Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T17:15:05.560Z Has data issue: false hasContentIssue false

Elemental carbon as interstellar dust

Published online by Cambridge University Press:  03 February 2010

C. T. Pillinger
Affiliation:
Planetary Sciences Unit, Department of Earth Sciences, Open University, Milton Keynes MK7 6AA, U.K.
D. R. M. Walton
Affiliation:
University of Sussex
Get access

Summary

C60 has not yet been detected in primitive meteorites, a finding that could demonstrate its existence in the early solar nebular or as a component of presolar dust. However, other allotropes of carbon, diamond and graphite, have been isolated from numerous chondritic samples. Studies of the isotopic composition and trace element content and these forms of carbon suggest that they condensed in circumstellar environments. Diamond may also have been produced in the early solar nebula and meteorite parent bodies by both low-temperature-low–pressure processes and shock events. Evidence for the occurrence of another carbon allotrope, with sp hybridized bonding, commonly known as carbyne, is presented.

Introduction

At the same time that buckminsterfullerene was being conceived as a molecule of possible astrophysical significance, a number of much older forms of carbon were about to enjoy a new lease of life because of their discovery as presolar grains in primitive meteorites. Ever since the 1960s, it has been recognized that carbonaceous chondrites were a host for noble gases of anomalous isotopic composition (Anders 1981). The carriers of a litany of components, enjoying names such as Xe(HL) (also called CCF-Xe), s-Xe, Ne-E(L), Ne-E(H), etc., were believed to be unidentified carbon species called C, Cβ, Cα and C respectively, themselves exhibiting unusual or exotic isotopic compositions (Swart et al. 1983a; Carr et al. 1983). In 1987, C was shown to be diamond (Lewis et al. 1987) the meteorite mineral which contained Xe(HL) and nitrogen whose isotopic composition was greatly enriched in the light isotope 14N (Lewis et al. 1983).

Type
Chapter
Information
The Fullerenes
New Horizons for the Chemistry, Physics and Astrophysics of Carbon
, pp. 73 - 86
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×