Skip to main content Accessibility help
  • Print publication year: 2011
  • Online publication date: June 2012

48 - Solar thermal routes to fuel

from Part 6 - Energy storage, high-penetration renewables, and grid stabilization



The conversion of solar energy to alternative fuels is becoming a vital need in view of the current oil prices, the possible ecological damage associated with oil drills, especially off-shore, and the global distribution of oil reserves. There are several routes by which to convert solar energy to fuels, such as electrochemical, photochemical, photobiological, and the thermochemical route, the last of which is the focus of this chapter. This route involves using solar heat at high temperatures to operate endothermic thermochemical processes. It offers some intriguing thermodynamic advantages, with direct economic implications. It is also an attractive method of storage for solar energy in chemical form. An important vector of this route is the production of hydrogen, a potentially clean alternative to fossil fuels, especially for use in the transportation sector.


There is a pressing need to develop advanced energy technologies to address the global challenges of clean energy, climate change, and sustainable development. The conversion of solar energy to fuels can basically be done through three routes, separately or in combination: the electrochemical route, which uses solar electricity; the photochemical/photobiological route, which makes direct use of solar photons; and the thermochemical route, which utilizes solar heat, usually at high temperatures, for endothermic processes.

Related content

Powered by UNSILO
Fletcher, E. 1984 “On the thermodynamics of solar energy use,”J. Minnesota Acad. Sci 49 30
Steinfeld, A.Schubnell, M. 1993 “Optimum aperture size and operation temperature for a solar cavity-receiver,”Solar Energy 50 19
Fletcher, E.Moen, R. 1977 “Hydrogen and oxygen from water,”Science 197 1050
Palumbo, R.Lédé, J.Boutin, O. 1998 “The production of Zn from ZnO in a high-temperature solar decomposition quench process, I. The scientific framework for the process,”Chem. Eng. Sci 53 2503
Vishnevetsky, I.Berman, A.Epstein, M. 2009 “Boron, zinc, tin and cadmium as candidates for thermal chemical redox cycles for solar hydrogen production,”Proceedings of SolarPACES 2009 ConferenceBerlin
Fraenkel, D.Levian, R.Levy, M. 1986 “A solar thermochemical pipe based on the CO2–CH4 (1:1) system,”Int. J. Hydrogen Energy 11 267
Levy, M.Levitan, R.Rosin, H.Rubin, R. 1993 “Solar energy storage via a closed-loop chemical heat pipe,”Solar Energy 50 179
Fisher, U.Sugerman, C.Tamme, R.Buck, R.Epstein, M. 2000
Richardson, J.Paripatyadar, S. 1990 “Carbon dioxide reforming of methane with supported rhodium,”Appl. Catalysis 61 293
Wörner, A.Tamme, R. 1998 “CO2 reforming of methane in a solar-driven volumetric receiver–reactor,”Catalysis Today 46 165
Berman, A.Karn, R. K.Epstein, M. 2005 “Kinetics of steam reforming of methane on Ru/Al2O3 catalyst promoted with Mn oxides,”Appl. Catalysis A: General 282 73
Berman, A.Karn, R. K.Epstein, M. 2006 “A new catalyst system for high temperature solar reforming of methane,”Energy Fuels 20 455
Böhmer, M.Langnickel, U.Sanchez, M. 1991 “Solar steam reforming of methane,”Solar Energy Mater 24 441
Richardson, J. T.Paripatyadar, S. A.Shen, J. C. 1988 “Dynamics of sodium heat pipe reforming reactor,”AICHE J 34 743
Diver, R. B.Fish, J. D.Levitan, R. 1992 “Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport,”Solar Energy 48 21
Levitan, R.Rosin, H.Levy, M. 1989 “Chemical reactions in a solar furnace – direct heating of the reactor in a tubular receiver,”Solar Energy 42 267
Levy, M.Levitan, R.Rosin, H.Rubin, R. 1993 “Solar energy storage via a closed-loop chemical heat pipe,”Solar Energy 50 179
Epstein, M.Spiewak, I.Segal, A. 1996 “Solar experiments with tubular reformer,”Proceedings of the 8th International Symposium on Solar Thermal Concentrating TechnologyCologne1209
Scocyper, R.Hogan, R.Muir, J. 1994 “Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish II. Modeling and analysis,”Solar Energy 52 479
Buck, R.Abele, M.Bauer, H.Seitz, A.Tamme, R. 1994 “Development of a volumetric receiver–reactor for solar methane reforming,”ASME J. Solar Energy Eng 116 73
Abele, M.Bauer, H.Buck, R.Tamme, R.Wörner, A. 1996 “Design and test results of a receiver–reactor for solar methane reforming,”ASME J. Solar Energy Eng 118 339
Ben-Zvi, R.Karni, J. 2007 “Simulation of a volumetric solar reformer,”ASME J. Solar Energy Eng 129 197
Berman, A.Rakesh, K. K.Epstein, M. 2007 “Steam reforming of methane on a Ru/Al2O3 catalyst promoted with Mn oxides for solar hydrogen production,”Green Chem 9 626
Kiyama, A.Kondoh, Y.Yokohama, T.Shimizu, K. I.Kodama, T. 2002 “New catalytically-activated metal/ceramic foam absorber for solar reforming receiver–reactor,”Proceedings of the 11th SolarPACES SymposiumZurich337
Kodama, T.Ohtake, H.Matsumoto, S. 2000 “Thermochemical methane reforming using a reactive WO3/W redox system,”Energy 20 411
Kogan, A. 1998 “Direct solar thermal splitting of water and on-site separation of the products, II. Experimental feasibility study,”Int. J. Hydrogen Energy 23 89
Funk, J. E. 2001 “Thermochemical hydrogen production: past and present,”Int. J. Hydrogen Energy 16 185
Abenades, S.Charvin, P.Flamant, G.Neven, P. 2006 “Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy,”Energy 31 2805
Steinfeld, A.Kuhn, P.Reller, A. 1998 “Solar processed metals as clean energy carriers and water-splitters,”Int. J. Hydrogen Energy 23 767
Steinfeld, A. 2002 “Solar hydrogen production via a 2-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions,”Int. J. Hydrogen Energy 27 611
Weidenkaff, A.Reller, A.Sibiende, F.Wokaun, A.Steinfeld, A. 2000 “Experimental investigations on the crystallization of zinc by direct irradiation of zinc oxide in a solar furnace,”Chem. Mater 12 2175
Schunk, L. O.Lipinski, W.Steinfeld, A. 2009 “Heat transfer model of a solar receiver–reactor for the thermal dissociation of ZnO – experimental validation at 10 kW and scale-up to 1 MW,”Chem. Eng. J 150 502
Schunk, L.Haeberling, P.Wepf, S. 2008 “A solar receiver–reactor for the thermal dissociation of zinc oxide,”ASME J. Solar Energy Eng 130 021009
Nakamura, T. 1997 “Hydrogen production from water utilizing solar heat at high temperatures,”Solar Energy 19 467
Sibiende, F.Ducavior, M.Tofighi, A.Ambriz, J. 1982 “High-temperature experiments with solar furnace: the decomposition of Fe3O4, Mn3O4, CdO,”J. Hydrogen Energy 7 79
Tamaura, T.Steinfeld, A.Kuhn, P.Ehrensberger, K. 1995 “Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle,”Energy 20 325
Agrafiotis, C.Roeb, M.Konstandopoulos, A. G. 2005 “Solar water splitting for hydrogen production with monolithic reactors,”Solar Energy 79 409
Lorentzou, S.Zygogianni, A.Tousimi, K.Agrafiotis, C.Konstandopoulis, A. F. 2009 “Advanced systhesis of nanostructured materials for environmental applications,”J. Alloys Compounds 483 302
Wieckert, C.Frommherz, U.Kraul, S. 2007 “A 300 kW solar chemical pilot plant for the carbothermic production of zinc,”ASME J. Solar Energy 129 191
Epstein, M.Olalde, G.Santen, S.Steinfeld, A.Wieckert, C. 2008 “Towards the industrial solar carbothermal production of zinc,”ASME J. Solar Energy 130 1
Berman, A.Epstein, M. 2000 “The kinetics of hydrogen production in the oxidation of liquid zinc with water vapour,”Int. J. Hydrogen Energy 25 957
Vishnevetsky, I.Epstein, M. 2007 “Production of hydrogen from solar zinc in steam atmosphere,”Int. J. Hydrogen Energy 32 2791
Vishnevetsky, I.Epstein, M. 2009 “Tin as a possible candidate for solar thermochemical redox process for hydrogen production,”ASME J. Solar Energy Eng 131 1
Vishnevetsky, I.Epstein, M.Abu-Hamed, T.Karni, J. 2008 “Boron hydrolysis at moderate temperatures: first step to solar fuel cycle for transportation,”ASME J. Solar Energy Eng 130 1
Hirsch, D.Epstein, M.Steinfeld, A. 2001 “The solar thermal decarbonization of natural gas,”Int. J. Hydrogen Energy 26 1023
Holman, A.Olsvik, O.Rokstad, O. A. 1995 “Pyrolysis of natural gas: chemistry and process concepts,”Fuel Process Technol 42 249
Kogan, A.Kogan, M.Barak, S. 2005 “Production of hydrogen and carbon by solar thermal methane splitting. III. Fluidization, entrainment and seeding particles into a volumetric solar receiver,”Int. J. Hydrogen Energy 30 35
Kogan, A.Israeli, M.Alcobi, E. 2007 “Production of hydrogen and carbon by solar thermal methane splitting. IV. Preliminary simulation of a confined tornado flow configuration by computational fluid dynamics,”Int. J. Hydrogen Energy 32 4800
Maag, G.Zanganeh, G.Steinfeld, A. 2009 “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,”Int. J. Hydrogen Energy 34 7676
Hirsch, D.Steinfeld, A. 2004 “Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor,”Int. J. Hydrogen Energy 29 47
Rodat, S.Abanades, S.Flamant, G. 2009 “High temperature solar methane dissociation in a multitubular cavity-type reactor in the temperature range 1823–2073 K,”Energy Fuels 23 2666
Dahl, J. K.Buechler, K. J.Weimer, A. W.Lewandowski, A.Bingham, C. 2004 “Solar-thermal dissociation of methane in a fluid-wall aerosol flow reactor,”Int. J. Hydrogen Energy 29 725
Muradov, N. Z. 2001 “Hydrogen via methane decomposition: and application for decarbonisation of fossil fuels,”Int. J. Hydrogen Energy 26 1165
Muradov, N. Z.Veziroğlu, T. N. 2005 “From hydrocarbon to hydrogen–carbon to hydrogen economy,”Int. J. Hydrogen Energy 30 225
Himizu, T.Kitayama, Y.Kodama, T. 2001 “Thermochemical conversion of CH4 to C2-hydrocarbons and H2 over SnO2/FeO4/SiO2 in methane–water-co-feed system,”Energy Fuels 15 463
Gregg, D. W.Taylor, R. W.Campbell, J. H. 1980 “Solar gasification of coal, activated carbon, coke and coal and biomass mixtures,”Solar Energy 25 353
Kodama, T. 2003 “High-temperature solar chemistry for converting solar heat to chemical fuels,”Prog. Energy Combustion Sci 29 567
Gregg, D. W.Aiman, W. R.Otsuki, H. HThorsness, C. B. 1980 “Solar coal gasification,”Solar Energy 24 313
Taylor, R. W.Berjoan, R.Coutures, J. P. 1983 “Solar gasification of carbonaceous materials,”Solar Energy 30 513
Kapteijn, F.Porre, H.Moulijn, J. 1986 “CO2 gasification of activated carbon catalyzed by alkaline earth elements,”AIChE J 32 691
Ohme, H.Suzuki, T. 1996 “Mechanisms of CO2 gasification of carbon catalyzed with group VIII metals, I. Iron catalyzed CO2 gasification,”Energy Fuels 10 987
Deglise, X.Lede, J. 1982 “The upgrading of the energy of biomass by thermal methods,”Int. Chem. Eng 22 631
Murray, J. P.Fletcher, E. A. 1994 “Reaction of steam with cellulose in a fluidized bed using concentrated sunlight,”Energy 19 1083
Melchior, T.Perkins, C.Lichty, P.Weimer, A. W.Steinfeld, A. 2009 “Solar-driven biochar gasification in particle-flow reactor,”Chem. Eng. Processing 48 1279
Melchior, T.Perkind, C.Weiner, A. W.Steinfeld, A. 2008 “A cavity-receiver containing tubular absorber for high-temperature thermodynamical processing using concentrated solar energy,”Int. J. Thermal Sci 47 1496
Antal, M. J.Croiset, E.Dai, X. 1996 “High-yield biomass charcoal,”Energy Fuels 10 652
Perkins, C.Weiner, A. W. 2009 “Solar thermal production of renewable hydrogen,”AIChE J 55 286
Sutton, D.Kelleher, B.Ross, J. R. H. 2001 “Review of literature on catalysts for biomass gasification,”Fuel Processing Technol 73 155
Adinberg, R.Epstein, M.Karni, J. 2004 “Solar gasification of biomass: a molten salt pyrolysis study,”J. Solar Energy Eng 126 851
Pregger, T.Graf, D.Krewitt, W. 2009 “Prospects of solar thermal hydrogen production processes,”Int. J. Hydrogen Energy 34 4256
Meier, A.Steinfeld, A. 2010 “Solar thermochemical production of fuels,”Adv. Sci. Technol 74 303