Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T11:44:50.668Z Has data issue: false hasContentIssue false

5 - Chicken – Cognition in the Poultry Yard

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

The young of the domestic fowl has traditionally proven excellent material for the study of early learning, memory consolidation and their neurobiological bases. Recently, the advantages associated with accurate control of specific sensory experiences favoured the use of the domestic chicks for control-rearing studies of predispositions to social behaviour. Furthermore, behavioural methods have been developed that combine imprinting and/or spontaneous preferences associated with imprinting with more traditional associative learning, to investigate core knowledge mechanisms such as number, space and object representations. Finally, a range of laboratory and semi-naturalistic techniques allow studying brain asymmetry in the chick, and the role played by sensory stimulation in embryo in the establishment of functional lateralization. We will discuss how these methods can be implemented to test cognition in chicks, and how they can crucially complement studies carried out with mammalian models.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 97 - 118
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albuquerque, N., Guo, K., Wilkinson, A., Savalli, C., Otta, E., and Mills, D. (2016). Dogs recognize dog and human emotions. Biology Letters, 12, 20150883.CrossRefGoogle ScholarPubMed
Barroso, F., Alados, C., and Boza, J. (2000). Social hierarchy in the domestic goat: effect on food habits and production. Applied Animal Behaviour Science, 69, 3553.CrossRefGoogle ScholarPubMed
Briefer, E., and McElligott, A. G. (2011). Indicators of age, body size and sex in goat kid calls revealed using the source–filter theory. Applied Animal Behaviour Science, 133, 175185.CrossRefGoogle Scholar
Briefer, E. F., Padilla de la Torre, M., and McElligott, A. G. (2012). Mother goats do not forget their kids’ calls. Proceedings of the Royal Society of London B: Biological Sciences, 279, 37493755.Google Scholar
Briefer, E. F., Haque, S., Baciadonna, L., and McElligott, A. G. (2014). Goats excel at learning and remembering a highly novel cognitive task. Frontiers in Zoology, 11, 20.CrossRefGoogle ScholarPubMed
Briefer, E. F., Tettamanti, F., and McElligott, A. G. (2015). Emotions in goats: mapping physiological, behavioural and vocal profiles. Animal Behaviour, 99, 131143.CrossRefGoogle Scholar
Edgar, J. L., Lowe, J. C., Paul, E. S., and Nicol, C. J. (2010). Avian maternal response to chick distress. Proceedings of the Royal Society of London B: Biological Sciences, 278, 31293143.Google Scholar
Edgar, J., Kelland, I., Held, S., Paul, E., and Nicol, C. (2015). Effects of maternal vocalisations on the domestic chick stress response. Applied Animal Behaviour Science, 171, 121127.CrossRefGoogle Scholar
Nawroth, C., and McElligott., A. G. (2017). Human head orientation and eye visibility as indicators of attention for goats (Capra hircus). PeerJ, 5, e3073.CrossRefGoogle ScholarPubMed
Nawroth, C., Brett, J. M., and McElligott, A. G. (2016a). Goats display audience-dependent human-directed gazing behaviour in a problem-solving task. Biology Letters, 12, 20160283.CrossRefGoogle Scholar
Nawroth, C., Baciadonna, L., and McElligott, A. G. (2016b). Goats learn socially from humans in a spatial problem-solving task. Animal Behaviour, 121, 123129.CrossRefGoogle Scholar
Pitcher, B. J., Briefer, E. F., Baciadonna, L., and McElligott, A. G. (2017). Cross-modal recognition of familiar conspecifics in goats. Royal Society Open Science, 4, 160346.CrossRefGoogle ScholarPubMed
Schino, G. (1998). Reconciliation in domestic goats. Behaviour, 135, 343356.CrossRefGoogle Scholar
Stanley, C. R., and Dunbar, R. I. M. (2013). Consistent social structure and optimal clique size revealed by social network analysis of feral goats, Capra hircus. Animal Behaviour, 85, 771779.CrossRefGoogle Scholar

References

Agnvall, B., Bélteky, J., and Jensen, P. (2017). Brain size is reduced by selection for tameness in red junglefowl – correlated effects in vital organs. Scientific Reports, 7, 3306.CrossRefGoogle ScholarPubMed
Andresson, M., Nordin, E., and Jensen, P. (2001). Domestication effects on foraging strategies in fowl. Applied Animal Behaviour Science, 72, 5162.CrossRefGoogle Scholar
Gering, E., Johnsson, M., Willis, P., Getty, T., and Wright, D. (2015). Mixed ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient red junglefowl reservoirs. Molecular Ecology, 24, 21122124.CrossRefGoogle ScholarPubMed
Håkansson, J., Bratt, C., and Jensen, P. (2007). Behavioural differences between two captive populations of red jungle fowl (Gallus gallus) with different genetic background, raised under identical conditions. Applied Animal Behaviour Science, 102, 2438.CrossRefGoogle Scholar
International Chicken Genome Sequencing Consortium. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432, 695716.CrossRefGoogle Scholar
Lindqvist, C., and Jensen, P. (2009). Domestication and stress effects on contrafreeloading and spatial learning performance in red jungle fowl (Gallus gallus) and white Leghorn layers. Behavioral Processes, 81, 8084.CrossRefGoogle ScholarPubMed
Løtvedt, P., Fallahshahroudi, A., Bektic, L., Altimiras, J., and Jensen, P. (2017) Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiology of Stress, 7, 113121.CrossRefGoogle ScholarPubMed
McBride, G., Parer, I. P., and Foenander, F. (1969). The social organization and behaviour of the feral domestic chicken. Animal Behaviour Monographs, 2, 127181.CrossRefGoogle Scholar
Storey, A.A., Athens, J. S., Bryant, D., et al. (2012). Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS ONE, 7(7), e39171.CrossRefGoogle ScholarPubMed
Väisänen, J., and Jensen, P. (2004). Responses of young red jungle fowl (Gallus gallus) and white leghorn layers to familiar and unfamiliar social stimuli. Poultry Science, 83, 335343.CrossRefGoogle ScholarPubMed
Wilson, D., and Evans, C. (2010). Female fowl (Gallus gallus) do not prefer alarm-calling males. Behaviour, 147, 525552.Google Scholar
Xiang, H., Gao, J., Yu, B., et al. (2014). Early Holocene chicken domestication in northern China. Proceedings of the National Academy of Sciences, 111, 1756417569.CrossRefGoogle ScholarPubMed

References

Baiocchi, V., and Chiandetti, C. (2016). Chicks run harder toward a consonant over a dissonant clucking hen: biological roots for the appreciation of consonant sounds. In Trieste Symposium on Perception and Cognition 2016. Trieste: EUT, P03.Google Scholar
Bermant, G. (1963). Intensity and rate of distress calling in chicks as a function of social contact. Animal Behaviour, 11, 514517.CrossRefGoogle Scholar
Cailotto, M., Vallortigara, G., and Zanforlin, M. (1989). Sex differences in the response to social stimuli in young chicks. Ethology Ecology and Evolution, 1, 323327.CrossRefGoogle Scholar
Chiandetti, C. (2011). Pseudoneglect and embryonic light stimulation in the avian brain. Behavioral Neuroscience, 125, 775782.CrossRefGoogle ScholarPubMed
Chiandetti, C. (2017). Shaping. In Encyclopedia of animal cognition and behavior. New York, NY: Springer.Google Scholar
Chiandetti, C., and Turatto, M. (2017). Context-specific habituation of the freezing response in newborn chicks. Behavioral Neuroscience, 131, 437446.CrossRefGoogle ScholarPubMed
Chiandetti, C., and Vallortigara, G. (2008). Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cognition, 11, 139146.CrossRefGoogle ScholarPubMed
Chiandetti, C., and Vallortigara, G. (2010). Experience and geometry: controlled-rearing studies with chicks. Animal Cognition, 13, 463470.CrossRefGoogle ScholarPubMed
Chiandetti, C., and Vallortigara, G. (2011a). Chicks like consonant music. Psychological Science, 22, 12701273.CrossRefGoogle ScholarPubMed
Chiandetti, C., and Vallortigara, G. (2011b). Intuitive physical reasoning about occluded objects by inexperienced chicks. Proceedings of the Royal Society of London B: Biological Sciences, 278, 26212627.Google ScholarPubMed
Chiandetti, C., Regolin, L., Rogers, L. J., and Vallortigara, G. (2005). Effects of light stimulation of embryos on the use of position-specific and object-specific cues in binocular and monocular domestic chicks (Gallus gallus). Behavioural Brain Research, 163, 1017.CrossRefGoogle ScholarPubMed
Chiandetti, C., Pecchia, T., Patt, F., and Vallortigara, G. (2014). Visual hierarchical processing and lateralization of cognitive functions through domestic chicks’ eyes. PLoS ONE, 9(1), e84435.CrossRefGoogle ScholarPubMed
Chiandetti, C., Spelke, E. S., and Vallortigara, G. (2015). Inexperienced newborn chicks use geometry to spontaneously reorient to an artificial social partner. Developmental Science, 6, 972978.CrossRefGoogle Scholar
Clara, E., Regolin, L., Zanforlin, M., and Vallortigara, G. (2006). Domestic chicks perceive stereokinetic illusions. Perception, 35, 983992.CrossRefGoogle ScholarPubMed
Collias, N., and Joos, M. (1953). The spectrographic analysis of sound signals of the domestic fowl. Behaviour, 5, 175188.CrossRefGoogle Scholar
Cozzutti, C., and Vallortigara, G. (2001). Hemispheric memories for the content and position of food caches in the domestic chick. Behavioral Neuroscience, 115, 305313.CrossRefGoogle ScholarPubMed
Daisley, J. N., Vallortigara, G., and Regolin, L. (2010). Logic in an asymmetrical (social) brain: transitive inference in the young domestic chick. Social Neuroscience, 5, 309319.CrossRefGoogle Scholar
Dawkins, M. S. (2002). What are birds looking at? Head movements and eye use in chickens. Animal Behaviour, 63, 991998.CrossRefGoogle Scholar
De Tommaso, M., Kaplan, G., Chiandetti, C., and Vallortigara, G. (under rev.). Naive 3-day-old domestic chicks (Gallus gallus) are attracted to discrete acoustic patterns characterizing natural vocalizations.Google Scholar
Di Giorgio, E., Loveland, J. L., Mayer, U., Rosa-Salva, O., Versace, E., and Vallortigara, G. (2017). Filial responses as predisposed and learned preferences: early attachment in chicks and babies. Behavioural Brain Research, 325, 90104.CrossRefGoogle ScholarPubMed
Diekamp, B., Regolin, L., Güntürkün, O., and Vallortigara, G. (2005). A left-sided visuospatial bias. Current Biology, 15, 372373.CrossRefGoogle ScholarPubMed
Forkman, B. (2000). Domestic hens have declarative representations. Animal Cognition, 3, 135137.CrossRefGoogle Scholar
Forkman, B., and Vallortigara, G. (1999). Minimization of modal contours: an essential cross-species strategy in disambiguating relative depth. Animal Cognition, 2, 181185.CrossRefGoogle Scholar
Ghirlanda, S., Jansson, L., and Enquist, M. (2002). Chickens prefer beautiful humans. Human Nature, 13, 383389.CrossRefGoogle ScholarPubMed
Ham, A. D., and Osorio, D. (2007). Colour preferences and colour vision in poultry chicks. Proceedings of the Royal Society B: Biological Sciences, 274, 19411948.CrossRefGoogle ScholarPubMed
Johnson, M. H., Bolhuis, J. J., and Horn, G. (1992). Predispositions and learning: behavioural dissociations in the chick. Animal Behaviour, 44, 943948.CrossRefGoogle Scholar
Kent, J. (1993). The chick’s preference for certain features of the maternal cluck vocalization in the domestic fowl (Gallus gallus). Behaviour, 125, 177187.CrossRefGoogle Scholar
Krause, E. T., Schrader, L., and Caspers, B. A. (2016). Olfaction in chicken (Gallus gallus): a neglected mode of social communication? Frontiers in Ecology and Evolution, 4, 94.CrossRefGoogle Scholar
Lea, S. E. G., Stater, A. M., and Ryan, C. M. E. (1996). Perception of object unity in chicks: a comparison with human infant. Infant Behavior and Development, 19, 501504.CrossRefGoogle Scholar
Lorenzi, E., Mayer, U., Rosa-Salva, O., and Vallortigara, G. (2017). Dynamic features of animate motion activate septal and preoptic areas in visually naïve chicks (Gallus gallus). Neuroscience, 354, 5468.CrossRefGoogle ScholarPubMed
Marler, P. R., Dufty, A., and Pickert, R. (1986). Vocal communication in the domestic chicken: II. Is a sender sensitive to the presence and nature of a receiver? Animal Behaviour, 34, 194198.CrossRefGoogle Scholar
Mascalzoni, E., Regolin, L., and Vallortigara, G. (2009). Mom’s shadow: structure-from-motion in newly hatched chicks as revealed by an imprinting procedure. Animal Cognition, 12, 389400.CrossRefGoogle ScholarPubMed
Mascalzoni, E., Regolin, L., and Vallortigara, G. (2010). Innate sensitivity for self-propelled causal agency in newly hatched chicks. Proceedings of the National Academy of Sciences, 107, 44834485.CrossRefGoogle ScholarPubMed
Mascalzoni, E., Osorio, D., Regolin, L., and Vallortigara, G. (2012). Symmetry perception by poultry chicks and its implications for three-dimensional object recognition. Proceedings of the Royal Society B: Biological Sciences, 279, 841846.CrossRefGoogle ScholarPubMed
McBride, G., and Foenander, F. (1962). Territorial behaviour in flocks of domestic fowls. Nature, 102, 4823.Google Scholar
McBride, G., Parer, I. P., and Foenander, G. (1969). The social organization and behaviour of the feral domestic fowl. Animal Behaviour Monographs, 2, 125181.CrossRefGoogle Scholar
McCabe, B. J. (2013). Imprinting. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 375390.Google ScholarPubMed
Mench, J., and Keeling, L. J. (2001). The social behaviour of domestic birds. In Social behaviour in farm animals (pp. 177210). Wallingford: CABI Publishing.CrossRefGoogle Scholar
Miklósi, A., Andrew, R. J., and Dharmaretnam, M. (1996). Auditory lateralisation: shifts in ear use during attachment in the domestic chick. Laterality, 1, 215225.CrossRefGoogle ScholarPubMed
Nicol, C. J. (2004). Development, direction and damage limitation: social learning in domestic fowl. Learning and Behavior, 32, 7281.CrossRefGoogle ScholarPubMed
Osorio, D., Vorobyev, M., and Jones, C. D. (1999). Colour vision of domestic chicks. The Journal of Experimental Biology, 202, 29512959.CrossRefGoogle ScholarPubMed
Regolin, L., and Vallortigara, G. (1995). Perception of partly occluded objects by young chicks. Perception and Psychophysics, 57, 971976.CrossRefGoogle ScholarPubMed
Regolin, L., Vallortigara, G., and Zanforlin, M. (1995). Object and spatial representations in detour problems by chicks. Animal Behaviour, 49, 195199.CrossRefGoogle Scholar
Regolin, L., Tommasi, L., and Vallortigara, G. (2000). Visual perception of biological motion in newly hatched chicks as revealed by an imprinting procedure. Animal Cognition, 3, 5360.CrossRefGoogle Scholar
Regolin, L., Marconato, F., and Vallortigara, G. (2004). Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks (Gallus gallus). Animal Cognition, 7, 162170.CrossRefGoogle ScholarPubMed
Regolin, L., Rugani, R., Pagni, P., and Vallortigara, G. (2005). Delayed search for social and nonsocial goals by young domestic chicks, Gallus gallus domesticus. Animal Behaviour, 70, 855864.CrossRefGoogle Scholar
Regolin, L., Rugani, R., Stancher, G., and Vallortigara, G. (2011). Spontaneous discrimination of possible and impossible objects by newly hatched chicks. Biology Letters, 7, 654657.CrossRefGoogle ScholarPubMed
Regolin, L., Daisley, J. N., Rosa-Salva, O., and Vallortigara, G. (2012). Advantages of a lateralised brain for reasoning about the social world in chicks. In Behavioral lateralization in vertebrates (pp. 3954). Berlin: Springer.Google Scholar
Rogers, L. J. (1982). Light experience and asymmetry of brain function in chickens. Nature, 297, 223225.CrossRefGoogle ScholarPubMed
Rogers, L. J. (1995). The development of brain and behaviour in the chicken. Wallingford: CAB International.CrossRefGoogle Scholar
Rogers, L. J., Zucca, P., and Vallortigara, G. (2004). Advantages of having a lateralized brain. Proceedings of the Royal Society B: Biological Sciences, 271, 420422.CrossRefGoogle ScholarPubMed
Rosa Salva, O., Regolin, L., and Vallortigara, G. (2010). Faces are special for newly hatched chicks: evidence for inborn domain-specific mechanisms underlying spontaneous preferences for face-like stimuli. Developmental Science, 13, 565577.CrossRefGoogle ScholarPubMed
Rosa Salva, O., Farroni, T., Regolin, L., Vallortigara, G., and Johnson, M. H. (2011). The evolution of social orienting: evidence from chicks (Gallus gallus) and human newborns. PLoS ONE, 6(4), e18802.CrossRefGoogle ScholarPubMed
Rosa Salva, O., Regolin, L., Mascalzoni, E., and Vallortigara, G. (2012). Cerebral and behavioural asymmetries in animal social recognition. Comparative Cognition and Behavior Reviews, 7, 110138.CrossRefGoogle Scholar
Rosa Salva, O., Rugani, R., Cavazzana, A., Regolin, L., and Vallortigara, G. (2013). Perception of the Ebbinghaus illusion in four-day-old domestic chicks (Gallus gallus). Animal Cognition, 16, 895906.CrossRefGoogle ScholarPubMed
Rosa Salva, O., Grassi, M., Lorenzi, E., Regolin, L., and Vallortigara, G. (2016). Spontaneous preference for visual cues of animacy in naïve domestic chicks: the case of speed changes. Cognition, 157, 4960.CrossRefGoogle ScholarPubMed
Rugani, R., Regolin, L., and Vallortigara, G. (2008). Discrimination of small numerosities in young chicks. Journal of Experimental Psychology: Animal Behavior Processes, 34, 388399.Google ScholarPubMed
Rugani, R., Fontanari, L., Simoni, E., Regolin, L., and Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society B: Biological Sciences, 276, 24512460.CrossRefGoogle ScholarPubMed
Rugani, R., Regolin, L., and Vallortigara, G. (2010). Imprinted numbers: newborn chicks’ sensitivity to number vs. continuous extent of objects they have been reared with. Developmental Science, 13, 790797.CrossRefGoogle Scholar
Rugani, R., Vallortigara, G., Priftis, K., and Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347, 534536.CrossRefGoogle ScholarPubMed
Rushen, J. (1982). The peck orders of domestic chickens: how do they develop and why are they linear? Animal Behaviour, 30, 11291137.CrossRefGoogle Scholar
Santolin, C., Rosa-Salva, O., Regolin, L., and Vallortigara, G. (2016a). Generalization of visual regularities in newly hatched chicks (Gallus gallus). Animal Cognition, 19, 10071017.CrossRefGoogle ScholarPubMed
Santolin, C., Rosa Salva, O., Vallortigara, G., and Regolin, L. (2016b). Unsupervised statistical learning in newly hatched chicks. Current Biology, 26, 12181220.CrossRefGoogle ScholarPubMed
Shimmura, T., Ohashi, S., and Takashi, Y. (2015). The highest-ranking rooster has priority to announce the break of dawn. Scientific Reports, 5, 11683.CrossRefGoogle ScholarPubMed
Tommasi, L., Bressan, P., and Vallortigara, G. (1995). Solving occlusion indeterminacy in chromatically homogeneous patterns. Perception, 24, 391403.CrossRefGoogle ScholarPubMed
Tommasi, L., Vallortigara, G., and Zanforlin, M. (1997). Young chickens learn to localize the centre of a spatial environment. Journal of Comparative Physiology A, 180, 567572.CrossRefGoogle ScholarPubMed
Vallortigara, G. (1992). Affiliation and aggression as related to gender in domestic chicks (Gallus gallus). Journal of Comparative Psychology, 106, 5357.CrossRefGoogle ScholarPubMed
Vallortigara, G. (1996). Learning of colour and position cues in domestic chicks: males are better at position, females at colour. Behavioural Processes, 36, 289296.CrossRefGoogle ScholarPubMed
Vallortigara, G. (2014). Foundations of number and space representations in precocial species. In Evolutionary origins and early development of number processing (pp. 3566). New York, NY: Elsevier.Google Scholar
Vallortigara, G. (2017). An animal’s sense of number. In The nature and development of mathematics. Cross disciplinary perspective on cognition, learning and culture (pp. 4365). New York, NY: Routledge.Google Scholar
Vallortigara, G., and Andrew, R. J. (1994). Olfactory lateralization in the chick. Neuropsychologia, 32, 417423.CrossRefGoogle ScholarPubMed
Vallortigara, G., and Regolin, L. (1998). Delayed search for a concealed imprinted object in the domestic chick. Animal Cognition, 1, 1724.CrossRefGoogle Scholar
Vallortigara, G., and Regolin, L. (2006). Gravity bias in the interpretation of biological motion by inexperienced chicks. Current Biology, 16, 279280.CrossRefGoogle ScholarPubMed
Vallortigara, G., and Tommasi, L. (2001). Minimization of modal contours: an instance of an evolutionary internalized geometric regularity? Brain and Behavioral Sciences, 24, 706707.CrossRefGoogle Scholar
Vallortigara, G., and Versace, E. (2017). Filial imprinting. In Encyclopedia of animal cognition and behavior. New York, NY: Springer.Google Scholar
Vallortigara, G., and Zanforlin, M. (1988). Open-field behavior of young chicks (Gallus gallus): antipredatory responses, social reinstatement motivation, and gender effects. Animal Learning and Behavior, 16, 359362.CrossRefGoogle Scholar
Vallortigara, G., and Zanforlin, M. (1989). Place and object learning in chicks (Gallus gallus domesticus). Journal of Comparative Psychology, 103, 201209.CrossRefGoogle Scholar
Vallortigara, G., Cailotto, M., and Zanforlin, M. (1990a). Sex differences in social reinstatement motivation of the domestic chick (Gallus gallus) revealed by runway tests with social and nonsocial reinforcement. Journal of Comparative Psychology, 104, 361367.CrossRefGoogle ScholarPubMed
Vallortigara, G., Zanforlin, M., and Compostella, S. (1990b). Perceptual organization in animal learning: cues or objects? Ethology, 85, 89102.CrossRefGoogle Scholar
Vallortigara, G., Zanforlin, M., and Pasti, G. (1990c). Geometric modules in animals’ spatial representations: a test with chicks (Gallus gallus domesticus). Journal of Comparative Psychology, 104, 248254.CrossRefGoogle ScholarPubMed
Vallortigara, G., Regolin, L., and Zanforlin, M. (1994). The development of responses to novel-coloured objects in male and female domestic chicks. Behavioural Processes, 31, 219229.CrossRefGoogle ScholarPubMed
Vallortigara, G., Regolin, L., Rigoni, M., and Zanforlin, M. (1998). Delayed search for a concealed imprinted object in the domestic chick. Animal Cognition, 1, 1724.CrossRefGoogle Scholar
Vallortigara, G., Regolin, L., and Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biology, 3, 37.CrossRefGoogle ScholarPubMed
Vallortigara, G., Sovrano, V. A., and Chiandetti, C. (2009). Doing Socrates experiment right: controlled rearing studies of geometrical knowledge in animals. Current Opinion in Neurobiology, 19, 2026.CrossRefGoogle ScholarPubMed
Vallortigara, G., Cozzutti, C., Tommasi, L., and Rogers, L. J. (2011). How birds use their eyes. Opposite left–right specialization for the lateral and frontal visual hemifield in the domestic chick. Current Biology, 11, 2933.CrossRefGoogle Scholar
Versace, E. (2017). Precocial. In Encyclopedia of animal cognition and behavior. New York, NY: Springer.Google Scholar
Versace, E., and Vallortigara, G. (2015). Origins of knowledge: insights from precocial species. Frontiers in Behavioral Neuroscience, 9, 338.CrossRefGoogle ScholarPubMed
Versace, E., Regolin, L., and Vallortigara, G. (2006). Emergence of grammar as revealed by visual imprinting in newly-hatched chicks. In The evolution of language. Proceedings of the 6th International Conference (pp. 457458). Singapore: World Scientific.Google Scholar
Versace, E., Schill, J., Nencini, A. M., and Vallortigara, G. (2016). Naïve chicks prefer hollow objects. PLoS ONE, 11(11), e0166425.CrossRefGoogle ScholarPubMed
Versace, E., Fracasso, I., Baldan, G., Zotte, A. D., and Vallortigara, G. (2017a). Newborn chicks show inherited variability in early social predispositions for hen-like stimuli. Scientific Reports, 7, 40296.CrossRefGoogle ScholarPubMed
Versace, E., Spierings, M. J., Caffini, M., ten Cate, C., and Vallortigara, G. (2017b). Spontaneous generalization of abstract multimodal patterns in young domestic chicks. Animal Cognition, 20, 521529.CrossRefGoogle ScholarPubMed
Wood, J. N. (2013). Newborn chickens generate invariant object representations at the onset of visual object experience. Proceedings of the National Academy of Sciences, 110, 1400014005.CrossRefGoogle ScholarPubMed
Wood-Gush, D. G. M. (1971). The behaviour of the domestic fowl. London: Heinemann.Google Scholar
Workman, L., and Andrew, R. J. (1989). Simultaneous changes in behaviour and in lateralization during the development of male and female domestic chicks. Animal Behaviour, 38, 596605.CrossRefGoogle Scholar
Zanforlin, M. (1981). Visual perception of complex forms (anomalous surfaces) in chicks. Italian Journal of Psychology, 8, 116.Google Scholar
Zuidhof, M. J., Schneider, B. L., Carney, V. L., Korver, D. R., and Robinson, F. E. (2011). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Genetics, 93, 113.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×