Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T13:50:55.013Z Has data issue: false hasContentIssue false

16 - Sharks – Elasmobranch Cognition

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

Sharks as a model animal cannot be considered a ‘typical fish.’ They are part of a highly diverse group of marine vertebrates known as the cartilaginous fishes (Chondrichthyes), which evolved independently of bony fishes (Osteichthyes) about 400 million years ago. Sharks range from planktivores to apex predators, are typically large-bodied, exhibit diverse reproductive modes, have long life spans, display ontogenetic shifts in diet and habitat preference and have widespread variation in brain size and complexity. Given the above characteristics, it is not surprising that studies exploring shark cognition are relatively few. However, in recent years substantial progress has been made, with a focus on small-bodied sharks such as bamboo, cat, lemon and horn sharks that can be maintained and monitored successfully in captivity. Importantly, this improvement in our understanding is also paralleled by advances in biotelemetry and bio-logging techniques. In this chapter, we explore the challenges that researchers face when working with sharks, but also highlight the advantages and advocate the importance of sharks as models for better understanding the link between ecology and cognition.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 354 - 380
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ashwell, K. W. S. (2013). Reflections: monotreme neurobiology in context. Neurobiology of monotremes: brain evolution in our distant mammalian cousins (pp. 285298). Collingwood: CSIRO Publishing.CrossRefGoogle Scholar
Augee, M. L., and Gooden, B. A. (1992). Evidence for electroreception from field studies of the echidna, Tachyglossus aculeatus. In Platypus and echidnas (pp. 211215). Mosman: Royal Zoological Society of New South Wales.Google Scholar
Buchmann, O. L. K., and Rhodes, J. (1978). Instrumental learning in the echidna. The Australian Zoologist, 20, 131145.Google Scholar
Burke, D., Cieplucha, C., Cass, J., Russell, F., and Fry, G. (2002). Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus). Animal Cognition, 5, 7984.CrossRefGoogle ScholarPubMed
Gates, G. R. (1978). Vision in the monotreme anteater. In: Monotreme biology (pp. 147169). Mosman: Royal Zoological Society of New South Wales.Google Scholar
Harris, R. L., Davies, N. W., and Nicol, S. C. (2012). Chemical composition of odorous secretions in the Tasmanian short-beaked echidna (Tachyglossus aculeatus setosus). Chemical Senses, 37, 819836.CrossRefGoogle ScholarPubMed
Manger, P. R., and Pettigrew, J. D. (1995). Electroreception and the feeding behaviour of platypus (Ornithorhynchus anatinus: Monotremata: Mammalia). Philosophical Transactions of the Royal Society B: Biological Sciences, 347, 359381.Google Scholar
Nicol, S. C. (2017). Energy homeostasis in monotremes. Frontiers in Neuroscience, 11, 117.CrossRefGoogle ScholarPubMed
Pettigrew, J. D. (1999). Electroreception in monotremes. The Journal of Experimental Biology, 202, 14471454.CrossRefGoogle ScholarPubMed
Saunders, J. C., Teague, J., Slonim, D., and Pridmore, P. A. (1971). A position habit in the monotreme Tachyglossus aculeatus (the spiny ant eater). Australian Journal of Psychology, 23, 4751.CrossRefGoogle Scholar

References

Clua, E., Buray, N., Legendre, P., Mourier, J., and Planes, S. (2010). Behavioural response of sicklefin lemon sharks Negaprion acutidens to underwater feeding for ecotourism purposes. Marine Ecology Progress Series, 414, 257266.CrossRefGoogle Scholar
Cooke, S. J., Midwood, J. D., Thiem, J. D., et al. (2013). Tracking animals in freshwater with electronic tags: past, present and future. Animal Biotelemetry, 1, 119.CrossRefGoogle Scholar
Guttridge, T. L., and Brown, C. (2014). Learning and memory in the Port Jackson shark, Heterodontus portusjacksoni. Animal Cognition, 17, 415425.CrossRefGoogle ScholarPubMed
Guttridge, T. L., Gruber, S. H., Krause, J., and Sims, D. W. (2010). Novel acoustic technology for studying free-ranging shark social behaviour by recording individuals’ interactions. PLoS ONE, 5, 18.CrossRefGoogle ScholarPubMed
Holland, K. N., Meyer, C. G., and Dagorn, L. C. (2010). Inter-animal telemetry: results from first deployment of acoustic ‘business card’ tags. Endangered Species Research, 10, 287293.CrossRefGoogle Scholar
Hussey, N. E., Kessel, S. T., Aarestrup, K., et al. (2015). Aquatic animal telemetry: a panoramic window into the underwater world. Science, 348, 1255642.CrossRefGoogle ScholarPubMed
Jacoby, D. M. P., Busawon, D. S., and Sims, D. W. (2010). Sex and social networking: the influence of male presence on social structure of female shark groups. Behavioral Ecology, 21, 808818.CrossRefGoogle Scholar
Jacoby, D. M. P., Papastamatiou, Y. P., and Freeman, R. (2016). Inferring animal social networks and leadership: applications for passive monitoring arrays. Journal of The Royal Society Interface, 13, 20160676.CrossRefGoogle ScholarPubMed
Kays, R., Crofoot, M. C., Jetz, W., and Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. Science, 348, aaa2478.CrossRefGoogle ScholarPubMed
Krause, J., Krause, S., Arlinghaus, R., Psorakis, I., Roberts, S., and Rutz, C. (2013). Reality mining of animal social systems. Trends in Ecology and Evolution, 28, 541551.CrossRefGoogle ScholarPubMed
Olden, J. D., Lawler, J. J., and Poff, N. L. (2008). Machine learning methods without tears: a primer for ecologists. The Quarterly Review of Biology, 83, 171193.CrossRefGoogle ScholarPubMed
Wilson, A. D. M., Brownscombe, J. W., Krause, J., et al. (2015). Integrating network analysis, sensor tags, and observation to understand shark ecology and behavior. Behavioral Ecology, 26, 15771586.CrossRefGoogle Scholar
Yopak, K. E. (2012). Neuroecology of cartilaginous fishes: the functional implications of brain scaling. Journal of Fish Biology, 80, 19682023.CrossRefGoogle ScholarPubMed

References

Ari, C. (2011). Encephalization and brain organization of mobulid rays (Myliobatiformes, Elasmobranchii) with ecological perspectives. The Open Anatomy Journal, 3, 113.CrossRefGoogle Scholar
Armansin, N. C., Lee, K. A., Huveneers, C., and Harcourt, R. G. (2016). Integrating social network analysis and fine-scale positioning to characterize the associations of a benthic shark. Animal Behaviour, 115, 245258.CrossRefGoogle Scholar
Aronson, L. R., Aronson, F. R., and Clark, E. (1967). Instrumental conditioning and light-dark discrimination in young nurse sharks. Bulletin of Marine Science, 17, 249256.Google Scholar
Bell, C., Bodznick, D., Montgomery, J., and Bastian, J. (1997). The generation and subtraction of sensory experiments within cerebellar-like structures. Brain, Behaviour and Evolution, 50, 1731.CrossRefGoogle Scholar
Bodznick, D., Montgomery, J., and Carey, M. (1999). Adaptive mechanisms in the elasmobranch hindbrain. Journal of Experimental Biology, 22, 13571364.CrossRefGoogle Scholar
Brown, C. (2001). Familiarity with the test environment improves the escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Animal Cognition, 4, 109113.CrossRefGoogle Scholar
Brown, C. (2012). Tool use in fishes. Fish Fisheries, 13, 105115.CrossRefGoogle Scholar
Byrnes, E. E., and Brown, C. (2016). Individual personality differences in Port Jackson sharks Heterodontus portusjacksoni. Journal of Fish Biology, 89, 11421157.CrossRefGoogle ScholarPubMed
Byrnes, E. E., Vila-Pouca, C., and Brown, C. (2016a). Laterality strength is linked to stress reactivity in Port Jackson sharks (Heterodontus portusjacksoni). Behavioural Brain Research, 305, 239246.CrossRefGoogle ScholarPubMed
Byrnes, E. E., Pouca, C. V., Chambers, S. L., and Brown, C. (2016b). Into the wild: developing field tests to examine the link between elasmobranch personality and laterality. Behaviour, 153, 17771793.CrossRefGoogle Scholar
Casey, J. G., and Natanson, L. J. (1992). Revised estimates of age and growth of the sandbar shark (Carcharhinus plumbeus) from the western North Atlantic. Canadian Journal of Fisheries and Aquatic Sciences, 49, 14741477.CrossRefGoogle Scholar
Collin, S., Kempster, R., and Yopak, K. (2015). Sensing the environment. In Physiology of elasmobranch fishes (pp. 1999). New York, NY: Elsevier.Google Scholar
Dulvy, N. K., and Reynolds, J. D. (1997). Evolutionary transitions among egg-laying, live-bearing, and maternal inputs in sharks and rays. Proceedings of the Royal Society of London B: Biological Sciences, 264, 13091315.CrossRefGoogle Scholar
Ezcurra, J. M., Lowe, C. G., Mollet, J. F., Ferry, L. A., and O’Sullivan, J. B. (2012). Captive feeding and growth of young-of-the-year white sharks, Carcharodon carcharias, at the Monterey Bay Aquarium. In Global perspectives on the biology and life history of the great white shark research (Carcharodon carcharias) (pp. 316). Boca Raton, FL: Taylor & Francis.CrossRefGoogle Scholar
Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R., and Lotze, H. K. (2010). Patterns and ecosystem consequences of shark declines in the ocean. Ecology Letters, 13, 10551071.CrossRefGoogle ScholarPubMed
Finger, J. S., Dhellemmes, F., Guttridge, T. L., Kurvers, R. H. J. M., Gruber, S. H., and Krause, J. (2016). Rate of movements of juvenile lemon sharks in a novel open field, are we measuring activity or reaction to novelty? Animal Behaviour, 116, 7582.CrossRefGoogle Scholar
Finger, J. S., Dhellemmes, F., and Guttridge, T. L. (2017). Personality in elasmobranchs with a focus on sharks: early evidence, challenges, and future directions. In Personality in non-human animals (pp. 129152). Cham: Springer.CrossRefGoogle Scholar
Finger, J. S., Guttridge, T. L., Wilson, A. D. M., Gruber, S. H., and Krause, J. (2018). Are some sharks more social than others? Short and long-term consistency in the social behaviour of juvenile lemon sharks. Behavioural Ecology and Sociobiology, 72, 17.CrossRefGoogle Scholar
Fuss, T., and Schluessel, V. (2015). Something worth remembering: Visual discrimination in sharks. Animal Cognition, 18, 463471.CrossRefGoogle ScholarPubMed
Fuss, T., and Schluessel, V. (2017). The Ebbinghaus illusion in the gray bamboo shark (Chiloscyllium griseum) in comparison to the teleost damselfish (Chromis chromis). Zoology, 123, 1629.CrossRefGoogle Scholar
Fuss, T., Bleckmann, H., and Schluessel, V. (2014a). Place learning prior to and after telencephalon ablation in bamboo and coral cat sharks (Chiloscyllium griseum and Atelomycterus marmoratus). Journal of Comparative Physiology, 200, 3752.CrossRefGoogle ScholarPubMed
Fuss, T., Bleckmann, H., and Schluessel, V. (2014b). The shark Chiloscyllium griseum can orient using turn responses before and after partial telencephalon ablation. Journal of Comparative Physiology, 200, 1935.CrossRefGoogle ScholarPubMed
Fuss, T., Bleckmann, H., and Schluessel, V. (2014c). Visual discrimination abilities in the gray bamboo shark (Chiloscyllium griseum). Zoology, 117, 104111.CrossRefGoogle ScholarPubMed
Fuss, T., Bleckmann, H., and Schluessel, V. (2014d). The brain creates illusions not just for us: sharks (Chiloscyllium griseum) can “see the magic” as well. Frontiers of Neural Circuits, 8, 24.CrossRefGoogle Scholar
Fuss, T., Russnak, V., Stehr, K., and Schluessel, V. (2017). World in motion: perception and discrimination of movement in grey bamboo sharks (Chiloscyllium griseum). Animal Behavior and Cognition, 4, 223241.CrossRefGoogle Scholar
Gage, F. (2002). Neurogenesis in the adult brain. Journal of Neuroscience, 22, 612613.CrossRefGoogle ScholarPubMed
Gardiner, J. M., Hueter, R. E., Maruska, K. P., et al. (2012). Sensory physiology and behavior of elasmobranchs. In Biology of sharks and their relatives (pp. 349402). New York, NY: CRC Press.Google Scholar
Gardiner, J. M., Atema, J., Hueter, R. E., and Motta, P. J. (2014). Multisensory integration and behavioral plasticity in sharks from different ecological niches. PLoS ONE, 9(4), e93036.CrossRefGoogle ScholarPubMed
Gonda, A. I., Herczeg, G. B., and Merila, J. (2013). Evolutionary ecology of intraspecific brain size variation: a review. Ecology and Evolution, 3, 27512764.CrossRefGoogle ScholarPubMed
Graeber, R. C. (1978). Behavioral studies correlated with central nervous system integration of vision in sharks. In Sensory biology of sharks, skates, and rays (pp. 195225). Washington, DC: Government Printing Office.Google Scholar
Graeber, R. C. (1980). Telencephalic function in elasmobranchs. In: Comparative neurology of the telencephalon (pp. 1739). Boston, MA: Springer.CrossRefGoogle Scholar
Graeber, R. C., and Ebbesson, S. O. E. (1972). Visual discrimination learning in normal and tectal-ablated nurse sharks (Ginglymostoma cirratum). Comparative Biochemistry and Physiology, 42, 131139.CrossRefGoogle ScholarPubMed
Graeber, R. C., Ebbesson, S. O. E., and Jane, J. A. (1973). Visual discrimination in sharks without optic tectum. Science, 180, 413415.CrossRefGoogle ScholarPubMed
Graeber, R. C., Schroeder, D. M., Jane, J. A., and Ebbesson, S. O. E. (1978). Visual discrimination following partial telencephalic ablations in nurse sharks (Ginglymostoma cirratum). Journal of Comparative Neurology, 180, 325344.CrossRefGoogle ScholarPubMed
Grogan, E. D., Lund, R., and Greenfest-Allen, E. (2012). The origin and relationships of early Chondrichthyans. In Biology of sharks and their relatives (pp. 329). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Grubbs, R. (2010). Ontogenetic shifts in movements and habitat use. In Sharks and their relatives II: biodiversity, adaptive physiology, and conservation (pp. 319350). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Gruber, S. H., and Schneiderman, N. (1975). Classical conditioning of the nictitating membrane response of the lemon shark (Negaprion brevirostris). Behavior Research Methods, 7, 430434.CrossRefGoogle Scholar
Gruber, S. H., De Marignac, J. R., and Hoenig, J. M. (2001). Survival of juvenile lemon sharks at Bimini, Bahamas, estimated by mark–depletion experiments. Transactions of the American Fisheries Society, 130, 376384.2.0.CO;2>CrossRefGoogle Scholar
Guttridge, T. L., and Brown, C. (2014). Learning and memory in the Port Jackson shark, Heterodontus portusjacksoni. Animal Cognition, 17, 415425.CrossRefGoogle ScholarPubMed
Guttridge, T. L., Myrberg, A. A., Porcher, I. F., Sims, D. W., and Krause, J. (2009a). The role of learning in shark behavior. Fish Fisheries, 10, 450469.CrossRefGoogle Scholar
Guttridge, T. L., Gruber, S. H., Gledhill, K. S., Croft, D. P., Sims, D. W., and Krause, J. (2009b). Social preferences of juvenile lemon sharks Negaprion brevirostris. Animal Behaviour, 78, 543548.CrossRefGoogle Scholar
Guttridge, T. L., Gruber, S. H., DiBattista, J. D., et al. (2011). Assortative interactions and leadership in a free-ranging population of juvenile lemon shark Negaprion brevirostris. Marine Ecology Progress Series, 423, 235245.CrossRefGoogle Scholar
Guttridge, T. L., van Dijk, S., Stamhuis, E. J., Krause, J., Gruber, S. H., and Brown, C. (2013). Social learning in juvenile lemon sharks Negaprion brevirostris. Animal Cognition, 16, 5564.CrossRefGoogle ScholarPubMed
Harahush, B., Hart, N., and Collin, S. (2014). Ontogenetic changes in retinal ganglion cell distribution and spatial resolving power in the brown-banded bamboo shark Chiloscyllium punctatum (Elasmobranchii). Brain Behavior and Evolution, 83, 286300.CrossRefGoogle ScholarPubMed
Helfman, G., Collette, B., and Facey, D. (1997). The diversity of fishes. Oxford: Blackwell Science.Google Scholar
Herbert-Read, J. E., Perna, A., Mann, R. P., Schaerf, T. M., Sumpter, D. J. T., and Ward, A. J. W. (2011). Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy of Sciences, 108, 1872618731.CrossRefGoogle ScholarPubMed
Hofmann, M. H., and Northcutt, R. G. (2012). Forebrain organization in elasmobranchs. Brain, Behaviour and Evolution, 80, 142151.CrossRefGoogle ScholarPubMed
Hussey, N. E., Kessel, S. T., Aarestrup, K., et al. (2015). Aquatic animal telemetry: a panoramic window into the underwater world. Science, 348, 1255642.CrossRefGoogle ScholarPubMed
Jacoby, D. M., Croft, D. P., and Sims, D. W. (2012a). Social behaviour in sharks and rays: analysis, patterns and implications for conservation. Fish and Fisheries, 13, 399417.CrossRefGoogle Scholar
Jacoby, D. M. P., Sims, D. W., and Croft, D. P. (2012b). The effect of familiarity on aggregation and social behaviour in juvenile small spotted catsharks Scyliorhinus canicula. Journal of Fish Biology, 81, 15961610.CrossRefGoogle ScholarPubMed
Jacoby, D. M. P., Fear, L. N., Sims, D. W., and Croft, D. P. (2014). Shark personalities? Repeatability of social network traits in a widely distributed predatory fish. Behavioral Ecology and Sociobiology, 68, 19952003.CrossRefGoogle Scholar
Kajiura, S. M. (2003). Electroreception in neonatal bonnethead sharks, Sphyrna tiburo. Marine Biology, 143, 603611.CrossRefGoogle Scholar
Keller, B., Finger, J.-S., Gruber, S. H., Abel, D. C., and Guttridge, T. L. (2017). The effects of familiarity on the social interactions of juvenile lemon sharks, Negaprion brevirostris. Journal of Experimental Marine Biology, 489, 2431.CrossRefGoogle Scholar
Kempster, R., Hart, N., and Collin, S. (2013). Survival of the stillest: predator avoidance in shark embryos. PLoS ONE, 8, e52551.CrossRefGoogle ScholarPubMed
Kimber, J. A., Sims, D. W., Bellamy, P. H., and Gill, A. B. (2011). The ability of a benthic elasmobranch to discriminate between biological and artificial electric fields. Marine Biology, 158, 18.CrossRefGoogle Scholar
Kimber, J. A., Sims, D. W., Bellamy, P. H., and Gill, A. B. (2014). Elasmobranch cognitive ability: using electroreceptive foraging behaviour to demonstrate learning, habituation and memory in a benthic shark. Animal Cognition, 17, 5565.CrossRefGoogle Scholar
Kotrschal, A., van Staaden, M. J., and Huber, R. (1998). Fish brains: evolution and environmental relationships. Reviews in Fish Biology and Fisheries, 8, 373408.CrossRefGoogle Scholar
Kotrschal, A., Rogell, B., Bundsen, A., et al. (2013). Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Current Biology, 23, 168171.CrossRefGoogle ScholarPubMed
Kuba, M. J., Byrne, R. A., and Burghardt, G. M. (2010). A new method for studying problem solving and tool use in stingrays (Potamotrygon castexi). Animal Cognition, 13, 507513.CrossRefGoogle ScholarPubMed
Lema, S. C., Hodges, M. J., Marchetti, M. P., and Nevitt, G. A. (2005). Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate. Comparative Biochemistry and Physiology A, 141, 327335.CrossRefGoogle ScholarPubMed
Lieberman, D. A. (1990). Learning: behaviour and cognition. Belmont, CA: Wadsworth.Google Scholar
Lisney, T. J., Bennett, M. B., and Collin, S. P. (2007). Volumetric analysis of sensory brain areas indicates ontogenetic shifts in the relative importance of sensory systems in elasmobranchs. Raffles Bulletin of Zoology, 14, 715.Google Scholar
Lisney, T. J., Theiss, S. M., Collin, S. P., and Hart, N. S. (2012). Vision in elasmobranchs: 21st century advances. Journal of Fish Biology, 80, 20242054.CrossRefGoogle Scholar
Lisney, T. J., Yopak, E. E., Camilieri-Asch, V., and Collin, S. P. (2017). Ontogenetic shifts in brain organization in the bluespotted stingray Neotrygon kuhlii (Chondrichthyes: Dasyatidae). Brain, Behaviour and Evolution, 89, 6883.CrossRefGoogle ScholarPubMed
Litherland, L., Collin, S., and Fritsches, K. (2009a). Eye growth in sharks: ecological implications for changes in retinal topography and visual resolution. Visual Neuroscience, 26, 397409.CrossRefGoogle ScholarPubMed
Litherland, L., Collin, S., and Fritsches, K. (2009b). Visual optics and ecomorphology of the growing shark eye: a comparison between deep and shallow water species. Journal of Experimental Biology, 212, 35833594.CrossRefGoogle Scholar
Marchetti, M. P., and Nevitt, G. A. (2003). Effects of hatchery rearing on brain structures of rainbow trout, Oncorhynchus mykiss. Environmental Biology of Fishes, 66, 914.CrossRefGoogle Scholar
Meredith, T. L., and Kajiura, S. M. (2010). Olfactory morphology and physiology of elasmobranchs. Journal of Experimental Biology, 213, 34493456.CrossRefGoogle ScholarPubMed
Mitchell, C. (2016). The evolution of brains and cognitive abilities. In: Evolutionary biology (pp. 7387). Cham: Springer.CrossRefGoogle Scholar
Montgomery, J. C., Bodznick, D., and Yopak, K. E. (2012). The cerebellum and cerebellar-like structures of cartilaginous fishes. Brain, Behaviour and Evolution, 80, 152165.CrossRefGoogle Scholar
Mourier, J., Vercelloni, J., and Planes, S. (2012). Evidence of social communities in a spatially structured network of a free-ranging shark species. Animal Behavior, 83, 389401.CrossRefGoogle Scholar
Mourier, J., Brown, C., and Planes, S. (2017). Learning and robustness to catch-and-release fishing in a shark social network. Biology Letters, 13, 20160824.CrossRefGoogle Scholar
Naylor, G. J. P., Caira, J. N., Jensen, K., Rosana, K. A. M., Straube, N., and Lakner, C. (2012). Elasmobranch phylogeny: a mitochondrial estimate based on 595 species. In Biology of sharks and their relatives (pp. 3156). New York, NY: CRC Press.CrossRefGoogle Scholar
Newton, K. C., and Kajiura, S. M. (2017). Magnetic field discrimination, learning and memory in the yellow stingray (Urobatis jamaicensis). Animal Cognition, 20, 603614.CrossRefGoogle ScholarPubMed
Nielsen, J., Hedeholm, R. B., Heinemeier, J., et al. (2016). Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science, 353(6300), 702704.Google ScholarPubMed
Peters, R., and Evers, H. (1985). Frequency selectivity in the ampullary system of an elasmobranch fish Scyliorhinus canicula. Journal of Experimental Biology, 118, 99109.CrossRefGoogle Scholar
Pritchard, D. J., Hurly, T. A., Tello-Ramos, M. C., and Healy, S. D. (2016). Why study cognition in the wild (and how to test it)? Journal of the Experimental Analysis of Behvior, 105, 4155.CrossRefGoogle ScholarPubMed
Puzdrowski, R. L., and Gruber, S. (2009). Morphologic features of the cerebellum of the Atlantic stingray, and their possible evolutionary significance. Integrative Zoology, 4, 110122.CrossRefGoogle ScholarPubMed
Reynolds, J. D., Goodwin, N. B., and Freckleton, R. P. (2002). Evolutionary transitions in parental care and live bearing in vertebrates. Philosophical Transactions of the Royal Society B: Biological, 357, 269281.CrossRefGoogle ScholarPubMed
Schluessel, V. (2015). Who would have thought that ‘Jaws’ also has brains? Cognitive functions in elasmobranchs. Animal Cognition, 18, 1937.CrossRefGoogle ScholarPubMed
Schluessel, V., and Bleckmann, H. (2005). Spatial memory and orientation strategies in the elasmobranch Potamotrygon motoro. Journal of Comparative Physiology A, 191, 695706.CrossRefGoogle ScholarPubMed
Schluessel, V., and Bleckmann, H. (2012). Spatial learning and memory retention in the grey bamboo shark (Chiloscyllium griseum). Zoology, 115, 346353.CrossRefGoogle ScholarPubMed
Schluessel, V., and Duengen, D. (2015). Irrespective of size, scales, color or body shape, all fish are just fish: object categorization in the gray bamboo shark Chiloscyllium griseum. Animal Cognition, 18, 497507.CrossRefGoogle ScholarPubMed
Schluessel, V., Beil, O., Weber, T., and Bleckmann, H. (2014a). Symmetry perception in bamboo sharks (Chiloscyllium griseum) and Malawi cichlids (Pseudotropheus sp.). Animal Cognition, 17, 11871205.CrossRefGoogle ScholarPubMed
Schluessel, V., Rick, I. P., and Plischke, K. (2014b). No rainbow for grey bamboo sharks: evidence for the absence of colour vision in sharks from behavioral discrimination experiments. Journal of Comparative Physiology A, 200, 939947.CrossRefGoogle ScholarPubMed
Schluessel, V., Herzog, H., and Scherpenstein, M. (2015). Seeing the forest before the trees – spatial orientation in freshwater stingrays (Potamotrygon motoro) in a hole-board task. Behavioural Processes, 119, 105115.CrossRefGoogle Scholar
Schwarze, S., Bleckmann, H., and Schluessel, V. (2013). Avoidance conditioning in bamboo sharks (Chiloscyllium punctatum and C. griseum): behavioural and neuroanatomical aspects. Journal of Comparative Physiology A, 199, 843856.CrossRefGoogle Scholar
Sebens, K. P. (1987). The ecology of indeterminate growth in animals. Annual Review of Ecology and Systematics, 18, 371407.CrossRefGoogle Scholar
Siciliano, A. M., Kajiura, S. M., Long Jr, J. H., and Porter, M. H. (2013). Are you positive? Electric dipole polarity discrimination in the yellow stingray Urobatis jamaicensis. Biology Bulletin, 225, 8589.CrossRefGoogle ScholarPubMed
Sisneros, J. A., and Tricas, T. C. (2002). Neuroethology and life history adaptations of the elasmobranch electric sense. Journal of Physiology, 96, 379389.Google ScholarPubMed
Smeets, W. J. A. J., Nieuwenhuys, R., and Roberts, B. L. (1983). The central nervous system of cartilaginous fishes: structural and functional correlations. New York, NY: Springer.CrossRefGoogle Scholar
Smith, M., Warmolts, D., Thoney, D., and Hueter, R. (2017). Elasmobranch husbandry manual II: captive care of sharks, rays and their relatives. Columbus, OH: Ohio Biological Survey.Google Scholar
Striedter, G. F. (2005). Principles of brain evolution. Sunderland, MA: Sinauer Associates.Google Scholar
Tester, A., and Kato, S. (1963). Visual target discrimination in blacktip sharks (Carcharhinus melanopterus) and grey sharks (C. menisorrah). Pacific Science, 20, 461471.Google Scholar
Thonhauser, K. E., Gutnick, T., Byrne, R. A., Kral, K., Burghardt, G. M., and Kuba, M. J. (2013). Social learning in cartilaginous fish (stingrays Potamotrygon falkneri). Animal Cognition, 16, 927932.CrossRefGoogle ScholarPubMed
Warburton, K. (2003). Learning of foraging skills by fish. Fish and Fisheries, 4, 203215.CrossRefGoogle Scholar
Wegner, N. (2015). Elasmobranch gill structure. In Fish physiology. Physiology of Elasmobranch fishes. (Vol. 34A, pp. 1999). New York, NY: Elsevier.Google Scholar
Wetherbee, B., and Cortés, E. (2004). Food consumption and feeding habits. In Biology of sharks and their relatives (pp. 239264). Boca Raton, FL: CRC Press.Google Scholar
Yopak, K. E. (2012a). Neuroecology in cartilaginous fishes: the functional implications of brain scaling. Journal of Fish Biology, 80, 19682023.CrossRefGoogle ScholarPubMed
Yopak, K. E. (2012b). The nervous system of cartilaginous fishes. Brain, Behavior, and Evolution, 80, 7779.CrossRefGoogle ScholarPubMed
Yopak, K. E., and Frank, L. R. (2009). Brain size and brain organization of the whale shark, Rhincodon typus, using Magnetic Resonance Imaging. Brain, Behavior, and Evolution, 74, 121142.CrossRefGoogle ScholarPubMed
Yopak, K. E., and Lisney, T. J. (2012). Allometric scaling of the optic tectum in cartilaginous fishes. Brain, Behavior, and Evolution, 80, 108126.CrossRefGoogle ScholarPubMed
Yopak, K. E., and Montgomery, J. C. (2008). Brain organization and specialization in deep-sea chondrichthyans. Brain, Behavior, and Evolution, 71, 287304.CrossRefGoogle ScholarPubMed
Yopak, K. E., Lisney, T. J., Collin, S. P., and Montgomery, J. C. (2007). Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain, Behaviour and Research, 69, 280300.CrossRefGoogle ScholarPubMed
Yopak, K. E., Lisney, T. J., and Collin, S. P. (2015). Not all sharks are swimming noses: variation in olfactory bulb size in cartilaginous fishes. Brain Structure and Function, 220, 11271143.CrossRefGoogle ScholarPubMed
Yopak, K., Galinsky, V. L., Berquist, R. M., and Frank, L. R. (2016). Quantitative classification of cerebellar foliation in cartilaginous fishes (class: Chondrichthyes) using 3D shape analysis and its implications for evolutionary biology. Brain, Behavior, and Evolution, 87, 252264.CrossRefGoogle Scholar
Yopak, K. E., Pakan, J., and Wylie, D. (2017). The cerebellum of non-mammalian vertebrates. In Evolution of nervous systems (Vol. 1, pp. 373385). Kidlington, UK: Elsevier.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×