Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T11:17:40.043Z Has data issue: false hasContentIssue false

9 - Fish – How to Ask Them the Right Questions

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

Fish represent the largest radiation of vertebrates, with over 32 000 species. While fish possess many anatomical and perceptual adaptations to the aquatic environment, most experimental procedures used to study cognition in other species are readily adaptable to fish. Their small size, ease of handling and wide range of ecological niches have long made fish a model species for cognitive research. Here we will focus predominantly on four model species: guppies (Poecilia reticulata), three-spined sticklebacks (Gasterosteus aculeatus), goldfish (Carassius auratus) and zebrafish (Danio rerio). First, we will give an overview of some anatomical and perceptual traits that are relevant to cognitive research. We will then address some characteristics of their life cycle, ecology and social behaviour that should be considered when studying cognition, and include some tricks for adapting cognitive tasks to this group. Then, we will briefly review literature on each of these species, giving some historical information on their use as model species in cognition and behaviour. Finally, we will provide practical examples and tips to investigate spatial and social learning in fish, discussing how these tasks may be adapted to address slightly different questions.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 199 - 221
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Babb, S. J., and Crystal, J. D. (2005). Discrimination of what, when, and where: Implications for episodic-like memory in rats. Learning & Motivation, 36, 177189.CrossRefGoogle Scholar
Babb, S. J., and Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16, 13171321.CrossRefGoogle ScholarPubMed
Belblidia, H., Abdelouadoud, A., Jozet-Alves, C., et al. (2015). Time decay of object, place and temporal order memory in a paradigm assessing simultaneously episodic-like memory components in mice. Behavioural Brain Research, 286, 8084.CrossRefGoogle Scholar
Crystal, J. D. (in press). Animal models of episodic memory. Comparative Cognition & Behavior Reviews.Google Scholar
Crystal, J. D., Alford, W.T., Zhou, W., and Hohmann, A. G. (2013a). Source memory in the rat. Current Biology, 23, 387391.CrossRefGoogle ScholarPubMed
Crystal, J. D., Ketzenberger, J. A., and Alford, W. T. (2013b). Practicing memory retrieval improves long-term retention in rats. Current Biology, 23, 708709.CrossRefGoogle ScholarPubMed
de Souza Silva, M. A., Huston, J. P., Wang, A. L., Petri, D., and Chao, O.Y. H. (2015). Evidence for a specific integrative mechanism for episodic memory mediated by AMPA/kainate receptors in a circuit involving medial prefrontal cortex and hippocampal CA3 region. Cerebral Cortex, 26, 30003009.CrossRefGoogle Scholar
Dere, E., Huston, J. P., and de Souza Silva, M. A. (2005). Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. Brain Research Protocols, 16, 1019.CrossRefGoogle ScholarPubMed
Eacott, M. J., and Norman, G. (2004). Integrated memory for object, place, and context in rats: a possible model of episodic-like memory? The Journal of Neuroscience, 24, 19481953.CrossRefGoogle ScholarPubMed
Hamilton, T. J., Myggland, A., Duperreault, E., et al. (2016). Episodic-like memory in zebrafish. Animal Cognition, 19, 10711079.CrossRefGoogle ScholarPubMed
Kart-Teke, E., de Souza Silva, M. A., Huston, J. P., and Dere, E. (2006). Wistar rats show episodic-like memory for unique experiences. Neurobiology of Learning and Memory, 85, 173182.CrossRefGoogle ScholarPubMed
Panoz-Brown, D. E., Corbin, H. E., Dalecki, S. J., et al. (2016). Rats remember items in context using episodic memory. Current Biology, 26, 28212826.CrossRefGoogle ScholarPubMed
Thompson, R. F., and Spencer, W. A. (1966). Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 1643.CrossRefGoogle Scholar
Zhou, W., Hohmann, A. G., and Crystal, J. D. (2012). Rats answer an unexpected question after incidental encoding. Current Biology, 22, 11491153.CrossRefGoogle ScholarPubMed

References

Arnold, C., and Taborsky, B. (2010). Social experience in early ontogeny has lasting effects on social skills in cooperatively breeding cichlids. Animal Behaviour, 79, 621630.CrossRefGoogle Scholar
Baerends, G. P., and Baerends van Roon, J. M. (1950). An introduction to the study of the ethology of cichlid fishes. Behaviour, S1, 1242.Google Scholar
Balzarini, V., Taborsky, M., Wanner, S., Koch, F., and Frommen, J. G. (2014). Mirror, mirror on the wall: the predictive value of mirror tests for measuring aggression in fish. Behavioral Ecology and Sociobiology, 68, 871878.CrossRefGoogle Scholar
Bannier, F., Tebbich, S., and Taborsky, B. (2017). Early experience affects learning performance and neophobia in a cooperatively breeding cichlid. Ethology, 123, 712723.CrossRefGoogle Scholar
Barlow, G. W. (2000). The cichlid fishes: nature’s grand experiment in evolution. New York, NY: Perseus Publishing.Google Scholar
Bayani, D. M., Taborsky, M., and Frommen, J. G. (2017). To pee or not to pee: urine signals mediate aggressive interactions in the cooperatively breeding cichlid Neolamprologus pulcher. Behavioral Ecology and Sociobiology, 71, 37.CrossRefGoogle Scholar
Keenleyside, M. H. A. (1991). Cichlid fishes. London: Chapman and Hall.Google Scholar
Kotrschal, A., and Taborsky, B. (2010). Environmental change enhances cognitive abilities in fish. PLoS Biology, 8, e1000351.CrossRefGoogle ScholarPubMed
Nyman, C., Fischer, S., Aubin-Horth, N., and Taborsky, B. (2017). Effect of the early social environment on behavioural and genomic responses to a social challenge in a cooperatively breeding vertebrate. Molecular Ecology, 26, 31863203.CrossRefGoogle Scholar
Taborsky, M. (2016). Cichlid fishes: a model for the integrative study of social behavior. In Cooperative breeding (pp. 272293). Cambridge: Cambidge University Press.CrossRefGoogle Scholar
Taborsky, B., and Oliveira, R. F. (2012). Social competence: an evolutionary approach. Trends in Ecology and Evolution, 27, 679688.CrossRefGoogle ScholarPubMed
Taborsky, M., and Wong, M. (2017). Sociality in fishes. In Comparative social evolution (pp. 354389). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Taborsky, B., Arnold, C., Junker, J., and Tschopp, A. (2012). The early social environment affects social competence in a cooperative breeder. Animal Behaviour, 83, 10671074.CrossRefGoogle Scholar
Taborsky, B., Tschirren, L., Meunier, C., and Aubin-Horth, N. (2013). Stable reprogramming of brain transcription profiles by the early social environment in a cooperatively breeding fish. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20122605.Google Scholar

References

Abril-de-Abreu, R., Cruz, J., and Oliveira, R. F. (2015). Social eavesdropping in zebrafish: tuning of attention to social interactions. Scientific Reports, 5, 12687.CrossRefGoogle ScholarPubMed
Agrillo, C., and Bisazza, A. (2014). Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 234, 8291.CrossRefGoogle ScholarPubMed
Agrillo, C., Petrazzini, M. E. M., Piffer, L., Dadda, M., and Bisazza, A. (2012). A new training procedure for studying discrimination learning in fish. Behavioural Brain Research, 230, 343348.CrossRefGoogle ScholarPubMed
Agrillo, C., Miletto Petrazzini, M. E., and Dadda, M. (2013). Illusory patterns are fishy for fish, too. Frontiers in Neural Circuits, 7, 137.CrossRefGoogle ScholarPubMed
Agrillo, C., Petrazzini, M. E. M., and Bisazza, A. (2014a). At the root of math: numerical abilities in fish. In Evolutionary origins and early development of number processing, vol. 1 (pp. 334). New York, NY: Academic Press.Google Scholar
Agrillo, C., Petrazzini, M. E. M., and Bisazza, A. (2014b). Numerical acuity of fish is improved in the presence of moving targets, but only in the subitizing range. Animal Cognition, 17, 307316.CrossRefGoogle ScholarPubMed
Al-Imari, L., and Gerlai, R. (2008). Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behavioural Brain Research, 189, 216219.CrossRefGoogle ScholarPubMed
Archard, G. A., and Braithwaite, V. A. (2011). Variation in aggressive behaviour in the poeciliid fish Brachyrhaphis episcopi: population and sex differences. Behavioural Processes, 86, 5257.CrossRefGoogle ScholarPubMed
Arthur, D., and Levin, E. D. (2001) Spatial and non-spatial visual discrimination learning in zebrafish. Animal Cognition, 4, 125131.CrossRefGoogle Scholar
Atton, N., Hoppitt, W., Webster, M. M., Galef, B. G., and Laland, K. N. (2012). Information flow through threespine stickleback networks without social transmission. Proceedings of the Royal Society of London B: Biological Sciences, 279, 42724278.Google ScholarPubMed
Barber, I., and Ruxton, G. D. (2000). The importance of stable schooling: do familiar sticklebacks stick together? Proceedings of the Royal Society of London B: Biological Sciences, 267, 151155.CrossRefGoogle ScholarPubMed
Bisazza, A., and Brown, C. (2011). Lateralization of cognitive functions in fish. In Fish cognition and behaviour (pp. 298324). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
Bisazza, A., Piffer, L., Serena, G., and Agrillo, C. (2010). Ontogeny of numerical abilities in fish. PLoS ONE, 5, e15516.CrossRefGoogle ScholarPubMed
Bisazza, A., Agrillo, C., and Lucon-Xiccato, T. (2014a). Extensive training extends numerical abilities of guppies. Animal Cognition, 17, 14131419.CrossRefGoogle ScholarPubMed
Bisazza, A., Butterworth, B., Piffer, L., Bahrami, B., Petrazzini, M. E. M., and Agrillo, C. (2014b). Collective enhancement of numerical acuity by meritocratic leadership in fish. Scientific Reports, 4, 4560.CrossRefGoogle ScholarPubMed
Bitterman, M. E. (1964) Classical conditioning in the goldfish as a function of the CS–US interval. Journal of Comparative and Physiological Psychology, 58, 356366.CrossRefGoogle ScholarPubMed
Breuning, S. E., Ferguson, D. G., and Poling, A. D. (1981). Second-order schedule effects with goldfish: a comparison of brief-stimulus, chained, and tandem schedules. Pyschological Record, 31, 437445.CrossRefGoogle Scholar
Broglio, C., Gómez, A., Durán, E., et al. (2005). Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Research Bulletin, 66, 277281.CrossRefGoogle ScholarPubMed
Broglio, C., Gómez, A., Durán, E., Salas, C., and Rodríguez, F. (2011). Brain and cognition in teleost fish. In Fish cognition and behaviour (pp. 325358). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
Brown, C. (2001). Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Animal Cognition, 4, 109113.CrossRefGoogle Scholar
Brown, C., and Braithwaite, V. A. (2005). Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behavioural Ecology, 16, 482487.CrossRefGoogle Scholar
Brown, C., and Laland, K. N. (2002a). Social enhancement and social inhibition of foraging behaviour in hatchery-reared Atlantic salmon. Journal of Fish Biology, 61, 987998.Google Scholar
Brown, C., and Laland, K. N. (2002b). Social learning of a novel avoidance task in the guppy: conformity and social release. Animal Behaviour, 64, 4147.CrossRefGoogle Scholar
Brown, C., and Laland, K. N. (2011). Social learning in fishes. In Fish cognition and behaviour (pp. 186202). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
Brown, C., and Warburton, K. (1999). Social mechanisms enhance escape responses in shoals of rainbowfish, Melanotaenia duboulayi. Environmental Biology of Fishes, 56, 455459.CrossRefGoogle Scholar
Brown, C., Markula, A., and Laland, K. (2003). Social learning of prey location in hatchery-reared Atlantic salmon. Journal of Fish Biology, 63, 738745.CrossRefGoogle Scholar
Brown, C., Laland, K., and Krause, J. (2011a). Fish cognition and behaviour. Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
Brown, G. E., Ferrari, M. C., and Chivers, D. P. (2011b). Learning about danger: chemical alarm cues and threat-sensitive assessment of predation risk by fishes. In Fish cognition and behaviour (pp. 5980). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
Burns, J. G., and Rodd, F. H. (2008). Hastiness, brain size and predation regime affect the performance of wild guppies in a spatial memory task. Animal Behaviour, 76, 911922.CrossRefGoogle Scholar
Cattelan, S., Lucon-Xiccato, T., Pilastro, A., and Griggio, M. (2017). Is the mirror test a valid measure of fish sociability? Animal Behaviour, 127, 109116.CrossRefGoogle Scholar
Churchill, E. P. (1916). The learning of a maze by goldfish. Journal of Animal Behaviour, 6, 247255.CrossRefGoogle Scholar
Coolen, I., van Bergen, Y., Day, R. L., and Laland, K. N. (2003). Species difference in adaptive use of public information in sticklebacks. Proceedings of the Royal Society of London B: Biological Sciences, 270, 24132419.CrossRefGoogle ScholarPubMed
Croft, D. P., Krause, J., and James, R. (2004). Social networks in the guppy (Poecilia reticulata). Proceedings of the Royal Society of London B: Biological Sciences, 271, 516519.CrossRefGoogle ScholarPubMed
Cronin, T. W., Shashar, N., Caldwell, R. L., Marshall, J., Cheroske, A. G., and Chiou, T. H. (2003). Polarization vision and its role in biological signaling. Integrative and Comparative Biology, 43, 549558.CrossRefGoogle ScholarPubMed
Desjardins, J. K., and Fernald, R. D. (2010). What do fish make of mirror images? Biology Letters, 6, 744747.CrossRefGoogle ScholarPubMed
Duffy, G. A., Pike, T. W., and Laland, K. N. (2009). Size-dependent directed social learning in nine-spined sticklebacks. Animal Behaviour, 78, 371375.CrossRefGoogle Scholar
Dunlop, R., Millsopp, S., and Laming, P. (2006). Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Applied Animal Behaviour Science, 97, 255271.CrossRefGoogle Scholar
Ebbesson, L., and Braithwaite, V. (2012). Environmental effects on fish neural plasticity and cognition. Journal of Fish Biology, 81, 21512174.CrossRefGoogle ScholarPubMed
Engeszer, R. E., da Barbiano, L. A., Ryan, M. J., and Parichy, D. M. (2007). Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Animal Behaviour, 74, 12691275.CrossRefGoogle ScholarPubMed
Evans, J. P., Pilastro, A., and Schlupp, I. (2011). Ecology and evolution of poeciliid fishes. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Fay, R. R., and Popper, A. N. (2012). Fish hearing: new perspectives from two ‘senior’ bioacousticians. Brain, Behaviour and Evolution, 79, 215217.CrossRefGoogle ScholarPubMed
Franck, D., and Ribowski, A. (1987). Influences of prior agonistic experiences on aggression measures in the male swordtail (Xiphophorus helleri). Behaviour, 103, 217240.CrossRefGoogle Scholar
Frommen, J. G., Hanak, S., Schmidl, C. A., and Thünken, T. (2015). Visible implant elastomer tagging influences social preferences of zebrafish (Danio rerio). Behaviour, 152, 17651777.CrossRefGoogle Scholar
Fürtbauer, I., King, A., and Heistermann, M. (2015). Visible implant elastomer (VIE) tagging and simulated predation risk elicit similar physiological stress responses in three-spined stickleback Gasterosteus aculeatus. Journal of Fish Biology, 86, 16441649.CrossRefGoogle ScholarPubMed
Gerlach, G., and Lysiak, N. (2006). Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Animal Behaviour, 71, 13711377.CrossRefGoogle Scholar
Girvan, J. R., and Braithwaite, V. A. (1998). Population differences in spatial learning in three-spined sticklebacks. Proceedings of the Royal Society of London B: Biological Sciences, 265, 913918.CrossRefGoogle Scholar
Gonda, A., Herczeg, G., and Merilä, J. (2009). Adaptive brain size divergence in nine-spined sticklebacks (Pungitius pungitius)? Journal of Evolutionary Biology, 22, 17211726.CrossRefGoogle ScholarPubMed
Gori, S., Agrillo, C., Dadda, M., and Bisazza, A. (2014). Do fish perceive illusory motion? Scientific Reports, 4, 6443.CrossRefGoogle ScholarPubMed
Grosenick, L., Clement, T. S., and Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445, 429432.CrossRefGoogle ScholarPubMed
Hall, D., and Suboski, M. (1995). Visual and olfactory stimuli in learned release of alarm reactions by zebra danio fish (Brachydanio rerio). Neurobiology of Learning and Memory, 63, 229240.CrossRefGoogle ScholarPubMed
Hara, T. J. (2012). Fish chemoreception. In Fish and fisheries series, vol. 6. Dordrecht: Springer.Google Scholar
Hawryshyn, C. W., and McFarland, W. N. (1987). Cone photoreceptor mechanisms and the detection of polarized light in fish. Journal of Comparative Physiology A, 160, 459465.CrossRefGoogle Scholar
Herter, K. (1929). Dressurversuche an Fischen. Zeitschrift für Vergleichende Physiologie, 10, 688711.CrossRefGoogle Scholar
Higgs, D. M., and Radford, C. A. (2013). The contribution of the lateral line to ‘hearing’ in fish. The Journal of Experimental Biology, 216, 14841490.Google ScholarPubMed
Huntingford, F. A., and Wright, P. J. (1992). Inherited population differences in avoidance-conditioning in 3-spined sticklebacks, Gasterosteus aculeatus. Behaviour, 122, 264273.CrossRefGoogle Scholar
Jenkins, J. R., and Rowland, W. J. (1997). Learning influences courtship preferences of male threespine sticklebacks (Gasterosteus aculeatus). Ethology, 103, 954965.CrossRefGoogle Scholar
Kleinhappel, T., Al-Zoubi, A., Al-Diri, B., et al. (2014). A method for the automated long-term monitoring of three-spined stickleback Gasterosteus aculeatus shoal dynamics. Journal of Fish Biology, 84, 12281233.CrossRefGoogle ScholarPubMed
Kotrschal, A., Rogell, B., Bundsen, A., et al. (2013). The benefit of evolving a larger brain: big-brained guppies perform better in a cognitive task. Animal Behaviour, 86, 46.CrossRefGoogle Scholar
Laland, K., and Williams, K. (1997). Shoaling generates social learning of foraging information in guppies. Animal Behaviour, 53, 11611169.CrossRefGoogle ScholarPubMed
Laland, K., and Williams, K. (1998). Social transmission of maladaptive information in the guppy. Behavioural Ecology, 9, 493499.CrossRefGoogle Scholar
Laudien, H., Freyer, J., Erb, R., and Denzer, D. (1986). Influence of isolation stress and inhibited protein biosynthesis on learning and memory in goldfish. Physiology and Behaviour, 38, 621628.CrossRefGoogle ScholarPubMed
Lindeyer, C. M., and Reader, S. M. (2010). Social learning of escape routes in zebrafish and the stability of behavioural traditions. Animal Behaviour, 79, 827834.CrossRefGoogle Scholar
Lopes, J. S., Abril-de-Abreu, R., and Oliveira, R. F. (2016). Brain transcriptomic response to social eavesdropping in zebrafish (Danio rerio). PLoS ONE, 10, e0145801.CrossRefGoogle Scholar
López, J. C., Broglio, C., Rodríguez, F., Thinus-Blanc, C., and Salas, C. (1999). Multiple spatial learning strategies in goldfish (Carassius auratus). Animal Cognition, 2, 109–120.Google Scholar
Mackintosh, N. J. (1971). Reward and aftereffects of reward in the learning of goldfish. Journal of Comparative and Physiological Psychology, 76, 225232.CrossRefGoogle ScholarPubMed
Mackney, P. A., and Hughes, R. N. (1995). Foraging behaviour and memory window in sticklebacks. Behaviour, 132, 12411253.CrossRefGoogle Scholar
Magat, M., and Brown, C. (2009). Laterality enhances cognition in Australian parrots. Proceedings of the Royal Society of London B: Biological Sciences, 276, 41554162.Google ScholarPubMed
Mehlis, M., Bakker, T. C. M., and Frommen, J. G. (2008). Smells like sib spirit: kin recognition in three-spined sticklebacks (Gasterosteus aculeatus) is mediated by olfactory cues. Animal Cognition, 11, 643650.CrossRefGoogle ScholarPubMed
Milinski, M. (1987). Tit for tat in sticklebacks and the evolution of cooperation. Nature, 325, 433435.CrossRefGoogle ScholarPubMed
Milinski, M. (2003). The function of mate choice in sticklebacks: optimizing MHC genetics. Journal of Fish Biology, 63, 116.CrossRefGoogle Scholar
Milinski, M., Kulling, D., and Kettler, R. (1990). Tit for tat: sticklebacks trusting a cooperating partner. Behavioural Ecology, 1, 710.CrossRefGoogle Scholar
Nelson, M. E. (2011). Electric fish. Current Biology, 21, 528529.CrossRefGoogle ScholarPubMed
Odling-Smee, L., Boughman, J., and Braithwaite, V. (2008). Sympatric species of threespine stickleback differ in their performance in a spatial learning task. Behavioural Ecology and Sociobiology, 62, 19351945.CrossRefGoogle Scholar
Oliveira, R. F., Simões, J. M., Teles, M. C., Oliveira, C. R., Becker, J. D., and Lopes, J. S. (2016). Assessment of fight outcome is needed to activate socially driven transcriptional changes in the zebrafish brain. Proceedings of the National Academy of Sciences, 113, 654661.CrossRefGoogle ScholarPubMed
Perkins, F. T., and Wheeler, R. H. (1930). Configurational learning in the goldfish. Comparative Psychology Monographs, 7, 50.Google Scholar
Pike, T. W., and Laland, K. N. (2010). Conformist learning in nine-spined sticklebacks’ foraging decisions. Biology Letters, 6, 466468.CrossRefGoogle ScholarPubMed
Pike, T. W., Kendal, J. R., Rendell, L. E., and Laland, K. N. (2010). Learning by proportional observation in a species of fish. Behavioural Ecology, 21, 570575.CrossRefGoogle Scholar
Pitcher, T. J., and Magurran, A. E. (1983). Shoal size, patch profitability and information exchange in foraging goldfish. Animal Behaviour, 31, 546555.CrossRefGoogle Scholar
Pitcher, T. J., Magurran, A. E., and Winfield, I. (1982). Fish in larger shoals find food faster. Behavioural Ecolology and Sociobiology, 10, 149151.CrossRefGoogle Scholar
Pritchard, V. L., Lawrence, J., Butlin, R. K., and Krause, J. (2001). Shoal choice in zebrafish, Danio rerio: the influence of shoal size and activity. Animal Behaviour, 62, 10851088.CrossRefGoogle Scholar
Purser, J., and Radford, A. N. (2011). Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLoS ONE, 6, e17478.CrossRefGoogle ScholarPubMed
Putman, N. F., Scanlan, M. M., Billman, E. J., et al. (2014). An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Current Biology, 24, 446450.CrossRefGoogle ScholarPubMed
Qin, M., Wong, A., Seguin, D., and Gerlai, R. (2014). Induction of social behaviour in zebrafish: live versus computer animated fish as stimuli. Zebrafish, 11, 185197.CrossRefGoogle ScholarPubMed
Reader, S., and Laland, K. (2000). Diffusion of foraging innovation in the guppy. Animal Behaviour, 60, 175180.CrossRefGoogle ScholarPubMed
Reader, S. M., Kendal, J. R., and Laland, K. N. (2003). Social learning of foraging sites and escape routes in wild Trinidadian guppies. Animal Behaviour, 66, 729739.CrossRefGoogle Scholar
Reznick, D., Butler, M. J. IV, and Rodd, H. (2001). Life-history evolution in guppies. VII. The comparative ecology of high- and low-predation environments. The American Naturalist, 157, 126140.CrossRefGoogle ScholarPubMed
Riege, W. H., and Cherkin, A. (1971). One-trial learning and biphasic time course of performance in the goldfish. Science, 172, 966968.CrossRefGoogle ScholarPubMed
Roche, D. P., McGhee, K. E., and Bell, A. M. (2012). Maternal predator-exposure has lifelong consequences for offspring learning in three-spined sticklebacks. Biology Letters, 8, 932935.CrossRefGoogle Scholar
Rodd, F. H., Hughes, K. A., Grether, G. F., and Baril, C. T. (2002). A possible non-sexual origin of mate preference: are male guppies mimicking fruit? Proceedings of the Royal Society of London B: Biological Sciences, 269, 475481.CrossRefGoogle ScholarPubMed
Rodríguez, F., Duran, E., Vargas, J. P., Torres, B., and Salas, C. (1994). Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Learning and Behaviour, 22, 409420.CrossRefGoogle Scholar
Sevenster, P., and Van Roosmalen, M. E. (1985). Cognition in sticklebacks: some experiments on operant conditioning. Behaviour, 93, 170183.CrossRefGoogle Scholar
Sisler, S. P., and Sorensen, P. W. (2008). Common carp and goldfish discern conspecific identity using chemical cues. Behaviour, 145, 14091425.CrossRefGoogle Scholar
Sison, M., Cawker, J., Buske, C., and Gerlai, B. (2006). Fishing for genes influencing vertebrate behaviour: zebrafish making headway. Lab Animal, 35, 33.CrossRefGoogle ScholarPubMed
Smith, C., Barber, I., Wootton, R. J., and Chittka, L. (2004). A receiver bias in the origin of three-spined stickleback mate choice. Proceedings of the Royal Society of London B: Biological Sciences, 271, 949955.CrossRefGoogle ScholarPubMed
Smith, E. J., Partridge, J. C., Parsons, K. N., et al. (2002). Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behavioural Ecology, 13, 1119.CrossRefGoogle Scholar
Sovrano, V., Rainoldi, C., Bisazza, A., and Vallortigara, G. (1999). Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behavioural Brain Research, 106, 175180.CrossRefGoogle Scholar
Spence, R., and Smith, C. (2008). Innate and learned colour preference in the zebrafish, Danio rerio. Ethology, 114, 582588.CrossRefGoogle Scholar
Spence, R., Magurran, A. E., and Smith, C. (2011). Spatial cognition in zebrafish: the role of strain and rearing environment. Animal Cognition, 14, 607612.CrossRefGoogle ScholarPubMed
Swaney, W., Kendal, J., Capon, H., Brown, C., and Laland, K. N. (2001). Familiarity facilitates social learning of foraging behaviour in the guppy. Animal Behaviour, 62, 591598.CrossRefGoogle Scholar
Thompson, T., and Sturm, T. (1965). Classical conditioning of aggressive display in Siamese fighting fish. Journal of the Experimental Analysis of Behaviour, 8, 397403.CrossRefGoogle ScholarPubMed
Thünken, T., Waltschyk, N., Bakker, T. C. M., and Kullmann, H. (2009). Olfactory self-recognition in a cichlid fish. Animal Cognition, 12, 717724.CrossRefGoogle Scholar
Tinbergen, N. (1951). The study of instinct. New York, NY: Oxford University Press.Google Scholar
Trompf, L., and Brown, C. (2014). Personality affects learning and trade-offs between private and social information in guppies, Poecilia reticulata. Animal Behaviour, 88, 99106.CrossRefGoogle Scholar
Utne-Palm, A. C., and Hart, P. J. (2000). The effects of familiarity on competitive interactions between three-spined sticklebacks. Oikos, 91, 225232.CrossRefGoogle Scholar
van Bergen, Y., Coolen, I., and Laland, K. N. (2004). Nine-spined sticklebacks exploit the most reliable source when public and private information conflict. Proceedings of the Royal Society of London B: Biological Sciences, 271, 957962.CrossRefGoogle ScholarPubMed
Vargas, J. P., Lopez, J. C., and Portavella, M. (2009). What are the functions of fish brain pallium? Brain Research Bulletin, 79, 436440.CrossRefGoogle ScholarPubMed
Vital, C., and Martins, E. P. (2011). Strain differences in zebrafish (Danio rerio) social roles and their impact on group task performance. Journal of Comparative Psychology, 125, 278285.CrossRefGoogle ScholarPubMed
Waas, J. R., and Colgan, P. W. (1994). Male sticklebacks can distinguish between familiar rivals on the basis of visual cues alone. Animal Behaviour, 47, 713.CrossRefGoogle Scholar
Warburton, K. (1990). The use of local landmarks by foraging goldfish. Animal Behaviour, 40, 500505.CrossRefGoogle Scholar
Ward, A. J. W., Holbrook, R. I., Krause, J., and Hart, P. J. B. (2005). Social recognition in sticklebacks: the role of direct experience and habitat cues. Behavioural Ecology and Sociobiology, 57, 575583.CrossRefGoogle Scholar
White, G. E., and Brown, C. (2014). Cue choice and spatial learning ability are affected by habitat complexity in intertidal gobies. Behavioural Ecology, 26, 178184.CrossRefGoogle Scholar
Williams, F. E., White, D., and Messer, W. S. (2002). A simple spatial alternation task for assessing memory function in zebrafish. Behavioural Processes, 58, 125132.CrossRefGoogle ScholarPubMed
Wyzisk, K., and Neumeyer, C. (2007). Perception of illusory surfaces and contours in goldfish. Visual Neuroscience, 24, 291298.CrossRefGoogle ScholarPubMed
Xu, X., Scott-Scheiern, T., Kempker, L., and Simons, K. (2007). Active avoidance conditioning in zebrafish (Danio rerio). Neurobiology of Learning and Memory, 87, 7277.CrossRefGoogle ScholarPubMed
Zhao, X., Ferrar, M. C., and Chivers, D. P. (2006). Threat-sensitive learning of predator odours by a prey fish. Behaviour, 143, 11031121.CrossRefGoogle Scholar
Zupanc, G. K. H., Hinsch, K., and Gage, F. H. (2005). Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. The Journal of Comparative Neurology, 488, 290319.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×