Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T23:22:19.619Z Has data issue: false hasContentIssue false

8 - Packings and Coverings by Unit Balls

from Part 2 - Arrangements in Higher Dimensions

Published online by Cambridge University Press:  12 September 2009

Károly Böröczky, Jr
Affiliation:
Hungarian Academy of Sciences, Budapest
Get access

Summary

We start this chapter by discussing the Newton number: the maximal number of nonoverlapping unit balls in ℝd touching a given unit ball. The three-dimensional case was the subject of the famous debate between Isaac Newton and David Gregory, and it was probably the first finite packing problem in history.

In the later part of the chapter, optimality of a finite packing of n unit balls means that the volume or some mean projection of the convex hull is minimal. If the dimension d is reasonably large then the packing minimizing the volume of the convex hull is the sausage; namely, the centres are collinear. However, if some mean projection is considered then the convex hull of the balls in an optimal arrangement is essentially some ball for large n in any dimension. For the mean width, we also verify that, in the optimal packing of d + 1 balls, the centres are vertices of a regular simplex.

Concerning optimal coverings of compact convex sets by n unit balls in, mostly conjectures are known; namely, it is conjectured that the optimal coverings are sausage-like (see Section 8.6). However, sound density estimates will be provided when a larger ball is covered by unit balls.

In this chapter only a few proofs are provided because the arguments either use the linear programming bound (6.1) or are presented in Chapter 7 for packings and coverings by congruent copies of a given convex body.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×