Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Print publication year: 2010
  • Online publication date: July 2010

4 - Cryoprotectants

from Cryobiology

Related content

Powered by UNSILO


1. MazurP.Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys 1990; 17: 53–92.
2. MazurP. Principles of cryobiology. In FullerB, LaneN, BensonE, eds. Life in the Frozen State. Boca Raton, FL: CRC Press, 2004, pp. 3–65.
3. HubalekZ.Protectants used in the cryopreservation of microorganisms. Cryobiology 2003; 46: 205–229.
4. Karow AM, Jr.Cryoprotectants: a new class of drugs. J Pharm Pharmacol 1969; 21: 209–223.
5. PedroPB, YokoyamaE, ZhuSE, et al. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J Reprod Dev 2005; 51: 235–246.
6. KarlssonJO, YounisAI, ChanAW, GouldKG, ErogluA. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev 2009: 76: 321–333.
7. AgcaY, LiuJ, PeterAT, CritserES, CritserJK. Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics. Mol Reprod Dev 1998; 49: 408–415.
8. SekiA, MiyauchiS, HayashiS, et al. Heterologous expression of Pharaonis halorhodopsin in Xenopus laevis oocytes and electrophysiological characterization of its light-driven Cl− pump activity. Biophys J 2007; 92: 2559–2569.
9. ValdezDM, Jr., MiyamotoA, HaraT, et al. Water- and cryoprotectant-permeability of mature and immature oocytes in the medaka (Oryzias latipes). Cryobiology 2005; 50: 93–102.
10. BensonCT, CritserJK.Variation of water permeability (Lp) and its activation energy (Ea) among unfertilized golden hamster and ICR murine oocytes. Cryobiology 1994; 31: 215–223.
11. ChaveiroA, LiuJ, EngelB, CritserJK, WoeldersH.Significant variability among bulls in the sperm membrane permeability for water and glycerol: possible implications for semen freezing protocols for individual males. Cryobiology 2006; 53: 349–359.
12. SantosNC, Figueira-CoelhoJ, Martins-SilvaJ, SaldanhaC. Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 2003; 65: 1035–1041.
13. WhittinghamDG, LeiboSP, MazurP.Survival of mouse embryos frozen to −196 degrees and −269 degrees C. Science 1972; 178: 411–414.
14. TrounsonA, MohrL.Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 1983; 305: 707–709.
15. ZeilmakerGH, AlberdaAT, van GentI, RijkmansCM, DrogendijkAC. Two pregnancies following transfer of intact frozen–thawed embryos. Fertil Steril 1984; 42: 293–296.
16. ChenC.Pregnancy after human oocyte cryopreservation. Lancet 1986; i: 884–886.
17. KarranG, LeggeM.Non-enzymatic formation of formaldehyde in mouse oocyte freezing mixtures. Hum Reprod 1996; 11: 2681–2686.
18. GardnerDK, RienziL, Katz-JaffeM, LarmanMG. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology 2007; 67: 64–72.
19. VincentC, PickeringSJ, JohnsonMH. The hardening effect of dimethyl sulphoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present. J Reprod Fertil 1990; 89: 253–259.
20. VincentC, PickeringSJ, JohnsonMH, QuickSJ. Dimethyl sulphoxide affects the organisation of microfilaments in the mouse oocyte. Mol Reprod Dev 1990; 26: 227–235.
21. JohnsonMH, PickeringSJ.The effect of dimethyl sulphoxide on the microtubular system of the mouse oocyte. Development 1987; 100: 313–324.
22. PickeringSJ, BraudePR, JohnsonMH.Cryoprotection of human oocytes: inappropriate exposure to DMSO reduces fertilization rates. Hum Reprod 1991; 6: 142–143.
23. Van derElst J, NerinckxS, Van SteirteghemAC. In vitro maturation of mouse germinal vesicle-stage oocytes following cooling, exposure to cryoprotectants and ultrarapid freezing: limited effect on the morphology of the second meiotic spindle. Hum Reprod 1992; 7: 1440–1446.
24. GeorgeMA, PickeringSJ, BraudePR, JohnsonMH. The distribution of alpha- and gamma-tubulin in fresh and aged human and mouse oocytes exposed to cryoprotectant. Mol Hum Reprod 1996; 2: 445–456.
25. VincentC, GarnierV, HeymanY, RenardJP. Solvent effects on cytoskeletal organization and in-vivo survival after freezing of rabbit oocytes. J Reprod Fertil 1989; 87: 809–820.
26. AlvarengaMA, PapaFO, Landim-AlvarengaFC, MedeirosAS. Amides as cryoprotectants for freezing stallion semen: a review. Anim Reprod Sci 2005; 89: 105–113.
27. SquiresEL, KeithSL, GrahamJK.Evaluation of alternative cryoprotectants for preserving stallion spermatozoa. Theriogenology 2004; 62: 1056–1065.
28. MedeirosA, GomesG, CarmoM, PapaF, AlvarengaM. Cryopreservation of stallion sperm using different amides. Theriogenology 2002; 58: 273–276.
29. LukaszewiczE.An effective method for freezing White Italian gander semen. Theriogenology 2002; 58: 19–27.
30. FutinoDO, MendesMCB, MatosWNL, MondadoriRG, LucciCM. Glycerol, methyl-formamide and dimethyl-formamide in canine semen cryopreservation. Reprod Domest Anim 2008; epub.
31. SzteinJM, NobleK, FarleyJS, MobraatenLE. Comparison of permeating and nonpermeating cryoprotectants for mouse sperm cryopreservation. Cryobiology 2001; 42: 28–39.
32. HanadaA, NagaseH.Cryoprotective effects of some amides on rabbit spermatozoa. J Reprod Fertil 1980; 60: 247–252.
33. RallW, FahyG.Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature 1985; 313: 573–575.
34. EdashigeK, OhtaS, TanakaM, et al. The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae. Biol Reprod 2007; 77: 365–375.
35. OtsukaJ, TakahashiA, NagaokaM, FunabashiH. Optimal equilibration conditions for practical vitrification of two-cell mouse embryos. Comp Med 2002; 52: 342–346.
36. MigishimaF, Suzuki-MigishimaR, SongSY, et al. Successful cryopreservation of mouse ovaries by vitrification. Biol Reprod 2003; 68: 881–887.
37. HochiS, HirabayashiM, HiraoM, et al. Effects of cryopreservation of pronuclear-stage rabbit zygotes on the morphological survival, blastocyst formation, and full-term development after DNA microinjection. Mol Reprod Dev 2001; 60: 227–232.
38. KonoT, SuzukiO, TsunodaY.Cryopreservation of rat blastocysts by vitrification. Cryobiology 1988; 25: 170–173.
39. YoshinoJ, KojimaT, ShimizuM, TomizukaT. Cryopreservation of porcine blastocysts by vitrification. Cryobiology 1993; 30: 413–422.
40. NakagataN.High survival rate of unfertilized mouse oocytes after vitrification. J Reprod Fertil 1989; 87: 479–483.
41. MukaidaT, WadaS, TakahashiK, et al. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod 1998; 13: 2874–2879.
42. GuanM, RawsonDM, ZhangT.Cryopreservation of zebrafish (Danio rerio) oocytes using improved controlled slow cooling protocols. Cryobiology 2008; 56: 204–208.
43. TervitHR, AdamsSL, RobertsRD, et al. Successful cryopreservation of Pacific oyster (Crassostrea gigas) oocytes. Cryobiology 2005; 51: 142–151.
44. NascimentoIA, LeiteMB, Sampaio de AraujoMM, et al. Selection of cryoprotectants based on their toxic effects on oyster gametes and embryos. Cryobiology 2005; 51: 113–117.
45. ZhangYZ, ZhangSC, LiuXZ, et al. Toxicity and protective efficiency of cryoprotectants to flounder (Paralichthys olivaceus) embryos. Theriogenology 2005; 63: 763–773.
46. BassLD, DennistonDJ, MacLellanLJ, et al. Methanol as a cryoprotectant for equine embryos. Theriogenology 2004; 62: 1153–1159.
47. TakagiM, OtoiT, SuzukiT.Survival rate of frozen–thawed bovine IVM/IVF embryos in relation to post-thaw exposure time in two cryoprotectants. Cryobiology 1993; 30: 466–469.
48. TakagiM, BoedionoA, SahaS, SuzukiT. Survival rate of frozen–thawed bovine IVF embryos in relation to exposure time using various cryoprotectants. Cryobiology 1993; 30: 306–312.
49. PolgeC, SmithAU, ParkesAS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949; 164: 666.
50. TestartJ, LassalleB, Belaisch-AllartJ, et al. High pregnancy rate after early human embryo freezing. Fertil Steril 1986; 46: 268–272.
51. HotamisligilS, TonerM, PowersRD.Changes in membrane integrity, cytoskeletal structure, and developmental potential of murine oocytes after vitrification in ethylene glycol. Biol Reprod 1996; 55: 161–168.
52. CooperTG, BarfieldJP, YeungCH. The tonicity of murine epididymal spermatozoa and their permeability towards common cryoprotectants and epididymal osmolytes. Reproduction 2008; 135: 625–633.
53. SuzukiT, TakagiM, YamamotoM, et al. Pregnancy rate and survival in culture of in vitro fertilized bovine embryos frozen in various cryoprotectants and thawed using a one-step system. Theriogenology 1993; 40: 651–659.
54. PughPA, TervitHR, NiemannH.Effects of vitrification medium composition on the survival of bovine in vitro produced embryos, following in straw-dilution, in vitro and in vivo following transfer. Anim Reprod Sci 2000; 58: 9–22.
55. ValdezCA, Abas MazniO, TakahashiY, FujikawaS, KanagawaH. Successful cryopreservation of mouse blastocysts using a new vitrification solution. J Reprod Fertil 1992; 96: 793–802.
56. AliJ, SheltonJN.Design of vitrification solutions for the cryopreservation of embryos. J Reprod Fertil 1993; 99: 471–477.
57. TodorovI, BersteinA, McGrathJ, FullerB, ShawR. Studies on 2,3-butanediol as a cryoprotectant for mouse oocytes: use of sucrose to avoid damage during exposure or removal. Cryo Letters 1993: 14: 37–42.
58. HoaglandH, PincusG.Revival of mammalian sperm after immersion in liquid nitrogen. J Gen Physiol 1942: 337–344.
59. ParkesA.Preservation of human spermatozoa at low temperatures. Br J Med 1945: 2: 212–213.
60. ShermanJK, BungeRG.Effect of glycerol and freezing on some staining reactions of human spermatozoa. Proc Soc Exp Biol Med 1953; 84: 179–180.
61. LinTP, ShermanJK, WillettEL. Survival of unfertilized mouse eggs in media containing glycerol and glycine. J Exp Zool 1957; 134: 275–291.
62. ShermanJK, LinTP.Effect of glycerol and low temperature on survival of unfertilized mouse eggs. Nature 1958; 181: 785–786.
63. LovestockJ.The mechanism of the protective effect of glycerol against haemolysis by freezing and thawing. Biochem Biophys Acta 1959; 31: 28–36.
64. SekiS, KouyaT, HaraT, et al. Exogenous expression of rat aquaporin-3 enhances permeability to water and cryoprotectants of immature oocytes in the zebrafish (Danio rerio). J Reprod Dev 2007; 53: 597–604.
65. ValdezDM, Jr., HaraT, MiyamotoA, et al. Expression of aquaporin-3 improves the permeability to water and cryoprotectants of immature oocytes in the medaka (Oryzias latipes). Cryobiology 2006; 53: 160–168.
66. UtsumiK, HochiS, IritaniA.Cryoprotective effect of polyols on rat embryos during two-step freezing. Cryobiology 1992; 29: 332–341.
67. MoliniaFC, EvansG, MaxwellWM.Effect of polyols on the post-thawing motility of pellet-frozen ram spermatozoa. Theriogenology 1994; 42: 15–23.
68. AlvarezJG, StoreyBT.Evidence that membrane stress contributes more than lipid peroxidation to sublethal cryodamage in cryopreserved human sperm: glycerol and other polyols as sole cryoprotectant. J Androl 1993; 14: 199–209.
69. FullerB, LaneN, BensonE.Life in the Frozen State. Boca Raton: CRC Press, 2004, p. 672.
70. KuleshovaL, MacFarlaneD, TrounsonA, ShawJ. Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology 1999; 38: 119–130.
71. VincentC, TurnerK, PickeringSJ, JohnsonMH. Zona pellucida modifications in the mouse in the absence of oocyte activation. Mol Reprod Dev 1991; 28: 394–404.
72. YildizC, KayaA, AksoyM, TekeliT. Influence of sugar supplementation of the extender on motility, viability and acrosomal integrity of dog spermatozoa during freezing. Theriogenology 2000; 54: 579–585.
73. McWilliamsRB, GibbonsWE, LeiboSP. Osmotic and physiological responses of mouse zygotes and human oocytes to mono- and disaccharides. Hum Reprod 1995; 10: 1163–1171.
74. ArnsMJ, WebbGW, KreiderJL, PotterGD, EvansJW. Use of different nonglycolysable sugars to maintain stallion sperm viability when frozen or stored at 37 degrees C and 5 degrees C in a bovine serum albumin medium. J Reprod Fertil Suppl 1987; 35: 135–141.
75. Fernandez-SantosMR, Martinez-PastorF, Garcia-MaciasV, et al. Extender osmolality and sugar supplementation exert a complex effect on the cryopreservation of Iberian red deer (Cervus elaphus hispanicus) epididymal spermatozoa. Theriogenology 2007; 67: 738–53.
76. HayMA, GoodroweKL.Comparative cryopreservation and capacitation of spermatozoa from epididymides and vasa deferentia of the domestic cat. J Reprod Fertil Suppl 1993; 47: 297–305.
77. KasaiM.Nonfreezing technique for short-term storage of mouse embryos. J In Vitro Fert Embryo Transf 1986; 3: 10–14.
78. LuyetB, HodappA. Revival of frog’s spermatozoa vitrified in liquid air. Proc Meet Soc Exp Biol 1938; 36: 433–434.
79. Sola-PennaM, Meyer-FernandesJR. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars?Arch Biochem Biophys 1998; 360: 10–14.
80. LinTY, TimasheffSN.On the role of surface tension in the stabilization of globular proteins. Protein Sci 1996; 5: 372–381.
81. HonadelTE, KillianGJ.Cryopreservation of murine embryos with trehalose and glycerol. Cryobiology 1988; 25: 331–337.
82. BeginI, BhatiaB, BaldassarreH, DinnyesA, KeeferCL. Cryopreservation of goat oocytes and in vivo derived 2- to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification (SSV) methods. Theriogenology 2003; 59: 1839–1850.
83. IsachenkoV, AlabartJL, DattenaM, et al. New technology for vitrification and field (microscope-free) warming and transfer of small ruminant embryos. Theriogenology 2003; 59: 1209–1218.
84. SahaS, OtoiT, TakagiM, et al. Normal calves obtained after direct transfer of vitrified bovine embryos using ethylene glycol, trehalose, and polyvinylpyrrolidone. Cryobiology 1996; 33: 291–299.
85. BagisH, SagirkayaH, MercanHO, DinnyesA. Vitrification of pronuclear-stage mouse embryos on solid surface (SSV) versus in cryotube: comparison of the effect of equilibration time and different sugars in the vitrification solution. Mol Reprod Dev 2004; 67: 186–192.
86. ErogluA, BaileySE, TonerM, TothTL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod 2009; 80: 70–78.
87. ErogluA, BaileySE, TonerM, TothTL. Quantitative microinjection of trehalose into mouse oocytes and zygotes, and its effect on development. Cryobiology 2003; 46: 121–134.
88. ErogluA, TonerM, TothTL.Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil Steril 2002; 77: 152–158.
89. StoreyBT, NoilesEE, ThompsonKA.Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. Cryobiology 1998; 37: 46–58.
90. ChenY, FooteRH, BrockettCC.Effect of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm. Cryobiology 1993; 30: 423–431.
91. VicenteJS, Viudes-de-CastroMP. A sucrose–DMSO extender for freezing rabbit semen. Reprod Nutr Dev 1996; 36: 485–492.
92. TadaN, SatoM, YamanoiJ, et al. Cryopreservation of mouse spermatozoa in the presence of raffinose and glycerol. J Reprod Fertil 1990; 89: 511–516.
93. OstermeierGC, WilesMV, FarleyJS, TaftRA. Conserving, distributing and managing genetically modified mouse lines by sperm cryopreservation. PLoS ONE, 2008; 3: e2792.
94. SongsasenN, BetteridgeKJ, LeiboSP.Birth of live mice resulting from oocytes fertilized in vitro with cryopreserved spermatozoa. Biol Reprod 1997; 56: 143–152.
95. GardeJJ, del OlmoA, SolerAJ, et al. Effect of egg yolk, cryoprotectant, and various sugars on semen cryopreservation in endangered Cuvier’s gazelle (Gazella cuvieri). Anim Reprod Sci 2008; 108: 384–401.
96. de la PenaEC, TakahashiY, AtabayEC, KatagiriS, NaganoM. Vitrification of mouse oocytes in ethylene glycol–raffinose solution: effects of preexposure to ethylene glycol or raffinose on oocyte viability. Cryobiology 2001; 42: 103–111.
97. NaganoM, AtabayEP, AtabayEC, et al. Effects of isolation method and pre-treatment with ethylene glycol or raffinose before vitrification on in vitro viability of mouse preantral follicles. Biomed Res 2007; 28: 153–160.
98. GomezMC, PopeE, HarrisR, MikotaS, DresserBL. Development of in vitro matured, in vitro fertilized domestic cat embryos following cryopreservation, culture and transfer. Theriogenology 2003; 60: 239–251.
99. KuleshovaLL, ShawJM, TrounsonAO.Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation. Cryobiology 2001; 43: 21–31.
100. DumoulinJC, Bergers-JanssenJM, PietersMH, et al. The protective effects of polymers in the cryopreservation of human and mouse zonae pellucidae and embryos. Fertil Steril 1994; 62: 793–798.
101. ShawJM, KuleshovaLL, MacFarlaneDR, TrounsonAO. Vitrification properties of solutions of ethylene glycol in saline containing PVP, Ficoll, or dextran. Cryobiology 1997; 35: 219–229.
102. MacKenzieAP. Non-equilibrium freezing behaviour of aqueous systems. Philos Trans R Soc Lond B Biol Sci 1977; 278: 167–189.
103. FullerBJ.Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters 2004; 25: 375–388.
104. EndohK, MochidaK, OgonukiN, et al. The developmental ability of vitrified oocytes from different mouse strains assessed by parthenogenetic activation and intracytoplasmic sperm injection. J Reprod Dev 2007; 53: 1199–1206.
105. MerloB, IaconoE, RegazziniM, ZambelliD.Cat blastocysts produced in vitro from oocytes vitrified using the cryoloop technique and cryopreserved electroejaculated semen. Theriogenology 2008; 70: 126–130.
106. HuangJ, LiQ, ZhaoR, et al. Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes. Anim Reprod Sci 2008; 106: 25–35.
107. HurttAE, Landim-AlvarengaF, SeidelGE, Jr., SquiresEL. Vitrification of immature and mature equine and bovine oocytes in an ethylene glycol, Ficoll and sucrose solution using open-pulled straws. Theriogenology 2000; 54: 119–128.
108. ChecuraCM, SeidelGE, Jr.Effect of macromolecules in solutions for vitrification of mature bovine oocytes. Theriogenology 2007; 67: 919–930.
109. YeomanRR, Gerami-NainiB, MitalipovS, et al. Cryoloop vitrification yields superior survival of Rhesus monkey blastocysts. Hum Reprod 2001; 16: 1965–1969.
110. LiebermannJ, TuckerMJ, SillsES.Cryoloop vitrification in assisted reproduction: analysis of survival rates in > 1000 human oocytes after ultra-rapid cooling with polymer augmented cryoprotectants. Clin Exp Obstet Gynecol 2003; 30: 125–129.
111. O ’ NeilL, PaynterSJ, FullerBJ. Vitrification of mature mouse oocytes: improved results following addition of polyethylene glycol to a dimethyl sulfoxide solution. Cryobiology 1997; 34: 295–301.
112. OhboshiS, EtohT, SakamotoK, et al. Effects of bovine serum proteins in culture medium on post-warming survival of bovine blastocysts developed in vitro. Theriogenology 1997; 47: 1237–1243.
113. WhittinghamD.Survival of mouse embryos after freezing and thawing. Nature 1971; 233: 125–126.
114. TitteringtonJL, RobinsonJ, KillickSR, HayDM. Synthetic and biological macromolecules: protection of mouse embryos during cryopreservation by vitrification. Hum Reprod 1995; 10: 649–653.
115. GutierrezA, GardeJ, ArtigaCG, MunozI, PintadoB. In vitro survival of murine morulae after quick freezing in the presence of chemically defined macromolecules and different cryoprotectants. Theriogenology 1993; 39: 1111–1120.
116. NowshariMA, BremG.The protective action of polyvinyl alcohol during rapid-freezing of mouse embryos. Theriogenology 2000; 53: 1157–1166.
117. AsadaM, IshibashiS, IkumiS, FukuiY. Effect of polyvinyl alcohol (PVA) concentration during vitrification of in vitro matured bovine oocytes. Theriogenology 2002; 58: 1199–1208.
118. NaitanaS, LeddaS, LoiP, et al. Polyvinyl alcohol as a defined substitute for serum in vitrification and warming solutions to cryopreserve ovine embryos at different stages of development. Anim Reprod Sci 1997; 48: 247–256.
119. LeoniG, BoglioloL, BerlinguerF, et al. Defined media for vitrification, warming, and rehydration: effects on post-thaw protein synthesis and viability of in vitro derived ovine embryos. Cryobiology 2002; 45: 204–212.
120. SommerfeldV, NiemannH.Cryopreservation of bovine in vitro produced embryos using ethylene glycol in controlled freezing or vitrification. Cryobiology 1999; 38: 95–105.
121. PalaszA, AlkemadeS, MapletoftRJ.The use of sodium hyaluronate in freezing media for bovine and murine embryos. Cryobiology 1993; 30: 172–178.
122. PalaszAT, AlkemadeS, MapletoftRJ. Development, molecular composition and freeze tolerance of bovine embryos cultured in TCM-199 supplemented with hyaluronan. Zygote 2008; 16: 39–47.
123. PalaszAT, ThundathilJ, De La FuenteJ, MapletoftRJ. Effect of reduced concentrations of glycerol and various macromolecules on the cryopreservation of mouse and cattle embryos. Cryobiology 2000; 41: 35–42.
124. FrancoM, HansenPJ.Effects of hyaluronic acid in culture and cytochalasin B treatment before freezing on survival of cryopreserved bovine embryos produced in vitro. In Vitro Cell Dev Biol Anim 2006; 42: 40–44.
125. JollyT, NibartM, ThibierC.Hyaluranic acid as a substitute for protein in the deep freezing of embryos for mice and sheep: an in vitro investigation. Theriogenology 1992; 37: 473–480.
126. PenaFJ, JohannissonA, WallgrenM, Rodriguez-MartinezH. Effect of hyaluronan supplementation on boar sperm motility and membrane lipid architecture status after cryopreservation. Theriogenology 2004; 61: 63–70.
127. FahyGM, LilleyTH, LinsdellH, DouglasMS, MerymanHT. Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 1990; 27: 247–268.
128. FahyG.Vitrification: a new approach to organ cryopreservation. Prog Clin Biol Res 1986; 224: 305–335.
129. AnchordoguyTJ, RudolphAS, CarpenterJF, CroweJH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 1987; 24: 324–331.
130. GurtovenkoAA, AnwarJ.Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 2007; 111: 10453–10460.
131. FahyGM, WowkB, WuJ, PaynterS. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 2004; 48: 22–35.
132. Van derElst J, NerinckxS, Van SteirteghemA. In vitro maturation of mouse germinal vesicle-stage oocytes following cooling, exposure to cryoprotectants and ultrarapid freezing: limited effect on the morphology of the second meiotic spindle. Hum Reprod 1992; 7: 1440–1446.
133. Van derElst J, Van denAbbeel E, NerinckxS, Van SteirteghemA. Parthenogenetic activation pattern and microtubular organization of the mouse oocyte after exposure to 1,2-propanediol. Cryobiology 1992; 29: 549–562.
134. VincentC, JohnsonM.Cooling cryoprotectants and the cytoskeleton of the mammalian oocyte. Oxford Rev Reprod Biol 1992; 14: 73–100.
135. VincentC, PruliereG, Pajot-AugyE, et al. Effects of cryoprotectants on actin filaments during the cryopreservation of one-cell rabbit embryos. Cryobiology 1990; 27: 9–23.
136. JolyC, BchiniO, BoulekbacheH, TestartJ, MaroB. Effects of 1,2-propanediol on the cytoskeletal organization of the mouse oocyte. Hum Reprod 1992; 7: 374–378.
137. ShawJM, TrounsonAO.Parthenogenetic activation of unfertilized mouse oocytes by exposure to 1,2-propanediol is influenced by temperature, oocyte age, and cumulus removal. Gamete Res 1989; 24: 269–279.
138. GookDA, OsbornSM, JohnstonWI. Parthenogenetic activation of human oocytes following cryopreservation using 1,2-propanediol. Hum Reprod 1995; 10: 654–658.
139. Katz-JaffeMG, LarmanMG, SheehanCB, GardnerDK. Exposure of mouse oocytes to 1,2-propanediol during slow freezing alters the proteome. Fertil Steril 2008; 89(Suppl 5): 1441–1447.
140. PickeringS, BraudeP, JohnsonM.Cryoprotection of human oocytes: inappropriate exposure to DMSO reduces fertilization rates. Hum Reprod 1991; 6: 142–143.
141. RasulZ, AhmedN, AnzarM.Antagonist effect of DMSO on the cryoprotection ability of glycerol during cryopreservation of buffalo sperm. Theriogenology 2007; 68: 813–819.
142. PickeringS, BraudeP, JohnsonM, CantA, CurrieJ. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril 1990; 54: 102–108.
143. PickeringS, JohnsonM.The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod 1987; 2: 207–216.
144. LarmanMG, Katz-JaffeMG, SheehanCB, GardnerDK. 1,2-Propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod 2007; 22: 250–259.
145. WilmutI.The effect of cooling rate, warming rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci II 1972; 11: 1071–1079.
146. WilmutI, RowsonLE.The successful low-temperature preservation of mouse and cow embryos. J Reprod Fertil 1973; 33: 352–353.
147. StacheckiJJ, CohenJ, WilladsenSM. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium. Cryobiology 1998; 37: 346–354.