Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T04:26:30.299Z Has data issue: false hasContentIssue false

2 - NUMERICAL DIFFERENTIATION – FINITE DIFFERENCES

Published online by Cambridge University Press:  05 June 2012

Parviz Moin
Affiliation:
Stanford University
Get access

Summary

In the next two chapters we develop a set of tools for discrete calculus. This chapter deals with the technique of finite differences for numerical differentiation of discrete data. We develop and discuss formulas for calculating the derivative of a smooth function, but only as defined on a discrete set of grid points x0, x1, …, xN. The data may already be tabulated or a table may have been generated from a complicated function or a process. We will focus on finite difference techniques for obtaining numerical values of the derivatives at the grid points. In Chapter 6 another more elaborate technique for numerical differentiation is introduced. Since we have learned from calculus how to differentiate any function, no matter how complicated, finite differences are seldom used for approximating the derivatives of explicit functions. This is in contrast to integration, where we frequently have to look up integrals in tables, and often solutions are not known. As will be seen in Chapters 4 and 5, the main application of finite differences is for obtaining numerical solution of differential equations.

Construction of Difference Formulas Using Taylor Series

Finite difference formulas can be easily derived from Taylor series expansions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dahlquist, G., and Björck, Å.Numerical Methods. Prentice-Hall, 1974, Chapter 7.Google Scholar
Lapidus, L., and Pinder, George F.Numerical Solution of Partial Differential Equations in Science and Engineering. Wiley, 1982, Chapter 2.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×