predictive densities. J. Amer. Statist. Assoc. 83(402), 509–516.
Leonard, T. (1978). Density estimation, stochastic processes and prior information. J. Roy. Statist. Soc. Ser. B 40(2), 113–146. With discussion.
Li, W., and W., Linde (1998). Existence of small ball constants for fractional Brownian motions. C. R. Acad. Sci. Paris Sér. I Math. 326(11), 1329–1334.
Muliere, P., and L., Tardella (1998). Approximating distributions of random functionals of Ferguson- Dirichlet priors. Canad. J. Statist. 26(2), 283–297.
Müller, P., F., Quintana, A., Jara, and T., Hanson (2015). Bayesian Nonparametric Data Analysis. Cambridge: Springer.
Murphy, S., and A. van der, Vaart (2000). On profile likelihood. J. Amer. Statist. Assoc. 95(450), 449–485. With comments and a rejoinder by the authors.
Neal, R. (2000). Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Statist. 9(2), 249–265.
Newton, M. (2002). On a nonparametric recursive estimator of the mixing distribution. Sankhyā Ser. A 64(2), 306–322. Selected articles from San Antonio Conference in honour of C. R. Rao (San Antonio, TX, 2000).
Newton, M., F., Quintana, and Y., Zhang (1998). Nonparametric Bayes methods using predictive updating. In Practical Nonparametric and Semiparametric Bayesian Statistics, Volume 133 of Lecture Notes in Statistics, pp. 45–61. New York: Springer.
Newton, M., and Y., Zhang (1999). A recursive algorithm for nonparametric analysis with missing data. Biometrika 86(1), 15–26.
Nieto-Barajas, L., I., Prünster, and S., Walker (2004). Normalized random measures driven by increasing additive processes. Ann. Statist. 32(6), 2343–2360.
Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24(6), 2399–2430.
Panzar, L., and H. van, Zanten (2009). Nonparametric Bayesian inference for ergodic diffusions. J. Statist. Plann. Inference 139(12), 4193–4199.
Parthasarathy, K. (2005). Probability Measures on Metric Spaces. AMS Chelsea Publishing, Providence, RI. Reprint of the 1967 original.
Peccati, G., and I., Prünster (2008). Linear and quadratic functionals of random hazard rates: an asymptotic analysis. Ann. Appl. Probab. 18(5), 1910–1943.
Perman, M., J., Pitman, and M., Yor (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92(1), 21–39.
Petrone, S. (1999a). Bayesian density estimation using Bernstein polynomials. Canad. J. Statist. 27(1), 105–126.
Petrone, S. (1999b). Random Bernstein polynomials. Scand. J. Statist. 26(3), 373–393.
Petrone, S., and P., Veronese (2010). Feller operators and mixture priors in Bayesian nonparametrics. Statist. Sinica 20(1), 379–404.
Petrone, S., and L., Wasserman (2002). Consistency of Bernstein polynomial posteriors. J. Roy. Stat. Soc. Ser. B, Stat. Methodol. 64(1), 79–100.
Pinsker, M. (1980). Optimal filtration of square-integrable signals in Gaussian noise. Problems Inform. Transmission 16.
Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102(2), 145–158.
Pitman, J. (1996a). Random discrete distributions invariant under size-biased permutation. Adv. in Appl. Probab. 28(2), 525–539.
Pitman, J. (1996b). Some developments of the Blackwell-MacQueen urn scheme. In Statistics, Probability and Game Theory, Volume 30 of IMS Lecture Notes Monogr. Ser., pp. 245–267. Hayward, CA: Institute of Mathematical Statistics.
Pitman, J. (2003). Poisson-Kingman partitions. In Statistics and Science: a Festschrift for Terry Speed, Volume 40 of IMS Lecture Notes Monogr. Ser., pp. 1–34. Beachwood, OH: Institute of Mathematical Statistics.
Pitman, J. (2006). Combinatorial Stochastic Processes, Volume 1875 of Lecture Notes in Mathematics. Berlin: Springer-Verlag. Lectures from the 32nd Summer School on Probability Theory held in Saint- Flour, July 7–24, 2002. With a foreword by Jean Picard.
Pitman, J., and M., Yor (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25(2), 855–900.
Pollard, D. (1984). Convergence of Stochastic Processes. Springer Series in Statistics. New York: Springer- Verlag.
Præstgaard, J., and J., Wellner (1993). Exchangeably weighted bootstraps of the general empirical process. Ann. Probab. 21(4), 2053–2086.
Prünster, I. (2012). Proof of conjugacy of neutral to the right processes for censored data.
Ramamoorthi, R., L., Drăghici, and J., Dey (2002). Characterizations of tailfree and neutral to the right priors. In Advances on theoretical and methodological aspects of probability and statistics (Hamilton, ON, 1998), pp. 305–316. London: Taylor & Francis.
Rasmussen, C., and C., Williams (2006). Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. Cambridge, MA: MIT Press.
Ray, K. (2014). Adaptive Bernstein–von Mises theorems in Gaussian white noise. arXiv:1407.3397.
Regazzini, E., A., Guglielmi, and G. Di, Nunno (2002). Theory and numerical analysis for exact distributions of functionals of a Dirichlet process. Ann. Statist. 30(5), 1376–1411.
Regazzini, E., A., Lijoi, and I., Prünster (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31(2), 560–585. Dedicated to the memory of Herbert E. Robbins.
Rivoirard, V., and J., Rousseau (2012). Bernstein–von Mises theorem for linear functionals of the density. Ann. Statist. 40(3), 1489–1523.
Rodríguez, A., and D., Dunson (2011). Nonparametric Bayesian models through probit stick-breaking processes. Bayesian Anal. 6(1), 145–177.
Rodríguez, A., D., Dunson, and A., Gelfand (2008). The nested Dirichlet process. J. Amer. Statist. Assoc. 103(483), 1131–1144.
Rousseau, J. (2010). Rates of convergence for the posterior distributions of mixtures of betas and adaptive nonparametric estimation of the density. Ann. Statist. 38(1), 146–180.
Roy, A., S., Ghosal, and W., Rosenberger (2009). Convergence properties of sequential Bayesian D-optimal designs. J. Statist. Plann. Inference 139(2), 425–440.
Rubin, D. (1981). The Bayesian bootstrap. Ann. Statist. 9(1), 130–134.
Rudin, W. (1973). Functional Analysis. New York: McGraw-Hill Book Co. McGraw-Hill Series in Higher Mathematics.
Rue, H., S., Martino, and N., Chopin (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 71(2), 319–392.
Salinetti, G. (2003). New tools for consistency in Bayesian nonparametrics. In Bayesian Statistics, 7 (Tenerife, 2002), pp. 369–384. New York: Oxford Univ. Press.With discussions by J. K., Ghosh, S., Ghosal and A. van der, Vaart, and a reply by the author.
Schervish, M. (1995). Theory of Statistics. Springer Series in Statistics. New York: Springer-Verlag.
Schumaker, L. (2007). Spline Functions: Basic Theory (Third ed.). Cambridge Mathematical Library. Cambridge: Cambridge University Press.
Schwartz, L. (1965). On Bayes procedures. Z. Wahrsch. Verw. Gebiete 4, 26–.
Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6(2), 461–464.
Scricciolo, C. (2006). Convergence rates for Bayesian density estimation of infinite-dimensional exponential families. Ann. Statist. 34(6), 2897–2920.
Scricciolo,, C. (2007). On rates of convergence for Bayesian density estimation. Scand. J. Statist. 34(3), 626–642.
Scricciolo, C. (2014). Adaptive Bayesian density estimation in L p -metrics with Pitman-Yor or normalized inverse-Gaussian process kernel mixtures. Bayesian Anal. 9(2), 475–520.
Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4(2), 639–650.
Sethuraman, J., and R., Tiwari (1982). Convergence of Dirichlet measures and the interpretation of their parameter. In Statistical Decision Theory and Related Topics, III, Vol. 2 (West Lafayette, Ind., 1981), pp. 305–315. New York: Academic Press.
Shen, W., and S. Ghosal (2015). Adaptive Bayesian procedures using random series prior. Scand. J. Statist. 42, 1213–.
Shen, W., S., Tokdar, and S., Ghosal (2013). Adaptive Bayesian multivariate density estimation with Dirichlet mixtures. Biometrika 100(3), 623–640.
Shen, X., and L., Wasserman (2001). Rates of convergence of posterior distributions. Ann. Statist. 29(3), 687–714.
Shively, T., R., Kohn, and S., Wood (1999). Variable selection and function estimation in additive nonparametric regression using a data-based prior. J. Amer. Statist. Assoc. 94(447), 777–806. With comments and a rejoinder by the authors.
Skorohod, A. (1974). Integration in Hilbert space. New York: Springer-Verlag. Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 79.
Sniekers, S., and A. van der, Vaart (2015a). Adaptive Bayesian credible sets in regression with a Gaussian process prior. Electron. J. Stat. 9(2), 2475–2527.
Sniekers, S., and A. van der, Vaart (2015b). Credible sets in the fixed design model with Brownian motion prior. J. Statist. Plann. Inference 166, 86–.
Srivastava, S. (1998). A Course on Borel Sets, Volume 180 of Graduate Texts in Mathematics. New York: Springer-Verlag.
Stein, E. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton, N.J.: Princeton University Press.
Stone, C. (1990). Large-sample inference for log-spline models. Ann. Statist. 18(2), 717–741.
Stone, C. (1994). The use of polynomial splines and their tensor products in multivariate function estimation. Ann. Statist. 22(1), 118–184. With discussion by A., Buja and T., Hastie and a rejoinder by the author.
Strasser, H. (1985). Mathematical Theory of Statistics, Volume 7 of de Gruyter Studies in Mathematics. Berlin: Walter de Gruyter & Co. Statistical experiments and asymptotic decision theory.
Susarla, V., and J. Van, Ryzin (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. J. Amer. Statist. Assoc. 71(356), 897–902.
Szabó, B., A. van der, Vaart, and H. van, Zanten (2013). Empirical Bayes scaling of Gaussian priors in the white noise model. Electron. J. Statist. 7, 1018–.
Szabó, B., A.W. van der, Vaart, and J. H. van, Zanten (2015). Frequentist coverage of adaptive nonparametric Bayesian credible sets. Ann. Statist. 43(4), 1391–1428.
Talagrand, M. (1987). Regularity of Gaussian processes. Acta Math. 159(1-2), 99–149.
Talagrand, M. (1992). A simple proof of the majorizing measure theorem. Geom. Funct. Anal. 2(1), 118–125.
Tang, Y., and S., Ghosal (2007a). A consistent nonparametric Bayesian procedure for estimating autoregressive conditional densities. Comput. Statist. Data Anal. 51(9), 4424–4437.
Tang, Y., and S., Ghosal (2007b). Posterior consistency of Dirichlet mixtures for estimating a transition density. J. Statist. Plann. Inference 137(6), 1711–1726.
Teh, Y., D., Görür, and Z., Ghahramani (2007). Stick-breaking construction for the Indian buffet process. In International Conference on Artificial Intelligence and Statistics, pp. 556–563.
Teh, Y., M., Jordan, M., Beal, and D., Blei (2006). Hierarchical Dirichlet processes. J. Amer. Statist. Assoc. 101(476), 1566–1581.
Teicher, H. (1961). Identifiability of mixtures. Ann. Math. Statist. 32, 248–.
Thibaux, R., and M., Jordan (2007). Hierarchical beta processes and the Indian buffet process. In International Conference on Artificial Intelligence and Statistics, pp. 564–571.
Tierney, L., and J., Kadane (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81(393), 82–86.
Tokdar, S. (2006). Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression. Sankhyā 68(1), 90–110.
Tokdar, S. (2007). Towards a faster implementation of density estimation with logistic Gaussian process priors. J. Comput. Graph. Statist. 16(3), 633–655.
Tokdar, S., and J., Ghosh (2007). Posterior consistency of logistic Gaussian process priors in density estimation. J. Statist. Plann. Inference 137(1), 34–42.
Tokdar, S., R., Martin, and J., Ghosh (2009). Consistency of a recursive estimate of mixing distributions. Ann. Statist. 37(5A), 2502–2522.
Tsiatis, A. (1981). A large sample study of Cox's regression model. Ann. Statist. 9(1), 93–108.
van der Meulen, F., A. van der, Vaart, and H. van, Zanten (2006). Convergence rates of posterior distributions for Brownian semimartingale models. Bernoulli 12(5), 863–888.
van der Vaart, A. (1991). On differentiable functionals. Ann. Statist. 19(1), 178–204.
van der Vaart,, A. (1998). Asymptotic Statistics, Volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
van der Vaart, A. (2010). Bayesian regularization. In Proceedings of the International Congress of Mathematicians. Volume IV, pp. 2370–2385. Hindustan Book Agency, New Delhi.
van der Vaart,, A., and H. van, Zanten (2007). Bayesian inference with rescaled Gaussian process priors. Electron. J. Stat. 1, 433–448 (electronic).
van der Vaart, A., and H. van, Zanten (2008a). Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36(3), 1435–1463.
van der Vaart, A., and H. van, Zanten (2008b). Reproducing kernel Hilbert spaces of Gaussian priors. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, Volume 3 of Inst. Math. Stat. Collect., pp. 200–222. Beachwood, OH: Institute of Mathematical Statistics.
van der Vaart, A., and H. van, Zanten (2009). Adaptive Bayesian estimation using a Gaussian random field with inverse gamma bandwidth. Ann. Statist. 37(5B), 2655–2675.
van der Vaart, A., and H. van, Zanten (2011). Information rates of nonparametric Gaussian process methods. J. Mach. Learn. Res. 12, 2119–.
van der Vaart, A., and J., Wellner (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics. New York: Springer-Verlag. With applications to statistics.
van der Vaart, A., and J., Wellner (2017).Weak Convergence and Empirical Processes (Second ed.). Springer Series in Statistics. New York: Springer-Verlag. With applications to statistics.
vanWaaij, J., and H. van, Zanten (2016). Gaussian process methods for one-dimensional diffusions: optimal rates and adaptation. Electron. J. Statist. 10(1), 628–645.
Verdinelli, I., and L., Wasserman (1998). Bayesian goodness-of-fit testing using infinite-dimensional exponential families. Ann. Statist. 26(4), 1215–1241.
Vershik, A., M., Yor, and N., Tsilevich (2001). The Markov-Kreĭn identity and the quasi-invariance of the gamma process. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6), 21–36, 258.
Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regression. J. Roy. Statist. Soc. Ser. B 40(3), 364–372.
Walker, S. (2003). On sufficient conditions for Bayesian consistency. Biometrika 90(2), 482–488.
Walker, S. (2004). New approaches to Bayesian consistency. Ann. Statist. 32(5), 2028–2043.
Walker, S. (2007). Sampling the Dirichlet mixture model with slices. Comm. Statist. Simulation Comput. 36(1-3), 45–54.
Walker, S., and N., Hjort (2001). On Bayesian consistency. J. Roy. Statist. Soc. Ser. B 63(4), 811–821.
Walker, S., A., Lijoi, and I., Prünster (2005). Data tracking and the understanding of Bayesian consistency. Biometrika 92(4), 765–778.
Walker, S., A., Lijoi, and I., Prünster (2007). On rates of convergence for posterior distributions in infinitedimensional models. Ann. Statist. 35(2), 738–746.
Walker, S., and P., Muliere (1997). Beta-Stacy processes and a generalization of the Pólya-urn scheme. Ann. Statist. 25(4), 1762–1780.
Watson, G. (1995). A treatise on the theory of Bessel functions. Cambridge: Cambridge University Press.
Whitney, H. (1934). Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36(1), 63–89.
Whittle, P. (1957). Curve and periodogram smoothing. J. Roy. Statist. Soc. Ser. B. 19, 38–47 (discussion 47–63).
Williamson, R. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J. 23, 207–.
Wolpert, R., and K., Ickstadt (1998). Simulation of Lévy random fields. In Practical Nonparametric and Semiparametric Bayesian Statistics, pp. 227–242. New York: Springer.
Wong, W., and X., Shen (1995). Probability inequalities for likelihood ratios and convergence rates of sieve MLEs. Ann. Statist. 23(2), 339–362.
Wood, S., and R., Kohn (1998). A Bayesian approach to robust nonparametric binary regression. J. Amer. Statist. Assoc. 93, 213–.
Wu, Y., and S., Ghosal (2008a). Kullback-Leibler property of kernel mixture priors in Bayesian density estimation. Electron. J. Stat. 2, 331–.
Wu, Y., and S., Ghosal (2008b). Posterior consistency for some semi-parametric problems. Sankhyā, Ser. A 70(2), 267–313.
Wu, Y., and S., Ghosal (2010). The L1-consistency of Dirichlet mixtures in multivariate Bayesian density estimation. J. Multivariate Anal. 101(10), 2411–2419.
Xing, Y. (2008). On adaptive Bayesian inference. Electron. J. Stat. 2, 862–.
Xing, Y. (2010). Rates of posterior convergence for iid observations. Comm. Statist. Theory Methods 39(19), 3389–3398.
Xing, Y., and B., Ranneby (2009). Sufficient conditions for Bayesian consistency. J. Statist. Plann. Inference 139(7), 2479–2489.
Yamato, H. (1984). Expectations of functions of samples from distributions chosen from Dirichlet processes. Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem. (17), 1–8.
Yang, Y., and A., Barron (1999). Information-theoretic determination of minimax rates of convergence. Ann. Statist. 27(5), 1564–1599.
Yang, Y., and S. T., Tokdar (2015). Minimax-optimal nonparametric regression in high dimensions. Ann. Statist. 43(2), 652–674.
Zhang, T. (2006). From ɛ-entropy to KL-entropy: analysis of minimum information complexity density estimation. Ann. Statist. 34(5), 2180–2210.
Zhao, L. (2000). Bayesian aspects of some nonparametric problems. Ann. Statist. 28(2), 532–552.
Zygmund, A. (2002). Trigonometric series. Vol. I, II (Third ed.). Cambridge Mathematical Library. Cambridge University Press, Cambridge. With a foreword by Robert A., Fefferman. peacoke