Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2011
  • Online publication date: June 2012

13 - Nuclear energy: current and future schemes

from Part 2 - Nonrenewable energy sources

Summary

Focus

Nuclear power has been a reliable source of electricity in many countries for decades, and it will be an essential component of the mix of energy sources required to meet environmental goals by reducing greenhouse-gas emissions, reducing the dependence on fossil fuels, and enabling global access to energy. Materials science will play a key role in developing options in nuclear power, including new reactors with improved safety (especially in the light of the Fukushima Daiichi nuclear accident), reliability, and efficiency; technology to help minimize proliferation (discussed in Chapter 14); and viable, safe, long-term options for waste management (discussed in Chapter 15). Such efforts will provide opportunities to address broader challenges associated with nuclear energy, including public opinion and the investment risks associated with building new nuclear power plants.

Synopsis

The energy density (i.e., the quantity of useful energy stored per unit volume) of uranium fuel used today in light-water reactors (the most prevalent type of nuclear reactor) is already orders of magnitude larger than that of other energy sources. For example, one reactor fuel pellet produces approximately as much heat energy as 150 gal of fuel oil or 1 ton of high-grade coal. Moreover, the utilization of the energy density is being increased further through improvements in fuel technology and by developments in reactor design. This chapter focuses on the materials science challenges that exist in a fission reactor, that is, those related to the nuclear fuel, the cladding, and the structural materials, which are exposed to extremely high temperatures, moderate pressures, and an intense radiation field. Technical issues that extend beyond the workings of reactors, namely nuclear non-proliferation and nuclear waste, are addressed in Chapters 14 and 15, respectively.

Related content

Powered by UNSILO
References
Hahn, O.Strassmann, F. 1938 “Concerning the existence of alkaline earth metals resulting from neutron irradiation of uranium,”Naturwissenschaften 26 755
Meitner, L.Frisch, O. R. 1939 “Disintegration of uranium by neutrons: a new type of nuclear reaction,”Nature 143 239
Fermi, E. 1946 “The development of the first chain reaction pile,”Proc. Am. Phil. Soc 90 20
Arnold, L. 1992 Windscale 1957. Anatomy of a Nuclear AccidentNew YorkSt. Martin's Press
Finn, P. 2005 Chernobyl's Harm Was Far Less Than Predicted, U.N. Report SaysWashington Post
European Nuclear Societyhttp://www.euronuclear.org/info/encyclopedia/n/nuclear-power-plant-world-wide.htm
Lester, R K.Rosner, R. 2009 “The growth of nuclear power: drivers & constraints,”Daedalus 138 19
Bohr, N.Wheeler, J. A. 1939 “The mechanism of nuclear fission,”Phys. Rev 56 426
US DOE 2010 Nuclear Energy Research and Development Roadmap, A Report to CongressUS Department of Energy, Nuclear Energy
IAEA 2005 Country Nuclear Fuel Cycle ProfilesViennaIAEA
Grimes, R. W.Nuttal, W. J. 2010 “Generating the option of a two-stage nuclear renaissance,”Science 329 799
MIT 2010 The Future of the Nuclear Fuel Cycle, An Interdisciplinary MIT StudyCambridge, MAMassachusetts Institute of Technology
Murray, R. L. 2001 Nuclear Energy. An Introduction to the Concepts, Systems, and Applications of Nuclear ProcessesBoston, MAButterworth Heinemann
Denniss, I. S.Jeapes, A. P. 1996 “Reprocessing irradiated fuel,”The Nuclear Fuel Cycle, From Ore to Waste,”Wilson, P. D.OxfordOxford University Press116
Sheffield, R. L.Pitcher, E. J. 2009 Application of Accelerators in Nuclear Waste ManagementInternational Committee for Future Accelerators Newsletter
Duderstadt, J. J.Hamilton, L. J. 1976 Nuclear Reactor AnalysisNew YorkWiley
Todreas, N. E.Kazimi, M. 1989 Nuclear Systems Volume I: Thermal Hydraulic FundamentalsNew YorkHemisphere
Todreas, N. E.Kazimi, M. 1989 Nuclear Systems Volume II: Elements of Thermal Hydraulic DesignNew YorkHemisphere
Lamarsh, J. R.Baratta, A. J. 2001 Introduction to Nuclear EngineeringEnglewood Cliffs, NJPrentice Hall
Cochran, T. B.Feiveson, H. A.Patterson, W. 2010 Fast Breeder Reactor Programs; History and StatusInternational Panel on Fissile Materials
Gougar, H. D.Petti, D. A.Wright, R. N. 2010
Buckthorpe, D. 2009 “Materials for the Very High Temperature Reactor – results and progress within the Fifth and Sixth Framework Programmes,”Adv. Mater. Res 59 243
Petti, D.Abram, T.Hobbins, R.Kendall, J. 2010
Ingersoll, D. T. 2009 “Deliberately small reactors and the second nuclear era,”Prog. Nucl. Energy 51 589
Naus, D. J. 2009 “The management of aging in nuclear power plant concrete structures,”JOM 61 35
Grimes, R. W.Konings, R. J. M.Edwards, L. 2008 “Greater tolerance for nuclear materials,”Nature Mater 7 683
Was, G. S. 2007 “Role of irradiation in stress corrosion cracking,”Radiation Effects in SolidsSickafus, K.Kotomin, E. A.Uberuaga, B. P.New YorkSpringer421
Yang, R.Cheng, B.Deshon, J.Edsinger, K.Ozer, O. 2006 “Fuel R & D to improve fuel reliability,”J. Nucl. Sci. Technol 43 951
Brinkman, J. A. 1956 “Production of atomic displacements by high-energy particles,”Am. J. Phys 24 251
Seitz, F. 1952 “Imperfections in nearly perfect crystals: a synthesis,”Imperfections in Nearly Perfect CrystalsShockley, W.New YorkWiley3
Demkowicz, M. J.Hoagland, R. G.Hirth, J. P. 2008 “Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites,”Phys. Rev. Lett 100 136102
Zinkle, S. J.Busby, J. T. 2009 “Structural materials for fission and fusion energy,”Mater. Today 12 12
Odette, G. R.Alinger, M. J.Wirth, B. D. 2008 “Recent developments in irradiation-resistant steels,”Ann. Rev. Mater. Sci 38 471
Allen, T. R.Burlet, H.Nanstad, R. K.Samaras, M.Ukai, S. 2009 “Advanced structural materials and cladding,”MRS Bull 34 20
Allen, T. R.Busby, J. T.Klueh, R. L.Maloy, S. A.Toloczko, M. B. 2008 “Cladding and duct materials for advanced nuclear recycle reactors,”JOM 60 15
Garner, F. A. 1996 “Irradiation performance of cladding and structural steels in liquid metal reactors,”Nuclear MaterialsFrost, B. R. T.WeinheimVCH Verlagsgesellschaft mbH420
Sickafus, K. E. 2007 “Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides,”Nature Mater 6 217
Kleykamp, H. 1985 “The chemical state of the fission products in oxide fuels,”J. Nucl. Mater 131 221
Matzke, H. 1980 “Gas relase mechanisms in UO2 – a critical review,”Radiat. Effects Defects Solids 53 219
Manara, D.Ronchi, C.Sheindlin, M.Lewis, M.Brykin, M. 2005 “Melting of stoichiometric and hyperstoichiometric uranium dioxide,”J. Nucl. Mater 342 148
Wirth, B. D. 2007 “How does radiation damage materials?,”Science 318 923
Bai, X. M.Voter, A. F.Hoagland, R. G.Nastasi, M.Uberuaga, B. P. 2010 “Efficient annealing of radiation damage near grain boundaries via interstitial emission,”Science 327 1631
Carroll, R. M.Sisman, O. 1966 “Fission-gas release during fissioning in UO2,”Nucl. Appl 2 142
Olander, D. R. 1976 Fundamental Aspects of Nuclear Reactor Fuel ElementsSpringfield, VA, US Department of Commerce
Devanathan, R.Van Brutzel, L.Chartier, A. 2010 “Modeling and simulation of nuclear fuel materials,”Energy Environ. Sci 3 1406
Stan, M. 2009 “Discovery and design of nuclear fuels,”Mater. Today 12 20
Catlow, C. R. A. 1978 “Fission gas diffusion in uranium dioxide,”Proc. Roy. Soc. Lond. A 364 473
Grimes, R. W.Catlow, C. R. A. 1991 “The stability of fission products in uranium dioxide,”Phil. Trans. Roy. Soc. Lond. A 335 601
van Brutzel, L.Vincent-Aublant, E. 2008 “Grain boundary influence on displacement cascades in UO2: a molecular dynamics study,”J. Nucl. Mater 377 522
Freyss, M.Petit, T.Crocombette, J. P. 2005 “Point defects in uranium dioxide: pseudopotential approach in the generalized gradient approximation,”J. Nucl. Mater 247 44
Andersson, D. A.Lezama, J.Uberuaga, B. P.Deo, C.Conradson, S. D. 2009 “Cooperativity among defect sites in AO2+ and A4O9 (A = U, Np, Pu): density functional calculations,”Phys. Rev. B 79 0241100
Stoller, R. E.Odette, G. R.Wirth, B. D. 1997 “Primary damage formation of BCC iron,”J. Nucl. Mater 251 49
Andersson, D. A.Wantanabe, T.Deo, C.Uberuaga, B. P. 2009 “Role of di-interstitial clusters in oxygen transport in UO2+ from first principles,”Phys. Rev. B 80
Stan, M.Ramirez, J. C.Cristea, P. 2007 “Models and simulations of nuclear fuel materials properties,”J. Alloys Comp 444 415
Millet, P. C.Rokkam, S.El-Azab, A.Tonks, M.Wolf, D. 2009 “Void nucleation and growth in irradiated polycrystalline metals: a phase-field model,”Modelling Simul. Mater. Sci. Eng 17 064003
Newman, C.Hansen, G.Gaston, D. 2009 “Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods,”J. Nucl. Mater 392 6
Andersson, D. A.Uberuaga, B. P.Nerikar, P. V.Unal, C.Stanek, C. R. 2011
Nerikar, P. V.Rudman, K.Desai, T. G. 2011
Nerikar, P. V.Parfitt, D. C.Andersson, D. A. 2011
Parfitt, D.Bishop, C. L.Wenman, M. R.Grimes, R. W.“Strain fields and line energies of dislocations in uranium dioxide,”J. Phys. – Condens. Matter 22 2010 175004
Carmack, J. 2010 Advanced Fuels Separate Effects Tests R&D PlanUS Department of Energy