Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T05:04:46.993Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

6 - Physiology of the circulation

from Section 2 - Physiology

Tim Smith
Affiliation:
Alexandra Hospital, Redditch
Colin Pinnock
Affiliation:
Alexandra Hospital, Redditch
Ted Lin
Affiliation:
University of Leicester, NHS Trust
Robert Jones
Affiliation:
Withybush Hospital, Haverfordwest
Get access

Summary

Blood vessels

The circulation can be divided into the systemic and the pulmonary circulation. The systemic circulation receives oxygenated blood from the left side of the heart via the aorta and returns desaturated blood to the right side of the heart in the venae cavae. The desaturated blood is delivered to the pulmonary circulation from the right ventricle via the pulmonary artery to be oxygenated and to exchange carbon dioxide. Oxygenated blood is then returned to the left atrium via the pulmonary veins (Figure CR1).

Structure and function

Blood vessel walls are basically structured in three layers. The adventitia is the outer layer and is made up of connective tissue with nerve fibres. The middle layer or media is of varying thickness and contains mainly smooth muscle. The innermost layer is the intima and consists of the endothelium, basement membrane and supporting connective tissue (Figure CR2). The composition of blood vessel walls is mainly a mixture of elastic tissue, fibrous tissue and smooth muscle. This mixture again varies according to the type of vessel. The aorta walls are predominantly elastic and fibrous tissue with little smooth muscle, whereas the vena cava walls consist largely of smooth muscle and fibrous components. The composition of vessel walls reflects their function.

Figure CR3 lists functional aspects relating vessel characteristics to function.

Blood vessel diameter and wall thickness

A major factor determining thickness is mean arterial pressure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×