Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T04:09:53.567Z Has data issue: false hasContentIssue false

Division 36.H - Southern Ocean

from Chapter 36 - Overview of Marine Biological Diversity

Published online by Cambridge University Press:  18 May 2017

United Nations
Affiliation:
Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs
Get access
Type
Chapter
Information
The First Global Integrated Marine Assessment
World Ocean Assessment I
, pp. 729 - 748
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainley, D.G. and DeMaster, D.P. (1990). The upper trophic levels in polar marine ecosystems. In Smith, W.O. Jr. (ed.), Polar Oceanography, Part B: Chemistry, biology, and geology, 599–630 Academic Press, San Diego, California.
Ainley, D.G., Ribic, C.A. and Fraser, W.R. (1992). Does prey preference affect habitat choice in Antarctic seabirds. Marine Ecology Progress Series, 90: 207–221.Google Scholar
Ainley, D.G. (2002). The Adélie Penguin: Bellwether of Climate Change. New York: Columbia University Press, 310 pp.
Ainley, D.G., Tynan, C.T., and Stirling, I. (2003). Sea ice: A critical habitat for polar marine mammals and birds. In: Thomas, D.N. and Dieckmann, G.S. (eds.) Sea Ice: An Introduction to Its Physics, Chemistry, Biology, and Geology. Oxford, Blackwell Science, 240–266, 2003.
Ainley, D.G., Ballard, G., Ackley, S., Blight, L., Eastman, J.T., Emslie, S.D., Lescroel, A., Olmastroni, S., Townsend, S.E., Tynan, C.T., Wilson, P. and Woehler, E. (2007). Paradigm lost, or is topdown forcing no longer significant in the Antarctic marine ecosystem? Antarctic Science, 19, 283-290.Google Scholar
Ainley, D.G. and Blight, L.K. (2008). Ecological repercussions of historical fish extraction from the Southern Ocean. Fish and Fisheries, 9, 1–26.Google Scholar
Ainley, D.G. and Pauly, D. (2014). Fishing down the food web of the Antarctic continental shelf and slope. Polar Record. pp.1-16. Cambridge. Cambridge University Press. doi:10.1017/S0032247412000757.
Allcock, A.L., Barratt, I., Eleaume, M., Linse, K., Norman, M.D., Smith, P.J., Steinke, D., Stevens, D.W. and Strugnell, J.M. (2011). Cryptic speciation and the circumpolarity debate: A case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Research II 58:242-249.Google Scholar
Archer, S.D., Leakey, R.J.G., Burkill, P.H., Sleigh, M.A. and Apple, C.J. (1996). Microbial ecology of sea ice at a coastal Antarctic site: community composition, biomass and temporal change. Marine Ecology Progress Series, vol. 135, 179-195.Google Scholar
Arntz, W.E., Brey, T. and Gallardo, V.A. (1994). Antarctic zoobenthos, Oceanography and Marine Biology – An Annual review, 32, 241-304.Google Scholar
Arntz, W.E., Gutt, J. and Klages, M. (1997). Antarctic marine biodiversity: an overview. In: Battaglia, B. (ed.) Antarctic communities: species, structure and survival. Cambridge University Press, 3-14.
Aronson, R.B. and Blake, D.B. (2001). Global Climate Change and The Origin of Modern Benthic Communities in Antarctica. American Zoologist, 41:27–39.Google Scholar
Atkinson, A., Siegel, V., Pakhomov, E., Rothery, P. (2004). Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432: 100–103.Google Scholar
Atkinson, A., Ward, P., Hunt, B.P.V., Pakhomov, E.A. and Hosie, G.W. (2012). An Overview of Southern Ocean Zooplankton Data: Abundance, Biomass, Feeding and Functional Relationships. CCAMLR Science, Vol. 19: 171–218.Google Scholar
Azam, F., Beers, J.R., Campbell, L., Carlucci, A.F., Holm-Hansen, O., Reis, F.M.H. and Karl, D.M. (1979). Occurrence and metabolic activity of organisms under the Ross Ice Shelf, Antarctica, at station J9. Science, 203, 451-453.Google Scholar
Azam, F., Smith, D.C. and Hollibaugh, J.T. (1991). The role of the microbial loop in Antarctic pelagic ecosystems. Polar Research, 10: 239–244.Google Scholar
Azzaro, M., La Ferla, R., Azzaro, F. (2006). Microbial respiration in the aphotic zone of the Ross Sea (Antarctica). Marine chemistry, 99 (1): 199-209.Google Scholar
Balech, E. (1968). Dinoflagellates. American Geographical Society;Antarctic Map Folio Series 10:8-9.Google Scholar
Bargagli, R. (2005). Antarctic ecosystems: environmental contamination, climate change, and human impact. Berlin: Springer, 395 pp.
Barker, P.F., Filippelli, G.M., Florindo, F., Martin, E.E. and Scher, H.D. (2007). Onset and Role of the Antarctic Circumpolar Current. Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 54, Issues 21–22, 2388–2398.Google Scholar
Barnes, D.K.A. (1995). Sublittoral epifaunal communities at Signy Island, Antarctica. II. Below the ice-foot zone. Marine Biology 121:565–572.Google Scholar
Barrera-Oro, E.R. (2002). The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarctic Science, 14 (4): 293–309.Google Scholar
Barrera-Oro, E.R. and Marschoff, E.R. (2007). Information on the status of fjord Notothenia rossii, Gobionotothen gibberifronsand Notothenia coriicepsin the lower South Shetland Islands, derived from the 2000–2006 monitoring program at Potter Cove. CCAMLR Science, 14, 83–87.Google Scholar
Behrenfeld, M.J. and Falkowski, P.G. (1997). Photosynthetic rates derived from satellite- based chlorophyll concentration. Limnology and Oceanography, 42(1): 1-20, DOI: 10.4319/lo.1997.42.1.0001.Google Scholar
Béja, O., Koonin, E.V., Aravind, L., Taylor, L.T., Seitz, H., Stein, J.L., Bensen, D.C., Feldman, R.A., Swanson, R.V., Delong, E.F. (2002). Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Applied Environmental Microbiology, 68: 335–345.Google Scholar
Bengtson, J.L., Boveng, P., Franzén, U., Have, P., Heide-Jorgensen, M.P., Harkonen, T.J. (1991). Antibodies to canine distemper virus in Antarctic Seals. Marine Mammal Science, 7 (1):85-87.Google Scholar
Bilyk, K.T. and DeVries, A.L. (2011). Heat tolerance and its plasticity in Antarctic fishes. Comparative Biochemistry and Physiology, Part A 158, 382–390.Google Scholar
Böning, C.W., Dispert, A., Visbeck, M., Rintoul, S. and Schwarzkopf, F.U. (2008). Response of the Antarctic Circumpolar Current to Recent Climate Change.” Nature Geoscience, 1: 864-69.Google Scholar
Bonner, W.N. (1984). Conservation and the Antarctic. pp.821-850.in Laws RM, ed. Antarctic Ecology. Vol. 2(15) Academic Press.
Bost, C.A., Cotté, C., Bailleul, F., Cherel, Y., Charrassin, J.B., Guinet, C., Ainley, D.G., Weimerskirch, H. (2009).The importance of oceanographic fronts to marine birds and mammals of the southern oceans. Journal of Marine Systems, 78: 363–376.Google Scholar
Boyd, I.L. (2009). Antarctic Marine Mammals in: William F., Perrin, Bernd Wursig, J.G.M. Thewissen(eds.) Encyclopedia of Marine Mammals, 2nd. Edition. Elsevier Academic Press.
Branch T., A., Matsuoka, K. and Miyashita, T. (2004). Evidence for increases in Antarctic blue whales based on Bayesian modelling. Marine Mammal Science, 20:726-754.Google Scholar
Brandt, A., De Broyer, C., Gooday, A.J., Hilbigd, B., Thomson, M.R.A. (2004). Introduction to ANDEEP (Antarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns)—a tribute to Howard L. Sanders Deep-Sea Research II, 51:1457–1465.
Branch, T.A. (2011). Humpback whale abundance south of 60°S from three complete circumpolar sets of surveys. Journal of Cetacean Research and Management, 3: 53-69.Google Scholar
Brownell, R.L. Jr. (1974). Small odontocetes of the Antarctic. In:, V.C. Bushnell (ed.) Antarctic Map Folio Series, folio 18, pp. 13-19. New York: American Geographical Society.
Buma, A.G.J., Gieskes, W.W.C, Thomsen, H. (1992). Abundance of cryptophyceae and chlorophyll b-containing organisms in the Weddell-Scotia Confluence area in the spring of 1988”. Polar Biology. 12(1):43-52.Google Scholar
Calvo, J., Morriconi, E. and Rae, G.A. (1999). Reproductive biology of the icefish Champsocephalus esox(Gunther, 1861) (Channichthyidae). Antarctic Science II (2): 140-149.Google Scholar
Catalano, G.G. Budillon, G., La Ferla, R., Povero, P., Ravaioli, M., Saggiomo, V., Accornero, A., Azzaro, M., Carrada, G.C., Giglio, F., Langone, L., Mangoni, O., Misic, C. and Modigh, M. (2010). The Ross Sea. In: K.-K., Liu L., Atkinson R., Quiňones L., Talue-McManus (eds.), Carbon and Nutrient Fluxex in Continental Margins. Springer-Verlag, The IGBP Series, 303-318.
CCAMLR (2013). Report of the Thirty-second Meeting of the Commission (CCAMLRXXXII). CCAMLR, Hobart, Australia.
Clapham, P.J., Young, S.B., Brownell Jr., R. (1999). Baleen whales: conservation issues and the status of the most endangered populations. Mammal Review, 29: 35-60.Google Scholar
Clarke, A. and Johnston, N.M. (2003). Antarctic marine benthic diversity, Oceanography and marine Biology: An Annual Review, 41, 47-114.Google Scholar
Clarke, A., Barnes, D.K.A., Hodgson, D.A. (2005). How isolated is Antarctica? Trends in Ecology and Evolution, 20 (1), 1-3.Google Scholar
Clarke, L.J. 2008. Resilience of the Antarctic moss Ceratodon purpureusto the effects of elevated UV-B radiation and climate change. PhD thesis U., Wollongong;L.S., Peck and T., Brey 1996, Nature, 380: 207-208.Google Scholar
Clements, J.F. (2000). Birds of the World: a Checklist. Cornell University Press. 880p.
Comiso, J.C. and Gordon, A.L. (1996). Cosmonaut polynya in the Southern Ocean: Structure and variability, Journal of Geophysical Research-Oceans, 101, Issue C8, 18297-18313.Google Scholar
Coria, N.R., Spairani, H., Vivequin, S. and Fontana, R. (1995). Diet of Adélie penguins Pygoscelis adeliaeduring the post-hatching period at Esperanza Bay, Antarctica, 1987/88. Polar Biology,15: 415–418.Google Scholar
Coria, N.R., Montalti, D., Rombolá, E.F., Santos, M.M., Garcia Betoño, M.I.&Juares, M.A. (2011). Birds at Laurie Island, South Orkney Islands, Antarctica: breeding species and their distribution. Marine Ornithology, 39: 207–213.Google Scholar
Croxall, J.P. and Lishman, G.S. (1987). The food and feeding ecology of penguins. In: Croxall, JP (ed.) Seabirds and role in marine ecosystems. Cambridge University Press, Cambridge, pp. 101– 133.
Croxall, J.P., Trathan, P.N., Murphy, E.J. (2002). Environmental change and Antarctic seabird populations. Science, 297(5586), 1510-1514.Google Scholar
Cullis-Suzuki and Pauly, S.D. (2010). Failing the high seas: A global evaluation of regional fisheries management organizations Marine Policy, Volume 34, Issue 5, 1036-1042.Google Scholar
Church, M.J., Delong, E.F., Ducklow, H.W., Karner, M.B., Preston, C.M. and Karl, D.M. (2003). Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography, 48: 1893–1902.Google Scholar
Dayton, P.K., Robbiliard, G.A., Paine, R.T., Dayton, L.B. (1974). Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs, 44:105–128.Google Scholar
DeBroyer, C., Danis, B. with 64 SCAR-MarBIN Taxonomic (eds.) (2011). How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Research II, 58:5–17.Google Scholar
Delille, D. and Rosiers, C. (1996). Seasonal changes of Antarctic marine bacterioplankton and sea ice bacterial assemblages. Polar Biology, 13:463-470.Google Scholar
DeLong, E.F., Wu, K.Y., Prézelin, B.B., Jovine, R.V. (1994). High abundance of Archaea in Antarctic marine picoplankton. Nature, 371: 695–697.Google Scholar
Dibb, J., Mayewski, P.A., Buck, C.F. and Drummey, S.M. (1990). Beta radiation from snow, Nature, 344 (6270), 25.Google Scholar
Ducklow, H., Carlson, C., Church, M., Kirchman, D., Smith, D. and Steward, G. (2001). The seasonal development of the bacterioplankton bloom in the Ross Sea, Antarctica, 1994–1997. Deep Sea Research II, 48: 4199–4221.Google Scholar
Ducklow, H.W., Baker, K., Martinson, D.G., Quetin, L.B., Ross, R.M., Smith, R.C., Stammerjohn, S.E., Vernet, M. and Fraser, W. (2007). Marine pelagic ecosystems: the West Antarctic Peninsula. Philosophical Transactions of the Royal Society B 362:67-94.Google Scholar
Ducklow, H., Clarke, A., Dickhut, R., Doney, S.C., Geisz, H., Huang, K., Martinson, D.G., Meredith, M.P., Moeller, H.V., Montes-Hugo, M., Schofield, O., Stammerjohn, S.E., Steinberg, D., Fraser, W. (2012). The Marine System of the Western Antarctic Peninsula, In:A.D., Rogers N.M., Johnston E.J., Murphy andA., Clarke (eds.) Antarctic Ecosystems: An Extreme Environment in a Changing World. John Wiley&Sons, Ltd, Chichester, UK. doi: 10.1002/9781444347241.ch5.
Ducklow, H.W., Fraser, W.R., Meredith, M.P., Stammerjohn, S.E., Doney, S.C., Martinson, D.G., Sailley, S.F., Schofield, O.M., Steinberg, D.K., Venables, H.J. and Amsler, C.D. (2013). West Antarctic Peninsula: An ice-dependent coastal marine ecosystem in transition. Oceanography, 26(3):190–203, http://dx.doi.org/10.5670/oceanog.2013.62.Google Scholar
Duhamel, G., Hulley, P.A., Causse, R., Koubbi, P., Vacchi, M., Pruvost, P., Vigetta, S., Irisson, J.O., Mormède, S., Belchier, M., Dettai, A., Detrich, H.W., Gutt, J., Jones, C.D., Kock, K.H., Lopez Abellan, L.J., and Van De Putte, A. (2014). Biogeographic Patterns of Fish in De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., Udekem d'Acoz, C. d', Van De Putte, A.P., Danis, B., David, B., Grant, S., Gutt, J., Held, C., Hosie, G., Huettmann, F., Post, A., Ropert-Coudert, Y. (eds.), 2014. Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, Chapter 7.
Eastman, J.T. (1995). The evolution of Antarctic fishes: questions for consideration and avenues for research. Cybium, 19, 371–389.Google Scholar
Egevang, C., Stenhouse, I.J., Phillips, R.A., Petersen, A., Fox, J.W., Silk, J.R. (2010). Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proceedings of the National Academy of Sciences, 107(5), 2078-2081.Google Scholar
EL-Sayed, S.Z. (1968a). On the productivity of the Southwest Atlantic Ocean and the waters west of the Antarctic Peninsula. Biology of the Antarctic Seas III, vol. 11:15-47.Google Scholar
EL-Sayed, S.Z. (1968b). Productivity of antarctic and subantarctic waters. American Geographical Society; Antarctic Map Folio Series 10:8-9.Google Scholar
EL-Sayed, S.Z. (1970). On the productivity of the Southern Ocean. Antarctic Ecology. M.W., Holdgate (ed.). Academic Press I, 119-135.
EL-Sayed, S.Z. and Hofmann, E. (1986). Drake Passage and Western Scotia Sea (Antarctica). In: Hovis, W.A. (ed.) Nimbus-7 CZSC coastal zone color scanner imagery for selected coastal regions. NASA, pp. 97-99.
Faranda, F.M. L., Guglielmo and A., Ianora (eds.) (2000). Ross Sea Ecology, Springer- Verlag, Berlin, 1-604.
Flores, H., Atkinson, A., Kawaguchi, S., Krafft, B.A., Milinevsky, G., Nicol, S., Reiss, C., Tarling, G.A., Werner, R., Bravo Rebolledo, E., Cirelli, V., Cuzin-Roudy, J., Fielding, S., Groeneveld, J.J., Haraldsson, M., Lombana, A., Marschoff, E., Meyer, B., Pakhomov, E.A., Rombolá, E., Schmidt, K., Siegel, V., Teschke, M., Tonkes, H., Toullec, J.Y., Trathan, P.N., Tremblay, N., Van De Putte, A.P., van Franeker, J.A., Werner, T. (2012). Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458: 1-19Google Scholar
Falguier, A. and Marteau, C. (2011). The management of the marine reserve of the Terres australes françaises (French Southern Lands). In: Duhamel, G. and Welsford, D.C. (eds.) The Kerguelen Plateau: Marine Ecosystem and Fisheries. Paris: Société française d'ichtyologie, pp. 293-296.
Forcada, J., Trathan, P.N., Reid, K., Murphy, E.J., Croxall, J.P. (2006). Contrasting population changes in sympatric penguin species in association with climate warming. Global Change Biology, 12(3), 411-423.Google Scholar
Forcada, J. and Hoffman, J.I. (2014). Climate change selects for heterozygosity in a declining fur seal population. Nature, 511: 462-465.Google Scholar
Fuhrman, J.A. and Azam, F. (1980). Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and Califomia. Applied Environmental Microbiology, 39:1085-1095.Google Scholar
Geisz, H.N., Dickhut, R.M., Cochran, M.A., Fraser, W.R. and Ducklow, H.W. (2008) Melting Glaciers: A Probable Source of DDT to the Antarctic Marine Ecosystem. Environmental Science&Technology, 2008, 42 (11), pp 3958–3962.DOI: 10.1021/es702919nGoogle Scholar
Gorny, M., Arntz, W.E., Clarke, A. and Gore, D.J. (1992). Reproductive biology of caridean decapods from the Weddell Sea. Polar Biolology 12:111-120.Google Scholar
Griffiths, H.J., Barnes, D.K.A. and Linse, K. (2009). Towards a generalized biogeography of the Southern Ocean benthos. Journal of Biogeography, 36, 162-177.Google Scholar
Gröhsler, T. (1994). Feeding habits as indicators of ecological niches: Investigations of Antarctic fish conducted near Elephant Island in late autumn/winter 1986. Archive of Fishery and Marine Research, 42, 17–34.Google Scholar
Gruber, N., Gloor, M., Mikaloff-Fletcher, S.E., Doney, S.C., Dutkiewicz, S., Follows, M.J., Gerber, M., Jacobson, A.R., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Muller, S.A., Sarmiento, J.L. and Takahashi, T. (2009). Oceanic sources, sinks and transport of atmospheric CO2. Global Biogeochemical Cycles, 23: doi: 10.1029/2008GB003349.Google Scholar
Grzymski, J.J., Carter, B.J., DeLong, E.F., Feldman, R.A., Ghadiri, A., Murray, A.E. (2006). Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Applied Environmental Microbiology, 72: 1532–1541.Google Scholar
Grzymski, J.J., Riesenfeld, C.S., Williams, T.J., Dussaq, A.M., Ducklow, H., Erickson, M., Cavicchioli, R. and Murray, A.E. (2012). A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters. The ISME Journal, 6: 1901–1915.Google Scholar
Guglielmo, L., Carrada, G.C., Catalano, G., Dell'Anno, A., Fabiano, F., Lazzara, L., Mangoni, O., Pusceddu, A. and Saggiomo, V. (2000). Structural and functional properties of sympagic communities in the annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Polar Biology, 23, 137–146.Google Scholar
Gutt, J. (2000). Some “driving forces” structuring communities of the sublittoral Antarctic macrobenthos, Antarctic Science, 12 (3), 297-313.Google Scholar
Gutt, J., Sirenko, B.I., Smirnov, I.S. and Arntz, W.E. (2004). How many macrobenthic species might inhabit the Antarctic shelf? Antarctic Science, 16, 11-16.Google Scholar
Gutt, J. (2007). Antarctic macro-zoobenthic communities: a review and an ecological classification, Antarctic Science, 109 (2), 165-182.Google Scholar
Gutt, J., Hosie, G. and Stoddart, M. (2010). Marine life in the Antarctic. In: McIntyre, A.D. (ed.). Life in the World's Oceans: Diversity, Distribution, and Abundance. Wiley-Blackwell, Oxford, UK, doi: 10.1002/9781444325508.ch11.
Gutt, J., Cape, M., Dimmler, W., Fillinger, L., Isla, E., Lieb, V., Lundälv, T. and Pulcher, C. (2013). Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula.” Polar Biology, 36, no. 6:895-906.Google Scholar
Hallberg, R. and Gnanadesikan, A. (2006). The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project. Journal of Physical Oceanography, 36: 2232-2252.Google Scholar
Hardy, A.C. and Gunther, E.R. (1935). The plankton of the South Georgia whaling grounds and adjacent waters, 1926-1927. Discovery Reports, vol. XI: 1-456.Google Scholar
Harris, C.M., Carr, R., Lorenz, K. and Jones, S. (2011). Important Bird Areas in Antarctica: Antarctic Peninsula, South Shetland Islands, South Orkney Islands – Final Report. Prepared for BirdLife International and the Polar Regions Unit of the UK Foreign&Commonwealth Office. Environmental Research&Assessment Ltd., Cambridge.
Heywood, K.J., Sparrow, M.D., Brown, J., Dickson, R.R. (1999). Frontal structure and Antarctic Bottom Water flow through the Princess Elizabeth Trough, Antarctica, Deep-Sea Research I, 46, 1181-1200.Google Scholar
Hodgson, D.A., Johnston, N.M., Caulkett, A.P., Jones, V.J. (1998). Palaeolimnology of Antarctic fur seal Arctocephalus gazellapopulations and implications for Antarctic management. Biological Conservation, 83(2): 145-154.Google Scholar
Huang, Y.M., Amsler, M.O., McClintock, J.B., Amsler, C.D., Baker, B.J. (2007). Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biology, 30(11), 1417-1430.Google Scholar
Huang, T., Sun, L., Stark, J., Wang, Y., Cheng, Z., et al. (2011). Relative Changes in Krill Abundance Inferred from Antarctic Fur Seal. PLoS ONE, 6(11): e27331. doi:10.1371/journal.pone.0027331.Google Scholar
Hucke-Gaete, R., Osman, L.P., Moreno, C.A. and Torres, D. (2004). Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology, 27: 304-311.Google Scholar
Iken, K., Amsler, C.D., Amsler, M.O., McClintock, J., Baker, B.J. (2011). Field studies on deterrent properties of phlorotannins in Antarctic brown algae. In: Wiencke, C (Ed.). Biology of Polar Benthic Algae, Marine and Freshwater Botany. Berlin/New York: Walter de Gruyter GmbH&Co. K.G.
Jefferson, T., Webber, M., Pitman, R. (2008). Marine Mammals of the World: A Comprehensive Guide to their Identification. San Diego, CA: Academic Press.
Jenouvrier, S., Weimerskirch, H., Barbraud, C., Park, Y.|H., Cazelles, B. (2005). Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate. Proceedings of the Royal Society B: Biological Sciences, 272(1566), 887-895.Google Scholar
Joiris, C.R. and Dochy, O. (2013). A major autumn feeding ground for fin whales, southern fulmars and grey-headed albatrosses around the South Shetland Islands, Antarctica. Polar Biology, 36(11), 1649-1658.Google Scholar
Karl, D.M. (1993). Microbial processes in the southern oceans. In: Friedmann, E.I. (ed.) Antarctic Microbiology, 1-63.
Kawaguchi, S., Ishida, A., King, R., Raymond, B., Waller, N., Constable, A., Nicol, S., Wakita, M., Ishimatsu, A. (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change 3:843-847.Google Scholar
Mintenbeck, K., Barrera-Oro, K.R., Brey, T., Jacob, U., Knust, R., Mark, F.C., Moreira, E., Strobel, A., Arntz, W.E. (2012). Impact of Climate Change on Fishes in Complex Antarctic Ecosystems. In Jacob, U. and Woodward, G. (eds.) Advances In Ecological Research, Vol. 46, Burlington: Academic Press, pp. 351-426.
Kennett, J.P. (1977). Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic ocean, and their impact on global paleoceanography. Journal of Geophysical Research, 82: 3843-3860.Google Scholar
Kerry, K.R. and Riddle, M. (2009). Health of Antarctic Wildlife: An Introduction. In: Kerry, K.R. and Riddle, M. (eds.). Health of Antarctic Wildlife. Springer-Verlag Berlin Heidelberg. 470 pp.
Knox, G. (2007). The biology of the Southern Ocean. Cambridge, UK: Cambridge University Press.
Kock, K.-H. (1992). Antarctic Fish and Fisheries. Cambridge University Press Cambridge, New York: 359 pp.
Kock, K.-H. (2005). Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part 1. Polar Biology, 28: 862–895.Google Scholar
Kock, K.-H. (2007). Antarctic Marine Living Resources – exploitation and its manage- ment in the Southern Ocean. Antarctic Science, 19 (2): 231–238.Google Scholar
Kock, K.-H. and Jones, C.D. (2007). Fish stocks in the southern Scotia Arc region – A review and prospects for future research. Reviews in Fisheries Science 13:75-108.Google Scholar
Kock, K.-H., Barrera-Oro, E., Belchier, M., Collins, M.A., Duhamel, G., Hanchet, S., Pshenichnov, L., Welsford, D. and Williams, R. (2012). The role of fish as predators of krill (Euphausia superba) and other pelagic resources in the Southern Ocean. CCAMLR Science, Vol. 19: 115–169.Google Scholar
Kozlov, A.N. (1995). A Review of the Trophic Role of Mesopelagic Fish of the Family Myctophidae in the Southern Ocean Ecosystem. CCAMLR Science, Vol. 2: 71-77.Google Scholar
Laws, R.M. (1977). Seals and whales of the Southern Ocean. Philosophical Transactions of the Royal Society Biological Sciences B. 279: 81-96.Google Scholar
Libertelli, M., Coria, N. and Marateo, G. (2003). Diet of the Adélie penguin during three consecutive chick rearing periods at Laurie Island. Polish Polar Research, 24: 133–142.Google Scholar
Lizotte, M.A. (2001). The Contributions of Sea Ice Algae to Antarctic Marine Primary Production. American Zoologist, 41:57–73.Google Scholar
Loeb, V., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W.Z., Trivelpiece, S. (1997). Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature, 387: 897-900.Google Scholar
Lubimova, T.G., Shust, K.V., Troyanovski, F.M. and Semenov, A.B. (1983). To the ecology of mass species of myctophids from the Antarctic Atlantic. In: Soviet Committee of Antarctic Research. The Antarctic. The Committee Report, 22: 99-106.Google Scholar
Lumpkin, R. and Speer, K. (2007). Global ocean meridional overturning, Journal of Physical Oceanography, 37, 2550-2562.Google Scholar
Lynch, H.J., Fagan, W.F., Naveen, R. (2010). Population trends and reproductive success at a frequently visited penguin colony on the western Antarctic Peninsula. Polar Biology, 33(4), 493-503.Google Scholar
Mackintosh, N.A. (1965). The stocks of whales. London: Fishing News (Books) Limited.
Maksym, T., Stammerjohn, S.E., Ackley, S.and Massom, R. (2012). Antarctic sea ice— A polar opposite? Oceanography 25(3):140–151.Google Scholar
Manganelli, M., Malfatti, F., Samo, T.J., Mitchell, B.G., Wang, H. and Azam, F. (2009). Major role of microbes in carbon fluxes during austral winter in the Southern Drake Passage. PLoS ONE, DOI: 10.1371/journal.pone.0006941.
Marschoff, E.R., Barrera-Oro, E.R., Alescio, N.S., Ainley, D.G. (2012).Slow recovery of previously depleted demersal fish at the South Shetland Islands, 1983–2010. Fisheries Research, 125– 126: 206– 213.
Matschiner, M., Hanel, R., Salzburger, W. (2011). On the origin and trigger of the notothenioid adaptive radiation. PLoS ONE, 6, e18911.Google Scholar
Mccartney, M.S. and Donohue, K.A. (2007). A deep cyclonic gyre in the Australian- Antarctic Basin, Progress in Oceanography, 75, 675-750.Google Scholar
McCook, L.J. and Chapman, A.R.O. (1993). Community succession following massive ice-scour on a rocky intertidal shore: recruitment, competition and predation during early, primary succession. Marine Biology, 115:565–575.Google Scholar
Meredith, M.P. and Hogg, A.M. (2006). Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode, Geophysical Research Letter, 33 (16): L16608, doi: 10.1029/2006GL026499.Google Scholar
Micol, T. and Jouventin, P. (2001). Long-term population trends in seven Antarctic seabirds at Pointe Géologie (Terre Adélie), Human impact compared with environmental change. Polar Biology, 24(3), 175-185.Google Scholar
Mincks, S.L., Smith, C.R. and Demaster, D.J. (2005). Persistence of labile organic matter and microbioal biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’, Marine Ecology Progress Series,300, 3-19.Google Scholar
Mincks, S.L. and Smith, C.R. (2007).Recruitment patterns in Antarctic Peninsula shelf sediments: evidence of decoupling from seasonal phytodetritus pulses. Polar Biology 30:587–600.Google Scholar
Montalti, D., Orgeira, J.L. and Di Martino, S. (1999). New records of vagrant birds in the South Atlantic and in Antarctic. Polish Polar Research, 20: 4 347-354.Google Scholar
Moore, J.K. and Abbott, M.R. (2000). Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. Journal of Geophysical Research, 105(C12), 28709–28722, doi:10.1029/1999JC000043.Google Scholar
Moreira, D., Rodríguez-Valera, F. and López-García, P. (2004). Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environmental Microbiology, 6: 959–969.Google Scholar
Murray, A.E., Preston, C.M., Massana, R., Taylor, L.T., Blakis, A., Wu, K. and Delong, E.F. (1998). Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters off Anvers Island, Antarctica, Applied and Environmental Microbiology,64, 2585-2595.Google Scholar
Murray, A.E. and Grzymski, J.J. (2007). Diversity and genomics of Antarctic marine micro-organisms, Philosophical Transactions of the Royal Society Biological Sciences, 362, 2259-2271.Google Scholar
Nicol, S., Croxall, J., Trathan, P., Gales, N. and Murphy, E. (2007). Paradigm misplaced? Antarctic marine ecosystems are affected by climate change as well as biological processes and harvesting, Antarctic Science, 19, 291-295.Google Scholar
Nicol, S., Foster, J. and Kawaguchi, S. (2012). The fishery for Antarctic krill – recent developments. Fish and Fisheries, 13:30-40.Google Scholar
Nybelin, O. (1947). Antarctic fishes. Scientific Results of the Norwegian Antarctic Expedition, 26, 1–76.Google Scholar
Olguín, H. and Alder, V.A. (2011). Species composition and biogeography of diatoms in Antarctic and Subantarctic (Argentine shelf) waters (37-76ºS). Deep-Sea Research II, Vol. 58, 139–152.Google Scholar
Orgeira, J.L. and Montalti, D. (1998). Autumn seabird observations on the South Shetland Islands. Hornero, 15 (1): 60-64. Buenos Aires. ISSN 0073-3407.Google Scholar
Orsi, A.H., Whitworth, T. and Nowling, W.D. (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research, Series I, 42, 641–673.Google Scholar
Parkinson, C.L. and Cavalieri, D.J. (2012). Antarctic sea ice variability and trends, 1979-2010 The Cryosphere, 6, 871–880.Google Scholar
Pearce, I., Davidson, A.T., Bell, E.M. and Wright, S. (2007). Seasonal changes in the concentration and metabolic activity of bacteria and viruses at an Antarctic coastal site. Aquatic Microbial Ecology,47: 11–23.Google Scholar
Pearce, D. (2008). Biodiversity of the bacterioplankton in the surface waters around Southern Thule in the Southern Ocean. Antarctic Science, 20, 291-300.Google Scholar
Phillips, R.A., Croxall, J.P., Silk, J.R.D., Briggs, D.R. (2008). Foraging ecology of albatrosses and petrels from South Georgia: two decades of insights from tracking technologies. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, S6–S21.Google Scholar
Pommier, T., Pinhassi, J. and Hagström, A. (2005). Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquatic Microbial Ecology, 41:79-89.Google Scholar
Pugh, P.J.A. and Davenport, J. (1997). Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities. Journal of Experimental Marine Biology and Ecology, 210:1–21.Google Scholar
Quartino, M.L. and Boraso, De Zaixso, A.L. (2008). Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biology, 31: 281–294.Google Scholar
Quartino, M.L., Deregibus, D., Campana, G.L., Latorre, G.E.J., Momo, F.R. (2013). Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS ONE, 8(3): e58223. doi:10.1371/ journal.pone. 0058223.Google Scholar
Ratcliffe, N. and Trathan, P. (2011). A Review of The Diet And At-Sea Distribution Of Penguins Breeding Within The Camlr Convention Area. CCAMLR Science, Vol. 18: 75–114.Google Scholar
Riaux-Gobin, C., Tréguer, P., Poulin, M. and Vétion, G. (2000). Nutrients, algal biomass and communities in land-fast ice and seawater off Adélie Land (Antarctica). Antarctic Science, 12:160-171.Google Scholar
Ribic, C.A. and Ainley, D.G. (1988). Constancy of seabird species assemblages: an exploratory look. Biological Oceanography, 6, 175-202.Google Scholar
Riesenfeld, C.S., Murray, A.E. and Baker, B.J. (2008). Characterization of the microbial community and polyketide biosynthetic potential in the Palmerolide producing tunicate, Synoicum adareanum. Journal of Natural Products, 71, 1812-1818.Google Scholar
Rintoul, S.R., Hughes, C.W. and Olbers, D. (2001). The Antarctic Circumpolar Current system. In:G., Siedler J., Church andJ., Gould (eds.), Ocean circulation and climate; observing and modelling the global ocean. International Geophysics Series, 77, 271-302. Academic Press.
Rombolá, E., Marschoff, E. and Coria, N. (2003). Comparative study of the effects of the late pack -ice break-off on chinstrap and Adélie penguins' diet and reproductive success at Laurie Island, South Orkney Islands, Antarctica. Polar Biology, 26: 41–48.Google Scholar
Rombolá, E., Marschoff, E. and Coria, N. (2006). Interannual study of chinstrap penguin's diet and reproductive success at Laurie Island, South Orkney Islands, Antarctica. Polar Biology, 29: 502–509.Google Scholar
Ropert-Coudert, Y., Hindell, M.A., Phillips, R., Charassin, J.B., Trudelle, L., Raymond, B. (2014). CHAPTER 8. Biogeographic patterns of birds and mammals. In: De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., Udekem d'Acoz, C. d', et al. (eds.). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 364-387.
Sabourenkov, E. (1991). Myctophids in the diet of Antarctic predators. Selected Scientific Papers, 1991 (SC-CAMLR-SSPI8). CCAMLR, Hobart, Australia: 335-360.
Santora, J.A. and Veit, R.R. (2013). Spatio-temporal persistence of top predator hotspots near the Antarctic Peninsula. Marine Ecology Progress Series, 487, 287-304.Google Scholar
SC-CAMLR (2013). Report of the Thirty-second Meeting of the Scientific Committe (SC-CAMLR-XXXII).CCAMLR, Hobart, Australia.
Schiaparelli, S. and Hopcroft, R. (eds.) (2011). Census of Antarctic Marine Life: Diversity and change in the Southern Oceans Ecosystems. Deep-Sea Res. II 58(1-2): 1-276.Google Scholar
Schnack-Schiel, S.B., Thomas, D., Dahms, H.-U., Haas, C. and Mizdalski, E. (1998). Copepods in Antarctic sea ice. InM.P., Lizotte andK.R., Arrigo (eds.), Antarctic Sea ice: Biological processes, interactions, and variability. Antarctic Research Series 73: 173–182.Google Scholar
Siegel, V. and Loeb, V. (1995). Recruitment of Antarctic krill Euphausia superbaand possible causes for its variability. Marine Ecology Progress Series 123: 45-56.Google Scholar
Sladen, W.J.L. (1964). The distribution of the Adelie and chinstrap penguins. Pp. 359- 365 In: Carrick, R.M.W. Holdgate and J., Prevost (eds.) Antarctic Biology. Paris: Hermann.
Smale, D.A., Barnes, D.K.A., Fraser, K.P.P., Peck, L.S. (2008). Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island, Antarctica. Marine Ecology Progress Series 355: 85–94.Google Scholar
Smith, K.L., Robison, B.H., Helly, J.H., Kaufmann, R.S., Ruhl, H.A. Shaw, T.S., Twinning, B.S. and Vernet, M. (2007). Free-drifting icebergs: Hot spots of chemical and biological enrichment in the Wedell Sea. Science, 317:478-482.Google Scholar
Smith, N.R., Dong, Z. Kerry, K.R. and Wright, S. (1984). Water masses and circulation in the region of PrydzBay, Antarctica, Deep-sea Research, 31: 1121-1147.Google Scholar
Smith, W.O. and Comiso, J.C. (2008). Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. Journal of Geophysical Research, 113, C05S93, doi:10.1029/2007JC004251.Google Scholar
Smith, W.O., Peloquin, J.A. and Karl, D.M. (2010). Antarctic Continental Margins. In: K.-K., Liu, L., Atkinson, R., Quiñones, L., Talue-McManus (eds.), Carbon and Nutrient Fluxes in Continental Margins. Springer –Verlag, The IGBP Series, 318-330.
Southwell, C., Bengtson, J., Bester, M., Blix, A.S., Bornemann, H., Boveng, P., Cameron, M., Forcada, J., Laake, J., Nordøy, E., Plötz, J., Rogers, T., Southwell, D., Steinhage, D., Stewart, B.S. and Trathan, P. (2012). A review of data on abundance, trends in abundance, habitat use and diet of ice-breeding seals in the Southern Ocean. CCAMLR Science, Vol. 19: 49–74.Google Scholar
Speer, K., Rintoul, S.R. and Sloyan, B. (2000). The diabatic Deacon cell. Journal of Physical Oceanography, 30: 3212–3222.Google Scholar
Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Yuan, X., Rind, D. (2008). Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research, 113: C03S90.Google Scholar
Steinberg, D.K., Martinson, D.G. and Costa, D.P. (2012). Two decades of pelagic ecology of the western Antarctic Peninsula. Oceanography, 25:56-67.Google Scholar
Strugnell, J.M., Rogers, A.D., Prodohl, P.A., Collins, M.A., and Allcock, A.L. (2008). The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics, 24:108.Google Scholar
Strugnell, J., Cherel, Y., Cooke, I.R., Gleadall, I.G., Hochberg, F.G., Ibáñez, C.M., Jorgensen, E., Laptikhovsky, V.V., Linse, K., Norman, M., Vecchione, M., Voight, J.R. and Allcock, A.L. (2011). The Southern Ocean: source and sink? Deep Sea Research II. 58:196-204.Google Scholar
Strutton, P.G., Lovenduski, N.S., Mongin, M., Matear, R. (2012). Quantification of Southern Ocean Phytoplankton Biomass and Primary Productivity via Stellite Observations and Biogeochemical Model, CCAMLR Science, 19: 247-265.Google Scholar
Suarez, J.L. (1927). Rapport au Conseil de la Société des Nations. Exploitation des Richesses de la Mer. Publications de la Société des Nations V. Questions Juridiques. V.1. 120:125.
Tate Regan, C. (1914). Fish. British Antarctic (Terra Nova) Expedition 1910. Natural History Report. Zoology, 1, 125-156.Google Scholar
Thatje, S. and Fuentes, V. (2003). First record of anomuran and brachyuran larvae (Crustacea: Decapoda) from Antarctic waters, Polar Biology 26 (4): 279-282.Google Scholar
Thomas, D.N. and Dieckmann, G.S. (2003). Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Wiley-Blackwell, 1-416.
Trathan, P.N. Ratcliffe and Masden, E.A. (2012). Ecological drivers of change at South Georgia: the krill surplus, or climate variability. Ecography, 35: 983–993.Google Scholar
Trathan, P.N., Grant, S.M., Siegel, V. and Kock, K.-H. (2013). Precautionary spatial protection to facilitate the scientific study of habitats and communities under ice shelves in the context of recent, rapid, regional climate change. CCAMLR Science, Vol. 20: 139–151.Google Scholar
Tréguer, P. and Jacques, G. (1992). Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Polar Biology, 12:149-162.
Trivelpiece, W.Z., Hinke, J.T., Miller, A.K., Reiss, C.S., Trivelpiece, S.G.,&Watters, G.M. (2011). Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy of Sciences, 108(18), 7625-7628.Google Scholar
Tuck, G.N., Polacheck, T. and Bulman, C.M. (2003). Spatio-temporal trends of longline fishing effort in the Southern Ocean and implications for seabird bycatch. Biological Conservation, 114(1), 1-27.Google Scholar
Turner, J., Bindschadler, R.A., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D., Mayewski, P. and Summerhayes, C. (eds.) (2009). Antarctic Climate Change and the Environment. Scientific Committee on Antarctic Research, Cambridge, 526 p.
UNEP (2002). Regionally Based Assessment of Persistent Toxic Substances. Antarctica Regional Report, Global Evironoment Facitiy.
Vacchi, M., DeVries, A.L., Evans, C.W., Bottaro, M., Ghigliotti, L., Cutroneo, L. and Pisano, E. (2012). A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biology, 35, 1573-1585.Google Scholar
Vecchione, M., Piatkowski, U. and Allcock, A.L. (1998). Biology of the cirrate octopod Grimpoteuthis glacialis (Cephalopoda; Opisthoteuthidae) in the South Shetland Islands, Antarctica. South African Journal of Marine Science 20:421-428.Google Scholar
Vecchione, M., Piatkowski, U., Allcock, A.L., Jorgensen, E. and Barratt, I. (2009). Persistent elevated abundance of octopods in an overfished Antarctic area. pp. 197-203. In: Krupnik, I. et al. (eds.) Smithsonian at the Poles: Contributions to International Polar Year Science. Smithsonian Institution Scholarly Press, Washington, DC.
Vernet, M., Martinson, D., Iannuzzi, R., Stammerjohn, S., Kozlowski, W., Sines, K., Smith, R.C. and Garibotti, I. (2008). Primary production within the sea-ice zone west of the Antarctic Peninsula: I—Sea ice, summer mixed layer, and irradiance. Deep Sea Research Part II, 55:2,068–2,085, http://dx.doi.org/10.1016/j.dsr2.2008.05.021.Google Scholar
Vernet, M., Smith, K.L., Cefarelli, A.O., Helly, J.J., Kaufmann, R.S., Lin, H., Long, D.G., Murray, A.E., Robison, B.H., Ruhl, H.A., Shaw, T.J., Sherman, A.D., Sprintall, J., Stephenson, G.R., Stuart, K.M. and Twinning, B.S. (2012). Islands of ice: Influence of free-drifting icebergs on pelagic marine ecosystems. Oceanography, 25:38-39.Google Scholar
Wang, Z. and Meredith, M.P. (2008). Density-driven Southern Hemisphere subpolar gyres in coupled climate models, Geophysical Research Letters, 35(14) 5, pp. 10.1029/2008GL034344.Google Scholar
Webster, N.S., Smith, L.D., Heyward, A.J., Watts, J.E., Webb, R.I, Blackall, L.L., Negri, A.P. (2004). Metamorphosis of a scleractinian coral in response to microbial biofilms. Applied and Environmental Microbiology 70 (2): 1213-1221.Google Scholar
Webster, N.S. and Bourne, D. (2007). Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum, Fems. Microbiol Ecology, 59, 81-94.Google Scholar
Weimerskirch, H., Inchausti, P., Guinet, C., Barbraud, C. (2003). Trends in bird and seal populations as indicators of a system shift in the Southern Ocean. Antarctic Science, 15(2), 249-256.Google Scholar
Welsford, D.C., Constable, A.J. and Nowara, G.B. (2011). The Heard Island and Mc- Donald Islands Marine Reserve and Conservation Zone – A model for Southern Ocean Marine Reserves? In: Duhamel, G. and Welsford, D.C. (eds.) The Kerguelen Plateau: Marine Ecosystem and Fisheries. Paris: Société française d'ichtyologie, pp. 297-304.
White, M.G. (1984). Marine benthos. In: Laws, R.M. (ed.) Antarctic Ecology. Vol. 2. Academic Press, London, 421-461.
Wienecke, B.C. and Robertson, G. (1997). Foraging space of emperor penguins Aptenodytes forsteri in Antarctic shelf waters in winter. Marine Ecology-Progress Series 159, 249–263.
Wiencke, B.C. and Clayton, M.N. (2002). Antarctic Seaweeds, In: J.W., Wägele and J., Sieg (eds.) Synopses of the Antarctic Benthos. Ruggell: Gantner ; Königstein: Koeltz Scientific Books., 239 p.
Wiencke, B.C. and Amsler, C.D. (2012). Seaweeds and their communities in polar regions. In: Wiencke, C. and K., Bischof (eds.) Seaweed Biology, pp.265-291, Springer, Berlin Heidelberg.
Woehler, E.J., Cooper, J., Croxall, J.P., Fraser, W.R., Kooyman, G.L., Miller, G.D., Nel, D.C., Patterson, D.L., Peter, H.-U., Ribic, C.A., Salwicka, K., Trivelpiece, W.Z., Weimerskirch, H. (2001). A statistical assessment of the status and trends of Antarctic and Subantarctic seabirds. SCAR.
Wulff, A., Iken, K., Quartino, M.L., Al-Handal, A., Wiencke, C., Clayton, M.N. (2011). Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. (Capítulo 3, 23-52). In: Wiencke, C. (ed.) Biology of Polar Benthic Algae. De Gruyter, Berlin. pp. 23-52.
Yakimov, M.M., Giuliano, L., Gentile, G., Crisafi, E., Chernikova, T.N., Abraham, W.R., Lünsdorf, H., Timmis, K.N. and Golyshin, P.N. (2003). Oleispira antarcticagen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. International Journal of Systematic and Evolutionary Microbiology, 53: 779–785.Google Scholar
Zacher, K., Rautenberger, R., Hanelt, D., Wulff, A., Wiencke, C. (2009). The abiotic environment of polar marine benthic algae. Botanica Marina, 52(6), 483-490.Google Scholar
Zimmer, I., Wilson, R.P., Gilbert, C., Beaulieu, M., Ancel, A., Plötz, J. (2008). Foraging movements of emperor penguins at Pointe Géologie, Antarctica. Polar Biology, 31, 229–243.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Southern Ocean
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.046
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Southern Ocean
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.046
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Southern Ocean
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.046
Available formats
×