[1]Boers, KE, Vijgen, SM, Bijlenga, D, van der Post, JA, Bekedam, DJ, Kwee, A, et al. Induction versus expectant monitoring for intrauterine growth restriction at term: randomised equivalence trial (DIGITAT). BMJ. 2010; 341: c7087.
[2]Audette, MC, Kingdom, JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med. 2018; 23: 119–25.
[3]Gaccioli, F, Aye, I, Sovio, U, Charnock-Jones, DS, Smith, GCS. Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers. Am J Obstet Gynecol. 2018; 218: S725–37.
[4]Kingdom, JC, Audette, MC, Hobson, SR, Windrim, RC, Morgen, E. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol. 2018; 218: S803–17.
[5]Jackson, MR, Walsh, AJ, Morrow, RJ, Mullen, JB, Lye, SJ, Ritchie, JW. Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: relationship with umbilical artery Doppler waveforms. Am J Obstet Gynecol. 1995; 172: 518–25.
[6]Robson, SC, Simpson, H, Ball, E, Lyall, F, Bulmer, JN. Punch biopsy of the human placental bed. Am J Obstet Gynecol. 2002; 187: 1349–55.
[7]Burton, GJ. Oxygen, the Janus gas; its effects on human placental development and function. J Anat. 2009; 215: 27–35.
[8]Burton, GJ, Watson, AL, Hempstock, J, Skepper, JN, Jauniaux, E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002; 87: 2954–9.
[9]Burton, GJ, Jauniaux, E, Watson, AL. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol. 1999; 181: 718–24.
[10]Burton, GJ, Hempstock, J, Jauniaux, E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online. 2003; 6: 84–96.
[11]Jauniaux, E, Hempstock, J, Greenwold, N, Burton, GJ. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol. 2003; 162: 115–25.
[12]Kaufmann, P, Black, S, Huppertz, B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 2003; 69: 1–7.
[13]Burton, GJ, Jauniaux, E, Charnock-Jones, DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol. 2010; 54: 303–12.
[14]Nordenvall, M, Ullberg, U, Laurin, J, Lingman, G, Sandstedt, B, Ulmsten, U. Placental morphology in relation to umbilical artery blood velocity waveforms. Eur J Obstet Gynecol Reprod Biol. 1991; 40: 179–90.
[15]Proctor, LK, Toal, M, Keating, S, Chitayat, D, Okun, N, Windrim, RC, et al. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol. 2009; 34: 274–82.
[16]Wright, E, Audette, MC, Ye, XY, Keating, S, Hoffman, B, Lye, SJ, et al. Maternal vascular malperfusion and adverse perinatal outcomes in low-risk nulliparous women. Obstet Gynecol. 2017; 130: 1112–20.
[17]Dunk, C, Smith, S, Hazan, A, Whittle, W, Jones, RL. Promotion of angiogenesis by human endometrial lymphocytes. Immunol Invest. 2008; 37: 583–610.
[18]Kadyrov, M, Kingdom, JC, Huppertz, B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol. 2006; 194: 557–63.
[19]Burton, GJ, Woods, AW, Jauniaux, E, Kingdom, JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009; 30: 473–82.
[20]Nanaev, A, Chwalisz, K, Frank, HG, Kohnen, G, Hegele-Hartung, C, Kaufmann, P. Physiological dilation of uteroplacental arteries in the guinea pig depends on nitric oxide synthase activity of extravillous trophoblast. Cell Tissue Res. 1995; 282: 407–21.
[21]Lyall, F, Barber, A, Myatt, L, Bulmer, JN, Robson, SC. Hemeoxygenase expression in human placenta and placental bed implies a role in regulation of trophoblast invasion and placental function. Faseb J. 2000; 14: 208–19.
[22]Kaufmann, P, Mayhew, TM, Charnock-Jones, DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004; 25: 114–26.
[23]Simmons, DG, Natale, DR, Begay, V, Hughes, M, Leutz, A, Cross, JC. Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development. 2008; 135: 2083–91.
[24]Simpson, RA, Mayhew, TM, Barnes, PR. From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the disector. Placenta. 1992; 13: 501–12.
[25]Baczyk, D, Drewlo, S, Proctor, L, Dunk, C, Lye, S, Kingdom, J. Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ. 2009; 16: 719–27.
[26]Liang, CY, Wang, LJ, Chen, CP, Chen, LF, Chen, YH, Chen, H. GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. Biol Reprod. 2010; 83: 387–95.
[27]Baczyk, D, Kibschull, M, Mellstrom, B, Levytska, K, Rivas, M, Drewlo, S, et al. DREAM mediated regulation of GCM1 in the human placental trophoblast. PLoS ONE. 2013; 8: e51837.
[28]Kingdom, JC, Drewlo, S. Is heparin a placental anticoagulant in high-risk pregnancies? Blood. 2011; 118: 4780–8.
[29]Tanaka, S, Kunath, T, Hadjantonakis, AK, Nagy, A, Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science. 1998; 282: 2072–5.
[30]Baczyk, D, Dunk, C, Huppertz, B, Maxwell, C, Reister, F, Giannoulias, D, et al. Bi-potential behaviour of cytotrophoblasts in first trimester chorionic villi. Placenta. 2006; 27: 367–74.
[31]Nosi, U, Lanner, F, Huang, T, Cox, B. Overexpression of trophoblast stem cell-enriched microRNAs promotes trophoblast fate in embryonic stem cells. Cell Rep. 2017; 19: 1101–9.
[32]Macara, L, Kingdom, JC, Kaufmann, P, Kohnen, G, Hair, J, More, IA, et al. Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta. 1996; 17: 37–48.
[33]Huppertz, B, Frank, HG, Kingdom, JC, Reister, F, Kaufmann, P. Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem Cell Biol. 1998; 110: 495–508.
[34]Ellery, PM, Cindrova-Davies, T, Jauniaux, E, Ferguson-Smith, AC, Burton, GJ. Evidence for transcriptional activity in the syncytiotrophoblast of the human placenta. Placenta. 2009; 30: 329–34.
[35]Fogarty, NM, Mayhew, TM, Ferguson-Smith, AC, Burton, GJ. A quantitative analysis of transcriptionally active syncytiotrophoblast nuclei across human gestation. J Anat. 2011; 219: 601–10.
[36]Rajakumar, A, Cerdeira, AS, Rana, S, Zsengeller, Z, Edmunds, L, Jeyabalan, A, et al. Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine kinase 1 in preeclampsia. Hypertension. 2012; 59: 256–64.
[37]Burton, GJ, Jones, CJ. Syncytial knots, sprouts, apoptosis, and trophoblast deportation from the human placenta. Taiwan J Obstet Gynecol. 2009; 48: 28–37.
[38]Parham, P, Guethlein, LA. Pregnancy immunogenetics: NK cell education in the womb? J Clin Invest. 2010; 120: 3801–4.
[39]Munn, DH, Zhou, M, Attwood, JT, Bondarev, I, Conway, SJ, Marshall, B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998; 281: 1191–3.
[40]Walker, MG, Fitzgerald, B, Keating, S, Ray, JG, Windrim, R, Kingdom, JCP. Sex-specific basis of severe placental dysfunction leading to extreme preterm delivery. Placenta. 2011; 33: 568–71.
[41]Saraswat, L, Bhattacharya, S, Maheshwari, A. Maternal and perinatal outcome in women with threatened miscarriage in the first trimester: a systematic review. BJOG. 2010; 117: 245–57.
[42]Porat, S, Fitzgerald, B, Wright, E, Keating, S, Kingdom, JC. Placental hyperinflation and the risk of adverse perinatal outcome. Ultrasound Obstet Gynecol. 2013; 42: 315–21.
[43]Fitzgerald, B, Shannon, P, Kingdom, J, Keating, S. Rounded intraplacental haematomas due to decidual vasculopathy have a distinctive morphology. J Clin Pathol. 2011; 64: 729–32.
[44]Korzeniewski, SJ, Romero, R, Chaiworapongsa, T, Chaemsaithong, P, Kim, CJ, Kim, YM, et al. Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth factor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study. Am J Obstet Gynecol. 2016; 214: 629. e1–e17.
[45]Walker, MG, Fitzgerald, B, Keating, S, Ray, JG, Windrim, R, Kingdom, JC. Sex-specific basis of severe placental dysfunction leading to extreme preterm delivery. Placenta. 2012; 33: 568–71.
[46]Krebs, C, Macara, LM, Leiser, R, Bowman, AW, Greer, IA, Kingdom, JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol. 1996; 175: 1534–42.
[47]Fitzgerald, B, Levytska, K, Kingdom, J, Walker, M, Baczyk, D, Keating, S. Villous trophoblast abnormalities in extremely preterm deliveries with elevated second trimester maternal serum hCG or inhibin-A. Placenta. 2011; 32: 339–45.
[48]Yung, HW, Calabrese, S, Hynx, D, Hemmings, BA, Cetin, I, Charnock-Jones, DS, et al. Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol. 2008; 173: 451–62.
[49]Sharp, AN, Heazell, AE, Baczyk, D, Dunk, CE, Lacey, HA, Jones, CJ, et al. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. PLoS ONE. 2014; 9: e87621.
[50]Ray, JE, Garcia, J, Jurisicova, A, Caniggia, I. Mtd/Bok takes a swing: proapoptotic Mtd/Bok regulates trophoblast cell proliferation during human placental development and in preeclampsia. Cell Death Differ. 2010; 17: 846–59.
[51]Baczyk, D, Audette, MC, Coyaud, E, Raught, B, Kingdom, JC. Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress. J Physiol. 2018; 596: 1587–600.
[52]Drewlo, S, Levytska, K, Sobel, M, Baczyk, D, Lye, SJ, Kingdom, JC. Heparin promotes soluble VEGF receptor expression in human placental villi to impair endothelial VEGF signaling. J Thromb Haemost. 2011; 9: 2486–97.
[53]Nevo, O, Soleymanlou, N, Wu, Y, Xu, J, Kingdom, J, Many, A, et al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol. 2006; 291: R1085–93.
[54]Tache, V, LaCoursiere, DY, Saleemuddin, A, Parast, MM. Placental expression of vascular endothelial growth factor receptor-1/soluble vascular endothelial growth factor receptor-1 correlates with severity of clinical preeclampsia and villous hypermaturity. Hum Pathol. 2011; 42: 1283–8.
[55]Buhimschi, IA, Nayeri, UA, Zhao, G, Shook, LL, Pensalfini, A, Funai, EF, et al. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med. 2014; 6: 245ra92.
[56]Zeisler, H, Llurba, E, Chantraine, F, Vatish, M, Staff, AC, Sennstrom, M, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016; 374: 13–22.
[57]Griffin, M, Seed, PT, Duckworth, S, North, R, Myers, J, Mackillop, L, et al. Predicting delivery of a small-for-gestational-age infant and adverse perinatal outcome in women with suspected pre-eclampsia. Ultrasound Obstet Gynecol. 2018; 51: 387–95.
[58]Franco, C, Walker, M, Robertson, J, Fitzgerald, B, Keating, S, McLeod, A, et al. Placental infarction and thrombophilia. Obstet Gynecol. 2011; 117: 929–34.
[59]Viero, S, Chaddha, V, Alkazaleh, F, Simchen, MJ, Malik, A, Kelly, E, et al. Prognostic value of placental ultrasound in pregnancies complicated by absent end-diastolic flow velocity in the umbilical arteries. Placenta. 2004; 25: 735–41.
[60]Proctor, LK, Whittle, WL, Keating, S, Viero, S, Kingdom, JC. Pathologic basis of echogenic cystic lesions in the human placenta: role of ultrasound-guided wire localization. Placenta. 2010; 31: 1111–15.
[61]Walker, M, Whittle, W, Keating, S, Kingdom, J. Sonographic diagnosis of chronic abruption. J Obstet Gynaecol Can. 2010; 32: 1056–8.
[62]D’Souza, R, Keating, S, Walker, M, Drewlo, S, Kingdom, J. Unfractionated heparin and placental pathology in high-risk pregnancies: secondary analysis of a pilot randomized controlled trial. Placenta. 2014; 35: 816–23.
[63]Rolnik, DL, Wright, D, Poon, LC, O’Gorman, N, Syngelaki, A, de Paco Matallana, C, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017; 377: 613–22.
[64]Figueras, F, Caradeux, J, Crispi, F, Eixarch, E, Peguero, A, Gratacos, E. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol. 2018; 218: S790–802. e1.
[65]Ting, JY, Kingdom, JC, Shah, PS. Antenatal glucocorticoids, magnesium sulfate, and mode of birth in preterm fetal small for gestational age. Am J Obstet Gynecol. 2018; 218: S818–28.
[66]Nicolaides, KH. Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn. 2011; 31: 7–15.
[67]Dugoff, L. First- and second-trimester maternal serum markers for aneuploidy and adverse obstetric outcomes. Obstet Gynecol. 2010; 115: 1052–61.
[68]Smith, GC, Crossley, JA, Aitken, DA, Pell, JP, Cameron, AD, Connor, JM, et al. First-trimester placentation and the risk of antepartum stillbirth. JAMA. 2004; 292: 2249–54.
[69]Smith, GC, Shah, I, Crossley, JA, Aitken, DA, Pell, JP, Nelson, SM, et al. Pregnancy-associated plasma protein A and alpha-fetoprotein and prediction of adverse perinatal outcome. Obstet Gynecol. 2006; 107: 161–6.
[70]Crovetto, F, Triunfo, S, Crispi, F, Rodriguez-Sureda, V, Roma, E, Dominguez, C, et al. First-trimester screening with specific algorithms for early- and late-onset fetal growth restriction. Ultrasound Obstet Gynecol. 2016; 48: 340–8.
[71]Rizzo, G, Capponi, A, Pietrolucci, ME, Capece, A, Arduini, D. First-trimester placental volume and vascularization measured by 3-dimensional power Doppler sonography in pregnancies with low serum pregnancy-associated plasma protein a levels. J Ultrasound Med. 2009; 28: 1615–22.
[72]Yigiter, AB, Kavak, ZN, Durukan, B, Isci, H, Uzuner, A, Uyar, E, et al. Placental volume and vascularization flow indices by 3D power Doppler US using VOCAL technique and correlation with IGF-1, free beta-hCG, PAPP-A, and uterine artery Doppler at 11-14 weeks of pregnancy. J Perinat Med. 2011; 39: 137–41.
[73]Alanjari, A, Wright, E, Keating, S, Ryan, G, Kingdom, J. Prenatal diagnosis, clinical outcomes, and associated pathology in pregnancies complicated by massive subchorionic thrombohematoma (Breus’ mole). Prenat Diagn. 2013; 33: 973–8.
[74]Saleemuddin, A, Tantbirojn, P, Sirois, K, Crum, CP, Boyd, TK, Tworoger, S, et al. Obstetric and perinatal complications in placentas with fetal thrombotic vasculopathy. Pediatr Dev Pathol. 2010; 13: 459–64.
[75]Salafia, CM, Pezzullo, JC, Minior, VK, Divon, MY. Placental pathology of absent and reversed end-diastolic flow in growth-restricted fetuses. Obstet Gynecol. 1997; 90: 830–6.
[76]Redline, RW. Placental pathology: a systematic approach with clinical correlations. Placenta. 2008; 29 (Suppl. A): S86–91.
[77]Cox, P, Marton, T. Pathological assessment of intrauterine growth restriction. Best Pract Res Clin Obstet Gynaecol. 2009; 23: 751–64.
[78]Klaritsch, P, Haeusler, M, Karpf, E, Schlembach, D, Lang, U. Spontaneous intrauterine umbilical artery thrombosis leading to severe fetal growth restriction. Placenta. 2008; 29: 374–7.
[79]Reister, F, Frank, HG, Kingdom, JC, Heyl, W, Kaufmann, P, Rath, W, et al. Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest. 2001; 81: 1143–52.
[80]Contro, E, deSouza, R, Bhide, A. Chronic intervillositis of the placenta: a systematic review. Placenta. 2010; 31: 1106–10.
[81]Uxa, R, Baczyk, D, Kingdom, JC, Viero, S, Casper, R, Keating, S. Genetic polymorphisms in the fibrinolytic system of placentas with massive perivillous fibrin deposition. Placenta. 2010; 31: 499–505.
[82]Fitzgerald, B, Baczyk, D, J. K, Keating, S. Villous Cytotrophoblast Phenotype Switching in Massive Perivillous Fibrinoid Deposition. Submitted for publication. 2011.
[83]Boog, G. Chronic villitis of unknown etiology. Eur J Obstet Gynecol Reprod Biol. 2008; 136: 9–15.
[84]Katzman, PJ, Murphy, SP, Oble, DA. Immunohistochemical analysis reveals an influx of regulatory T cells and focal trophoblastic STAT-1 phosphorylation in chronic villitis of unknown etiology. Pediatr Dev Pathol. 2011; 14: 284–93.
[85]Tang, Z, Abrahams, VM, Mor, G, Guller, S. Placental Hofbauer cells and complications of pregnancy. Ann N Y Acad Sci. 2011; 1221: 103–8.
[86]Derricott, H, Jones, RL, Greenwood, SL, Batra, G, Evans, MJ, Heazell, AE. Characterizing villitis of unknown etiology and inflammation in stillbirth. Am J Pathol. 2016; 186: 952–61.
[87]Levytska, K, Higgins, M, Keating, S, Melamed, N, Walker, M, Sebire, NJ, et al. Placental pathology in relation to uterine artery doppler findings in pregnancies with severe intrauterine growth restriction and abnormal umbilical artery doppler changes. Am J Perinatol. 2017; 34: 451–7.
[88]Walker, MG, Hindmarsh, PC, Geary, M, Kingdom, JC. Sonographic maturation of the placenta at 30 to 34 weeks is not associated with second trimester markers of placental insufficiency in low-risk pregnancies. J Obstet Gynaecol Can. 2010; 32: 1134–9.
[89]Cooley, SM, Donnelly, JC, Walsh, T, McMahon, C, Gillan, J, Geary, MP. The impact of ultrasonographic placental architecture on antenatal course, labor and delivery in a low-risk primigravid population. J Matern Fetal Neonatal Med. 2011; 24: 493–7.
[90]Laskin, CA, Bombardier, C, Hannah, ME, Mandel, FP, Ritchie, JW, Farewell, V, et al. Prednisone and aspirin in women with autoantibodies and unexplained recurrent fetal loss. N Engl J Med. 1997; 337: 148–53.
[91]Rodger, MA, Gris, JC, de Vries, JIP, Martinelli, I, Rey, E, Schleussner, E, et al. Low-molecular-weight heparin and recurrent placenta-mediated pregnancy complications: a meta-analysis of individual patient data from randomised controlled trials. Lancet. 2016; 388: 2629–41.
[92]Wat, JM, Audette, M, Kingdom, JC. Molecular actions of heparin and their implications in preventing preeclampsia. J Thromb Haemost. 2018; 16 [Epub ahead of print]
[93]Bewley, S, Cooper, D, Campbell, S. Doppler investigation of uteroplacental blood flow resistance in the second trimester: a screening study for pre-eclampsia and intrauterine growth retardation. BJOG. 1991; 98: 871–9.
[94]Yu, CK, Smith, GC, Papageorghiou, AT, Cacho, AM, Nicolaides, KH. An integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected low-risk women. Am J Obstet Gynecol. 2005; 193: 429–36.
[95]Pardi, G, Cetin, I, Marconi, AM, Bozzetti, P, Buscaglia, M, Makowski, EL, et al. Venous drainage of the human uterus: respiratory gas studies in normal and fetal growth-retarded pregnancies. Am J Obstet Gynecol. 1992; 166: 699–706.
[96]Alkazaleh, F, Chaddha, V, Viero, S, Malik, A, Anastasiades, C, Sroka, H, et al. Second-trimester prediction of severe placental complications in women with combined elevations in alpha-fetoprotein and human chorionic gonadotrophin. Am J Obstet Gynecol. 2006; 194: 821–7.
[97]Huang, T, Hoffman, B, Meschino, W, Kingdom, J, Okun, N. Prediction of adverse pregnancy outcomes by combinations of first and second trimester biochemistry markers used in the routine prenatal screening of Down syndrome. Prenat Diagn. 2010; 30: 471–7.
[98]Schwartz, N, Coletta, J, Pessel, C, Feng, R, Timor-Tritsch, IE, Parry, S, et al. Novel 3-dimensional placental measurements in early pregnancy as predictors of adverse pregnancy outcomes. J Ultrasound Med. 2010; 29: 1203–12.
[99]Kingdom, JC, Walker, M, Proctor, LK, Keating, S, Shah, PS, McLeod, A, et al. Unfractionated heparin for second trimester placental insufficiency: a pilot randomized trial. J Thromb Haemost. 2011; 9: 1483–92.
[100]McLaughlin, K, Baczyk, D, Potts, A, Hladunewich, M, Parker, JD, Kingdom, JC. Low molecular weight heparin improves endothelial function in pregnant women at high risk of preeclampsia. Hypertension. 2017; 69: 180–8.
[101]Myers, JE, Kenny, LC, McCowan, LM, Chan, EH, Dekker, GA, Poston, L, et al. Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study. BJOG. 2013; 120: 1215–23.
[102]McLaughlin, K, Scholten, RR, Parker, JD, Ferrazzi, E, Kingdom, JCP. Low molecular weight heparin for the prevention of severe preeclampsia: where next? Br J Clin Pharmacol. 2018; 84: 673–8.
[103]Preston, FE, Rosendaal, FR, Walker, ID, Briet, E, Berntorp, E, Conard, J, et al. Increased fetal loss in women with heritable thrombophilia. Lancet. 1996; 348: 913–16.
[104]Mousa, HA, Alfirevic, Z. Do placental lesions reflect thrombophilia state in women with adverse pregnancy outcome? Hum Reprod. 2000; 15: 1830–3.
[105]Farine, D, Ryan, G, Kelly, EN, Morrow, RJ, Laskin, C, Ritchie, JW. Absent end-diastolic flow velocity waveforms in the umbilical artery—the subsequent pregnancy. Am J Obstet Gynecol. 1993; 168: 637–40.
[106]Toal, M, Chan, C, Fallah, S, Alkazaleh, F, Chaddha, V, Windrim, RC, et al. Usefulness of a placental profile in high-risk pregnancies. Am J Obstet Gynecol. 2007; 196: 363. e1–7.
[107]Staff, AC, Dechend, R, Pijnenborg, R. Learning from the placenta: acute atherosis and vascular remodeling in preeclampsia – novel aspects for atherosclerosis and future cardiovascular health. Hypertension. 2010; 56: 1026–34.