Skip to main content Accessibility help
  • Print publication year: 2011
  • Online publication date: June 2012

35 - Lighting

from Part 5 - Energy efficiency



Electricity generation is the main source of energy-related greenhouse-gas emissions, and lighting uses one-fifth of its output. Solid-state lighting (SSL) using light-emitting diodes (LEDs) is poised to reduce this value by at least 50%, so that lighting will then use less than one-tenth of all electricity generated. The use of LEDs for lighting will provide reductions of at least 10% in fuel consumption and carbon dioxide emissions from power stations within the next 5–10 years. Even greater reductions are likely on a 10–20-year time scale.


Artificial lighting is one of the factors contributing significantly to the quality of human life. Modern light sources, such as incandescent light bulbs (a heated tungsten wire in a bulb that is evacuated or filled with inert gas) and compact fluorescent lamps (a phosphor-coated gas discharge tube), use electricity to generate light. Worldwide, grid-based electric lighting consumed about 2650 TW·h of electricity in 2005, some 19% of total global electricity consumption [1]. Using an average cost of $2.8 per megalumen-hour (Mlm·h), the International Energy Agency estimated that the energy bill for electric lighting cost end-users $234 billion and accounted for two-thirds of the total cost of electric-lighting services ($356 billion), which includes lighting equipment and labor costs as well as energy. The annual cost of grid-based electric lighting is about 1% of global gross domestic product.

Related content

Powered by UNSILO
International Energy Agency
International Energy Agency
Vos, J. J. 1978 “Colorimetric and photometric properties of a 2-deg fundamental observer,”Color Res. Appl. 3 125
Phillips, J. M.Coltrin, M. E.Crawford, M. H. 2007 “Research challenges to ultra-efficient inorganic solid-state lighting,”Laser Photon. Rev. 1 307
US Department of Energy 2009
Engelhaupt, E. 2008 “Do compact fluorescent bulbs reduce mercury pollution?,”Environ. Sci. Technol. 42 8176
Holonyak, N.Bevacqua, S. F. 1962 “Coherent (visible) light emission from Ga(As1−P) junctions,”Appl. Phys. Lett. 1 82
Nakamura, S.Sonoh, M.Mukai, T. 1993 “High-power InGaN/GaN double-heterostructure violet light emitting diodes,”Appl. Phys. Lett. 62 2390
Cree, 2010
Pope, M.Kallmann, H. P.Magnante, P. 1963 “Electroluminescence in organic crystals,”J. Chem. Phys. 38 2042
OIDA 2002 Organic Light Emitting Diodes (OLEDs) for General Illumination Update 2002Washington, DCOIDA
GE 2010
Graham, D. M.Dawson, P.Chabrol, G. R. 2007 “High photoluminescence quantum efficiency InGaN multiple quantum well structures emitting at 380 nm,”J. Appl. Phys. 101 033516
Fuhrmann, D.Retzlaff, T.Rossow, U.Bremers, H.Hangleiter, A. 2006 “Large internal quantum efficiency of In-free UV-emitting GaN/AlGaN quantum-well structures,”Appl. Phys. Lett. 88 191108
Fuhrmann, D.Rossow, U.Netzel, C. 2006 “Optimizing the internal quantum efficiency of GaInN SQW structures for green light emitters,”Phys. Status Solidi C 3 1966
Akasaka, T.Gotoh, H.Saito, T.Makimoto, T. 2004 “High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers,”Appl. Phys. Lett. 85 3089
Hangleiter, A.Huhrmann, D.Grewe, M. 2004 “Towards understanding the emission efficiency of nitride quantum wells,”Phys. Status Solidi A 201 2808
Harris, J.Someya, T.Hoshino, K.Kako, S.Arakawa, Y. 2000 “Photoluminescence of GaN quantum wells with AlGaN barriers of high aluminum content,”Phys. Status Solidi A 180 339
Sun, Y.Cho, Y.Kim, H.Kang, T. W. 2005 “High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays,”Appl. Phys. Lett. 87 093115
Oliver, R. A.Daudin, B. 2007 1967
Graham, D. M.Soltani-Vala, A.Dawson, P. 2005 “Optical and microstructural studies of InGaN/GaN single-quantum-well structures,”J. Appl. Phys. 97 103508
Galtrey, M. J.Oliver, R. A.Kappers, M. J. 2008 “Compositional inhomogeneity of high-efficiency In1−GaN based multiple quantum well ultraviolet emitters studied by three dimensional atom probe,”Appl. Phys. Lett. 92 041904
Humphreys, C. J. 2007 “Does In form In-rich clusters in InGaN quantum wells?,”Phil. Mag. 87 1971
Galtrey, M. J.Oliver, R. A.Kappers, M. J. 2007 “Three-dimensional atom probe studies of an In1−GaN/GaN multiple quantum well structure: assessment of possible indium clustering,”Appl. Phys. Lett. 90 061903
Schlotter, P.Schmidt, R.Schneider, J. 1997 “Luminescence conversion of blue light emitting diodes,”Appl. Phys. A 64 417
Mueller-Mach, R.Mueller, G. O.Krames, M. R.Trottier, T. 2002 “High-power phosphor-converted light-emitting diodes based on III-nitrides,”IEEE J. Seleted Topics Quant. Electron. 8 339
Krames, M. R.Steigerwald, D. A.Kish, F. A. 2003
Kappers, M. J.Moram, M. A.Zhang, Y. 2007 “Interlayer methods of reducing the dislocation density in gallium nitride,”Physica B: Condens. Matter 401 296
Moram, M. A.Zhang, Y.Kappers, M. J.Barber, Z. H.Humphreys, C. J. 2007 “Dislocation reduction in gallium nitride films using scandium nitride interlayers,”Appl. Phys. Lett. 91 152101
Zhao, L. X.Thrush, E. J.Humphreys, C. J.Phillips, W. A. 2008 “Degradation of GaN-based quantum well light-emitting diodes,”J. Appl. Phys. 103 024501
Newman, L. A.Walker, M. T.Brown, R. V.Cronin, T. W.Robinson, P. R. 2003 “Melanopsin forms a functional short-wavelength photopigment,”Biochemistry 42 12734
Navigant Consulting Inc and Radcliffe Advisors for the US Department of Energy 2007
US Department of Energy 2009
Cree, 2010
US Department of Energy 2010