Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T16:49:06.266Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2015

Vincent C. H. Tong
Affiliation:
Birkbeck College, University of London
Rafael A. García
Affiliation:
Centre Commissariat à l'Energie Atomique (CEA), Saclay
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowicz, M. A., and Fragile, P. C. 2013. Foundations of black hole accretion disk theory. Living Rev. Relativity, 16(Jan.), 1.Google Scholar
Acevedo-Arreguin, L. A., Garaud, P., and Wood, T. S. 2013. Dynamics of the solar tachocline: III. Numerical solutions of the Gough and McIntyre model. MNRAS, 434(Sept.), 720–741.Google Scholar
Aerts, C. 2013. Asteroseismology of binary stars and a compilation of core overshoot and rotational frequency values of OB stars. Pages 323–330 of Pavlovski, K., Tkachenko, A., and Torres, G. (eds), Setting a New Standard in the Analysis of Binary Stars. EAS Publications Series, vol. 64.Google Scholar
Aerts, C., Thoul, A., Daszyńska, J., et al. 2003. Asteroseismology of HD 129929: Core overshooting and nonrigid rotation. Science, 300(June), 1926–1928.Google Scholar
Aerts, C., Christensen-Dalsgaard, J., and Kurtz, D. W. 2010. Asteroseismology. Springer.
Afanasiev, M. V., Pratt, G., Kamei, R., and McDowell, G. 2014. Waveform-based simulated annealing of crosshole transmission data: A semi-global method for estimating seismic anisotropy. Geophys. J. Int., 193(3), 1586–1607.Google Scholar
Ahmad, Q. R., Allen, R. C., Andersen, T. C., et al. 2002. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., 89(1), 011301.Google Scholar
Aizenman, M., Smeyers, P., and Weigert, A. 1977. Avoided crossing of modes of non-radial stellar oscillations. A&A, 58(June), 41.Google Scholar
Aki, K., and Chouet, B. 1975. Origin of coda waves: Source, attenuation, and scattering effects. J. Geophys. Res., 80, 3322–3342.Google Scholar
Aki, K., and Richards, P. G. 2002. Quantitative Seismology, 2nd edn, Sausalito, CA: University Science Books.
Allain, S. 1998. Modelling the angular momentum evolution of low-mass stars with coreenvelope decoupling. A&A, 333(May), 629–643.Google Scholar
Allred, J. C., Hawley, S. L., Abbett, W. P., and Carlsson, M. 2005. Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. ApJ, 630(Sept.), 573–586.Google Scholar
Alterman, Z., and Karal, F. 1968. Propagation of elastic waves in layered media by finite difference methods. Bull. Seism. Soc. Am., 58, 367–398.Google Scholar
Alvan, L., Mathis, S., and Decressin, T. 2013. Coupling between internal waves and shearinduced turbulence in stellar radiation zones: The critical layers. A&A, 553(May), A86.Google Scholar
Alvan, L., Brun, A. S., and Mathis, S. 2014. Theoretical seismology in 3D: Nonlinear simulations of internal gravity waves in solar-like stars. A&A, 565(May), A42.Google Scholar
Andersen, J. 1991. Accurate masses and radii of normal stars. A&A Rev., 3, 91–126.Google Scholar
Anderson, D. L. 1972. Internal constitution of Mars. J. Geophys. Res., 77, 789–795.Google Scholar
Anderson, D. L., Miller, W. F., Latham, G. V., et al. 1977. Seismology on Mars. J. Geophys. Res., 82(Sept.), 4524–1546.Google Scholar
Anderson, E. R., Duvall, Jr., T. L., and Jefferies, S. M. 1990. Modeling of solar oscillation power spectra. ApJ, 364(Dec.), 699–705.Google Scholar
Ando, H., and Osaki, Y. 1975. Nonadiabatic nonradial oscillations: An application to the five-minute oscillation of the sun. PASJ, 27, 581–603.Google Scholar
Ando, H., Watanabe, E., Yutani, M., Shimizu, Y., and Nishimura, S. 1988. Search for small-amplitude oscillations in stars by a Fabry-Perot interferometer. PASJ, 40, 249–262.Google Scholar
Antia, H. M., and Basu, S. 1994. Nonasymptotic helioseismic inversion for solar structure. A&AS, 107(Nov.), 421–144.Google Scholar
Antia, H. M., and Basu, S. 2000. Temporal variations of the rotation rate in the solar interior. ApJ, 541(Sept.), 442–448.Google Scholar
Antia, H. M., and Basu, S. 2005. The discrepancy between solar abundances and helioseismology. ApJ, 620(Feb.), L129–L132.Google Scholar
Antia, H. M., and Chitre, S. M. 1999. Limits on the proton-proton reaction cross-section from helioseismology. A&A, 347(July), 1000–1004.Google Scholar
Antia, H. M., Basu, S., and Chitre, S. M. 1998. Solar internal rotation rate and the latitudinal variation of the tachocline. MNRAS, 298(Aug.), 543–556.Google Scholar
Antia, H. M., Basu, S., Hill, F., et al. 2001. Solar-cycle variation of the sound-speed asphericity from GONG and MDI data1995–2000. MNRAS, 327(Nov.), 1029–1040.Google Scholar
Antia, H. M., Chitre, S. M., and Thompson, M. J. 2003. On variation of the latitudinal structure of the solar convection zone. A&A, 399(Feb.), 329–336.Google Scholar
Apollo 11 Mission Report 1969. NASA Manned Spacecraft Center MSC-00171, Houston, Texas.
Apollo 16 Mission Report 1972. NASA Manned Spacecraft Center MSC-07230, Houston, Texas.
Appourchaux, T. 2014. A crash course on data analysis in asteroseismology. In Palle, P. (ed), Asteroseismology. Canary Islands Winter School of Astrophysics, vol. 22. Cambridge: Cambridge University Press.
Appourchaux, T., Catala, C., Catalano, S., et al. 1991. PRISMA: Probing Rotation and Interior of Stars. Microvariability and activity, Assessment study report. In Appourchaux, T. (ed), SCI(91)5.Google Scholar
Appourchaux, T., Catala, C., Cornelisse, J., et al. 1993. PRISMA: Probing Rotation and Interior of Stars. Microvariability and activity. In Appourchaux, T. (ed), Phase-A study report, SCI(93)3, European Space Agency.
Appourchaux, T., Toutain, T., Telljohann, U., et al. 1995. Frequencies and splittings of low-degree solar p modes: results of the Luminosity Oscillations Imager. A&A, 294, L13–L16.Google Scholar
Appourchaux, T., Andersen, B. N., Frohlich, C., et al. 1997. In-flight performance of the Virgo Luminosity Oscillations Imager aboard SOHO. Sol. Phys., 170, 27–41.Google Scholar
Appourchaux, T., Michel, E., Auvergne, M., et al. 2008. CoRoT sounds the stars: P-mode parameters of Sun-like oscillations on HD 49933. A&A, 488(Sept.), 705–714.Google Scholar
Appourchaux, T., Belkacem, K., Broomhall, A.-M., et al. 2010. The quest for the solar g modes. A&A Rev., 18(Feb.), 197–277.Google Scholar
Appourchaux, T., Chaplin, W. J., García, R. A., et al. 2012a. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler. A&A, 543(July), A54.Google Scholar
Appourchaux, T., Benomar, O., Gruberbauer, M., et al. 2012b. Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler. A&A, 537(Jan.), A134.Google Scholar
Araki, H. 2001. Focal processes of deep moonquakes. J. Geod. Soc. Jpn., 47(1), 508–513.Google Scholar
Araki, H., Tazawa, S., Node, H., et al. 2009. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science, 323, 897–900.Google Scholar
Arentoft, T., Kjeldsen, H., Bedding, T. R., et al. 2008. A multisite campaign to measure solar-like oscillations in Procyon. I. Observations, data reduction, and slow variations. ApJ, 687(Nov.), 1180–1190.Google Scholar
Artru, J., Farges, T., and Lognonné, P. 2004. Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observation and normal-modes modeling. Geophys. J. Int., 158, 1067–1077.Google Scholar
Asplund, M., Grevesse, N., and Sauval, A. J. 2005 (Sept.). The solar chemical composition. Page 25 of Barnes, III, T. G., and Bash, F. N. (eds), Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis. Astronomical Society of the Pacific Conference Series, vol. 336.Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., and Scott, P. 2009. The chemical composition of the Sun. ARA&A, 47(Sept.), 481–522.Google Scholar
Bachmann, K. T., and Brown, T. M. 1993. P-mode frequency variation in relation to global solar activity. ApJ, 411(July), L45–L48.Google Scholar
Bachmann, K. T., Duvall, Jr., T. L., Harvey, J. W., and Hill, F. 1995. Frequencies of high degree solar oscillations. Page 156 of Ulrich, R. K., Rhodes, Jr., E. J., and Dappen, W. (eds), GONG 1994. Helio- and Astro-Seismology from the Earth and Space. Astronomical Society of the Pacific Conference Series, vol. 76.Google Scholar
Baer, J. J. 2010. Development of an observational error model, and astrometric masses of 28 asteroids. Ph.D. thesis, James Cook University, Australia.
Baglin, A., Weiss, W. W., and Bisnovatyi-Kogan, G. 1993 (Jan.). E. V. R. I. S on board MARS 94: the first space experiment devoted to stellar seismology. Page 758 of Weiss, W. W., and Baglin, A. (eds), IAU Colloqium 137: Inside the Stars. Astronomical Society of the Pacific Conference Series, vol. 40.
Baglin, A., Auvergne, M., Barge, P., et al. 2009 (Feb.). CoRoT: Description of the mission and early results. Pages 71–81 of Pont, F., Sasselov, D., and Holman, M. J. (eds), Transiting Planets. IAU Symposium, S253.Google Scholar
Baglin, A., Michel, E., and CoRoT Team. 2012 (Sept.). CoRoT: A few highlights and their impacts on understanding internal stellar structure. Page 492 of Shibahashi, H., Takata, M., and Lynas-Gray, A. E. (eds), Progress in Solar/Stellar Physics with Helio- and Asteroseismology. Astronomical Society of the Pacific Conference Series, vol. 462.
Bahcall, J. N., Pinsonneault, M. H., Basu, S., and Christensen-Dalsgaard, J. 1997. Are standard solar models reliable?Phys. Rev. Lett., 78(Jan.), 171–174.Google Scholar
Bahcall, J. N., Basu, S., and Pinsonneault, M. H. 1998. How uncertain are solar neutrino predictions?Phys. Lett. B, 433, 1–8.Google Scholar
Bahcall, J. N., Basu, S., Pinsonneault, M., and Serenelli, A. M. 2005a. Helioseismological implications of recent solar abundance determinations. ApJ, 618(Jan.), 1049–1056.Google Scholar
Bahcall, J. N., Basu, S., and Serenelli, A. M. 2005b. What is the neon abundance of the Sun?ApJ, 631(Oct.), 1281–1285.Google Scholar
Bahcall, J. N., Serenelli, A. M., and Basu, S. 2006. 10,000 standard solar models: A Monte Carlo simulation. ApJS, 165(July), 400–431.Google Scholar
Baldner, C. S., and Basu, S. 2008. Solar cycle related changes at the base of the convection zone. ApJ, 686(Oct.), 1349–1361.Google Scholar
Baldner, C. S., and Schou, J. 2012. Effects of asymmetric flows in solar convection on oscillation modes. ApJ, 760(Nov.), L1.Google Scholar
Ballot, J., Turck-Chièze, S., and García, R. A. 2004. Seismic extraction of the convective extent in solar-like stars: The observational point of view. A&A, 423(Sept.), 1051–1061.Google Scholar
Ballot, J., García, R. A., and Lambert, P. 2006. Rotation speed and stellar axis inclination from p modes: How CoRoT would see other suns. MNRAS, 369(July), 1281–1286.Google Scholar
Ballot, J., Lignières, F., Reese, D. R., and Rieutord, M. 2010. Gravity modes in rapidly rotating stars: Limits of perturbative methods. A&A, 518(July), A30.Google Scholar
Ballot, J., Lignières, F., Prat, V., Reese, D. R., and Rieutord, M. 2012 (Sept.). 2D computations of g-modes in fast rotating stars. Page 389 of Shibahashi, H., Takata, M., and Lynas-Gray, A. E. (eds), Progress in Solar/Stellar Physics with Helio- andAsteroseis-mology. Astronomical Society of the Pacific Conference Series, vol. 462.Google Scholar
Ballot, J., Lignières, F., and Reese, D. R. 2013. Numerical exploration of oscillation modes in rapidly rotating stars. Page 91 of Goupil, M., Belkacem, K., Neiner, C., Lignières, F., and Green, J. J. (eds), Studying Stellar Rotation and Convection. Lecture Notes in Physics, Berlin: Springer Verlag, vol. 865.
Balmforth, N. J. 1992a. Solar pulsational stability. Part Three: Acoustical excitation by turbulent convection. MNRAS, 255(Apr.), 639–649.Google Scholar
Balmforth, N. J. 1992b. Solar pulsational stability. I: Pulsation-mode thermodynamics. MNRAS, 255(Apr.), 603–631.Google Scholar
Bamberger, A., Chavent, G., Hemon, Ch., and Lailly, P. 1982. Inversion of normal incidence seismograms. Geophysics, 47, 757–770.Google Scholar
Banerdt, W. B, Chui, T., Griggs, C. E., et al. 2007. Using the Moon as a low-noise seismic detector for strange quark nuggets. Nucl. Phys. B Proc. Suppl., 166, 203–208.Google Scholar
Banerdt, W. B., Smrekar, S., Alkalai, L., et al. 2012. InSight: An Integrated Exploration of the Interior of Mars, 43rd Lunar and Planetary Science Conference, March 19–23, 2012 at The Woodlands, Texas. LPI Contribution No. 1659.
Barban, C., De Ridder, J., Mazumdar, A., et al. 2004a. Detection of solar-like oscillations in two red giant stars. Page 113 of Danesy, D. (ed), SOHO 14 Helio- and Asteroseis-mology: Towards a Golden Future. ESA Special Publication, vol. 559.
Barban, C., Hill, F., and Kras, S. 2004b. Simultaneous velocity-intensity spectral and cross-spectral fitting of helioseismic data. ApJ, 602(Feb.), 516–527.Google Scholar
Barban, C., Matthews, J. M., De Ridder, J., et al. 2007. Detection of solar-like oscillations in the red giant star ε Ophiuchi by MOST spacebased photometry. A&A, 468(June), 1033–1038.Google Scholar
Barnes, S. A. 2003. On the rotational evolution of solar- and late-type stars, its magnetic origins, and the possibility of stellar gyrochronology. ApJ, 586(Mar.), 464–479.Google Scholar
Bass, H. E., and Chambers, J. P. 2001. Absorption of sound in the Martian atmosphere. J. Acoust. Soc. Am., 109, 3069–3071.Google Scholar
Bates, J. R., Lauderdale, W. W., and Kernaghan, H. 1979. ALSEP Termination Report, NASA reference Publication 1036, NASA Scientific and Technical Information Office.
Bastien, F. A., Stassun, K. G., Basri, G., and Pepper, J. 2013. An observational correlation between stellar brightness variations and surface gravity. Nature, 500(Aug.), 427–430.Google Scholar
Basu, S. 2003. Stellar inversions. Ap&SS, 284, 153–164.Google Scholar
Basu, S., and Antia, H. M. 1995. Helium abundance in the solar envelope. MNRAS, 276(Oct.), 1402–1408.Google Scholar
Basu, S., and Antia, H. M. 1997. Seismic measurement of the depth of the solar convection zone. MNRAS, 287(May), 189–198.Google Scholar
Basu, S., and Antia, H. M. 1999. Large-scale flows in the solar interior: Effect of asymmetry in peak profiles. ApJ, 525(Nov.), 517–523.Google Scholar
Basu, S., and Antia, H. M. 2000. Effect of asymmetry in peak profiles on solar oscillation frequencies. ApJ, 531(Mar.), 1088–1093.Google Scholar
Basu, S., and Antia, H. M. 2004. Constraining solar abundances using helioseismology. ApJ, 606(May), L85–L88.Google Scholar
Basu, S., and Antia, H. M. 2008. Helioseismology and solar abundances. Phys. Rep., 457(Mar.), 217–283.Google Scholar
Basu, S., and Antia, H. M. 2010. Characteristics of solar meridional flows during solar cycle 23. ApJ, 717(July), 488–495.Google Scholar
Basu, S., and Christensen-Dalsgaard, J. 1997. Equation of state and helioseismic inversions. A&A, 322(June), L5–L8.Google Scholar
Basu, S., Antia, H. M., and Narasimha, D. 1994. Helioseismic measurement of the extent of overshoot below the solar convection zone. MNRAS, 267(Mar.), 209.Google Scholar
Basu, S., Christensen-Dalsgaard, J., Chaplin, W. J., et al. 1997. Solar internal sound speed as inferred from combined BiSON and LOWL oscillation frequencies. MNRAS, 292(Dec.), 243.Google Scholar
Basu, S., Däppen, W., and Nayfonov, A. 1999a. Helioseismic analysis of the hydrogen partition function in the solar interior. ApJ, 518(June), 985–993.Google Scholar
Basu, S., Antia, H. M., and Tripathy, S. C. 1999b. Ring diagram analysis of near-surface flows in the Sun. ApJ, 512(Feb.), 458–170.Google Scholar
Basu, S., Pinsonneault, M. H., and Bahcall, J. N. 2000. How much do helioseismological inferences depend on the assumed reference model?ApJ, 529(Feb.), 1084–1100.Google Scholar
Basu, S., Christensen-Dalsgaard, J., and Thompson, M. J. 2002 (Jan.). SOLA inversions for the core structure of solar-type stars. Pages 249–252 of Battrick, B., Favata, F., Roxburgh, I. W., and Galadi, D. (eds), Stellar Structure and Habitable Planet Finding. ESA Special Publication, vol. 485.
Basu, S., Antia, H. M., and Bogart, R. S. 2004. Ring-diagram analysis of the structure of solar active regions. ApJ, 610(Aug.), 1157–1168.Google Scholar
Basu, S., Chaplin, W. J., Elsworth, Y., New, R., and Serenelli, A. M. 2009. Fresh insights on the structure of the solar core. ApJ, 699(July), 1403–1417.Google Scholar
Basu, S., Chaplin, W. J., and Elsworth, Y. 2010. Determination of stellar radii from asteroseismic data. ApJ, 710(Feb.), 1596–1609.Google Scholar
Basu, S., Grundahl, F., Stello, D., et al. 2011. Sounding open clusters: Asteroseismic constraints from Kepler on the properties of NGC 6791 and NGC 6819.ApJ, 729(Mar.), L10.Google Scholar
Basu, S., Broomhall, A.-M., Chaplin, W. J., and Elsworth, Y. 2012. Thinning of the Sun's magnetic layer: The peculiar solar minimum could have been predicted. ApJ, 758(Oct.), 43.Google Scholar
Batalha, N. M., Borucki, W. J., Bryson, S. T., et al. 2011. Kepler's first rocky planet: Kepler-10b. ApJ, 729(Mar.), 27–48.Google Scholar
Baturin, V. A., Däppen, W., Gough, D. O., and Vorontsov, S. V. 2000. Seismology of the solar envelope: Sound-speed gradient in the convection zone and its diagnosis of the equation of state. MNRAS, 316(July), 71–83.Google Scholar
Baudin, F., Barban, C., Belkacem, K., et al. 2011. Amplitudes and lifetimes of solarlike oscillations observed by CoRoT. Red-giant versus main-sequence stars. A&A, 529(May), A84.Google Scholar
Bazot, M., Bourguignon, S., and Christensen-Dalsgaard, J. 2012. A Bayesian approach to the modelling of α Cen A. MNRAS, 427(Dec.), 1847–1866.Google Scholar
Beauduin, R., Lognonnei, P., Montagner, J. P., Cacho, S., Karczewski, J. F. and Morand, M. 1996. The effect of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bull. Seismol. Soc. Am., 86, 1760–1769.Google Scholar
Beck, C., Fabbian, D., Moreno-Insertis, F., Puschmann, K. G., and Rezaei, R. 2013. Thermodynamic fluctuations in solar photospheric three-dimensional convection simulations and observations. A&A, 557(Sept.), A109.Google Scholar
Beck, P. G., Bedding, T. R., Mosser, B., et al. 2011. Kepler detected gravity-mode period spacings in a red giant star. Science, 332(Apr.), 205.Google Scholar
Beck, P. G., Montalban, J., Kallinger, T., et al. 2012. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes. Nature, 481(Jan.), 55–57.Google Scholar
Bedding, T. R. 2014. Solar-like oscillations: An observational perspective. Pages 60–86 in Palle, P. and Esteban, C. (eds), Asteroseismology. Canary Islands Winter School of Astrophysics, vol. 22. Cambridge: Cambridge University Press.Google Scholar
Bedding, T. R., Kjeldsen, H., Bouchy, F., et al. 2005. The non-detection of oscillations in Procyon by MOST: Is it really a surprise?A&A, 432(Mar.), L43–L48.Google Scholar
Bedding, T. R., Kjeldsen, H., Arentoft, T., et al. 2007. Solar-like oscillations in the G2 subgiant β Hydri from dual-site observations. ApJ, 663(July), 1315–1324.Google Scholar
Bedding, T. R., Kjeldsen, H., Campante, T. L., et al. 2010a. A multi-site campaign to measure solar-like oscillations in Procyon. II. Mode frequencies. ApJ, 713(Apr.), 935–949.Google Scholar
Bedding, T. R., Huber, D., Stello, D., et al. 2010b. Solar-like oscillations in low-luminosity red giants: First results from Kepler. ApJ, 713(Apr.), L176–L181.Google Scholar
Bedding, T. R., Mosser, B., Huber, D., et al. 2011. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature, 471(Mar.), 608–611.Google Scholar
Behrend, R., Bernasconi, L., and Roy, R., et al. 2006. Four new binary minor planets: (854) Frostia, (1089) Tama, (1313) Berna, (4492) Debussy. A&A, 446(Feb.), 1177–1184.Google Scholar
Belkacem, K., Goupil, M. J., Dupret, M. A., et al. 2011. The underlying physical meaning of the vmax–vc relation. A&A, 530(June), A142.Google Scholar
Belkacem, K., Dupret, M. A., Baudin, F., et al. 2012. Damping rates of solar-like oscillations across the HR diagram: Theoretical calculations confronted to CoRoT and Kepler observations. A&A, 540(Apr.), L7.Google Scholar
Belkacem, K., Samadi, R., Mosser, B., Goupil, M.-J., and Ludwig, H.-G. 2013. On the seismic scaling relations Δv-p and vmax-vc. Page 61 of Shibahashi, H., and Lynas-Gray, A. E. (eds), Progress in Physics ofthe Sun and Stars: A New Era in Helio- and Asteroseismology. Astronomical Society of the Pacific Conference Series, vol. 479.Google Scholar
Belloche, A., Schuller, F., Parise, B., et al. 2011. The end of star formation in Chamaeleon I? A LABOCA census of starless and protostellar cores. A&A, 527(Mar.), A145.Google Scholar
Bellot Rubio, L. R. 2010. The Evershed flow and the brightness of the penumbra. Page 193 of Hasan, S. S., and Rutten, R. J. (eds), Magnetic Coupling between the Interior and Atmosphere ofthe Sun. Springer Astrophysics and Space Science Proceedings.
Belmonte, J. A., Jones, A. R., Palle, P. L., and Roca Cortes, T. 1990a. Acoustic oscillations in the K2 III star Arcturus. Ap&SS, 169(July), 77–84.Google Scholar
Belmonte, J. A., Pérez Hernández, F., and Roca Cortés, T. 1990b. Detection of acoustic oscillations in the F2 V star HD 155543. A&A, 231(May), 383–390.Google Scholar
Belmonte, J. A., Jones, A. R., Palle, P. L., and Roca Cortés, T. 1990c. Global acoustic oscillations on Alpha Bootis. ApJ, 358(Aug.), 595–609.Google Scholar
Ben-Menahem, A. 1975. Source parameters of the Siberian explosion of June 30, 1908, from analysis and synthesis of seismic signal at four stations. Phys. Earth Planet. Inter., 11, 1–35.Google Scholar
Benomar, O., Appourchaux, T., and Baudin, F. 2009. The solar-like oscillations of HD 49933: A Bayesian approach. A&A, 506(Oct.), 15–32.Google Scholar
Bercovici, D., and Schubert, G. 1987. Jovian seismology. Icarus, 69(Mar.), 557–565.Google Scholar
Berthomieu, G., Gonczi, G., Graff, P., Provost, J., and Rocca, A. 1978. Low-frequency gravity modes of a rotating star. A&A, 70(Nov.), 597.Google Scholar
Bills, B. G., and Ferrari, A. J. 1977. A lunar density model consistent with topographic, gravitational, librational, and seismic data. J. Geophys. Res., 82, 1306–1314.Google Scholar
Birch, A. C., and Kosovichev, A. G. 2000. Travel time sensitivity kernels. Sol. Phys., 192(Mar.), 193–201.Google Scholar
Birch, A. C., Kosovichev, A. G., Price, G. H., and Schlottmann, R. B. 2001. The accuracy of the Born and ray approximations in time-distance helioseismology. ApJ, 561(Nov.), L229–L232.Google Scholar
Birch, A. C., Kosovichev, A. G., and Duvall, Jr., T. L. 2004. Sensitivity of acoustic wave travel times to sound-speed perturbations in the solar interior. ApJ, 608(June), 580600.Google Scholar
Birch, A. C., Gizon, L., Hindman, B. W., and Haber, D. A. 2007. The linear sensitivity of helioseismic ring diagrams to local flows. ApJ, 662(June), 730–737.Google Scholar
Birch, A. C., Braun, D. C., and Fan, Y. 2010. An estimate of the detectability of rising flux tubes. ApJ, 723(Nov.), L190–L194.Google Scholar
Bogdan, T. J. 1997. A comment on the relationship between the modal and time-distance formulations of local helioseismology. ApJ, 477(Mar.), 475–484.Google Scholar
Bogdan, T. J., and Cally, P. S. 1995. Jacket modes: Solar acoustic oscillations confined to regions surrounding sunspots and plage. ApJ, 453(Nov.), 919.Google Scholar
Böhm-Vitense, E. 1958. Uber die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. ZAp, 46, 108.Google Scholar
Böhm-Vitense, E. 2007. Chromospheric activity in G and K main-sequence stars, and what it tells us about stellar dynamos. ApJ, 657(Mar.), 486–493.Google Scholar
Bonet, J. A., Márquez, I., Sánchez Almeida, J., Cabello, I., and Domingo, V. 2008. Convectively driven vortex flows in the Sun. ApJ, 687(Nov.), L131–L134.Google Scholar
Bonet, J. A., Márquez, I., Sánchez Almeida, J., et al. 2010. SUNRISE/IMaX observations of convectively driven vortex flows in the Sun.ApJ, 723(Nov.), L139–L143.Google Scholar
Borucki, W. J., Koch, D., Basri, G., et al. 2010. Kepler planet-detection mission: Introduction and first results. Science, 327(Feb.), 977–980.Google Scholar
Bouchy, F., and Carrier, F. 2001. P-mode observations on α Cen A.A&A, 374(July), L5–L8.Google Scholar
Bouchy, F., and Carrier, F. 2002. The acoustic spectrum of alpha Cen A.A&A, 390(July), 205–212.Google Scholar
Bouchy, F., Pepe, F., and Queloz, D. 2001. Fundamental photon noise limit to radial velocity measurements. A&A, 374(Aug.), 733–739.Google Scholar
Bouvier, J. 2013 (Sept.). Observational studies of stellar rotation. Pages 143–168 of Role and Mechanisms of Angular Momentum Transport During the Formation and Early Evolution of Stars. EAS Publications Series, vol. 62.
Bouvier, J., Forestini, M., and Allain, S. 1997. The angular momentum evolution of low-mass stars. A&A, 326(Oct.), 1023–1043.Google Scholar
Bozdag, E., Trampert, J., and Tromp, J. 2011. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys. J. Int., 185, 845–870.Google Scholar
Braithwaite, J. 2006. A differential rotation driven dynamo in a stably stratified star. A&A, 449(Apr.), 451–160.Google Scholar
Braithwaite, J. 2008. On non-axisymmetric magnetic equilibria in stars. MNRAS, 386(June), 1947–1958.Google Scholar
Braithwaite, J., and Spruit, H. C. 2004. A fossil origin for the magnetic field in A stars and white dwarfs. Nature, 431(Oct.), 819–821.Google Scholar
Brandão, I. M., Cunha, M. S., and Christensen-Dalsgaard, J. 2014. On the inference of stellar ages and convective-core properties in main-sequence solar-like pulsators. MNRAS, 438(Feb.), 1751–1761.Google Scholar
Brandenburg, A., Jennings, R. L., Nordlund, Å., et al. 1996. Magnetic structures in a dynamo simulation. J. Fluid Mech., 306(Jan.), 325–352.Google Scholar
Brandt, P. N., Scharmer, G. B., Ferguson, S., Shine, R. A., and Tarbell, T. D. 1988. Vortex flow in the solar photosphere. Nature, 335(Sept.), 238–240.Google Scholar
Braun, D. C. 1995. Scattering of p-modes by sunspots: I. Observations. ApJ, 451(Oct.), 859.Google Scholar
Braun, D. C., and Birch, A. C. 2008. Surface-focused seismic holography of sunspots: I. Observations. Sol. Phys., 251, 267–289.Google Scholar
Braun, D. C., Duvall, Jr., T. L., and Labonte, B. J. 1987. Acoustic absorption by sunspots. ApJ, 319(Aug.), L27–L31.Google Scholar
Braun, D. C., Duvall, Jr., T. L., and Labonte, B. J. 1988. The absorption of high-degree p-mode oscillations in and around sunspots. ApJ, 335(Dec.), 1015–1025.Google Scholar
Braun, D. C., Lindsey, C., Fan, Y., and Jefferies, S. M. 1992. Local acoustic diagnostics of the solar interior. ApJ, 392(June), 739–745.Google Scholar
Braun, D. C., Birch, A. C., Rempel, M., and Duvall, T. L. 2012. Helioseismology of a realistic magnetoconvective sunspot simulation. ApJ, 744(Jan.), 77.Google Scholar
Breger, M. 1993. Accuracy in variable-star work: The three-star single channel technique. Butler, C. J., and Elliott, I. (eds), Stellar Photometry: Current Techniques and Future Developments. IAU Colloquium 136.Google Scholar
Breger, M., Stich, J., Garrido, R., et al. 1993. Nonradial pulsation of the delta-Scuti star Bu-Cancri in the Praesepe cluster. A&A, 271(Apr.), 482.Google Scholar
Brenguier, F., Shapiro, N. M., Campillo, M., Nercessian, A., and Ferrazzini, V. 2007. 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys. Res. Lett., 34(Jan.), 2305.Google Scholar
Brillouin, L. 1960. Wave Propagation and Group Velocity. New York: Academic Press.
Britt, D. T., Yeomans, D., Housen, K., and Consolmagno, G. 2002. Asteroid density, porosity, and structure. Asteroids III, 485–500.Google Scholar
Brogi, M., Snellen, I. A. G., de Kok, R. J., et al. 2012. The signature of orbital motion from the dayside of the planet τ Boötis b. Nature, 486(June), 502–504.Google Scholar
Brookes, J. R., Isaak, G. R., and van der Raay, H. B. 1978. A resonant-scattering solar spectrometer. MNRAS, 185(Oct.), 1–18.Google Scholar
Broomhall, A.-M., Salabert, D., Chaplin, W. J., et al. 2012a. Misleading variations in estimated rotational frequency splittings of solar p modes: Consequences for helioseismology and asteroseismology. MNRAS, 422(June), 3564–3573.Google Scholar
Broomhall, A.-M., Chaplin, W. J., Elsworth, Y., and Simoniello, R. 2012b. Quasi-biennial variations in helioseismic frequencies: Can the source of the variation be localized?MNRAS, 420(Feb.), 1405–1414.Google Scholar
Brossier, R., Operto, S., and Virieux, J. 2009. Robust elastic frequency-domain fullwaveform inversion using the L-1 norm. Geophys. Res. Lett., 36, L20310.Google Scholar
Brown, P., Spalding, R. E., ReVelle, D. O., Tagliaferri, E., and Worden, S. P. 2002. The flux of small near-Earth objects colliding with the Earth. Nature, 420, 294–296.Google Scholar
Brown, T. 1981. The Fourier tachometer: Principles of operation and current status. Page 150 of Dunn, R. B. (ed), Solar Instrumentation: What's Next?Sunspot, NM: Sacramento Peak National Observatory.
Brown, T. M. 1985. Solar rotation as a function of depth and latitude. Nature, 317(Oct.), 591–594.Google Scholar
Brown, T. M., and Christensen-Dalsgaard, J. 1990. A technique for estimating complicated power spectra from time series with gaps. ApJ, 349(Feb.), 667–674.Google Scholar
Brown, T. M., Gilliland, R. L., Noyes, R. W., and Ramsey, L. W. 1991. Detection of possible p-mode oscillations on Procyon. ApJ, 368(Feb.), 599–609.Google Scholar
Brown, T. M., Kennelly, E. J., Korzennik, S. G., et al. 1997. A radial velocity search for p-mode pulsations in eta Bootis. ApJ, 475(Jan.), 322.Google Scholar
Brown, T. M., Latham, D. W., Everett, M. E., and Esquerdo, G. A. 2011. Kepler Input Catalog: Photometric calibration and stellar classification. AJ, 142(Oct.), 112.Google Scholar
Browning, M. K., Miesch, M. S., Brun, A. S., and Toomre, J. 2006. Dynamo action in the solar convection zone and tachocline: Pumping and organization of toroidal fields. ApJ, 648(Sept.), L157–L160.Google Scholar
Brummell, N. H., Hurlburt, N. E., and Toomre, J. 1998. Turbulent compressible convection with rotation: II. Mean flows and differential rotation. ApJ, 493(Jan.), 955.Google Scholar
Brun, A. S. 2004. On the interaction between differential rotation and magnetic fields in the Sun. Sol. Phys., 220(Apr.), 333–345.Google Scholar
Brun, A. S., and Toomre, J. 2002. Turbulent convection under the influence of rotation: Sustaining a strong differential rotation. ApJ, 570(May), 865–885.Google Scholar
Brun, A. S., and Zahn, J.-P. 2006. Magnetic confinement of the solar tachocline. A&A, 457(Oct.), 665–674.Google Scholar
Brun, A. S., Turck-Chièze, S., and Zahn, J. P. 1999. Standard solar models in the light of new helioseismic constraints: II. Mixing below the convective zone. ApJ, 525(Nov.), 1032–1041.Google Scholar
Brun, A. S., Miesch, M. S., and Toomre, J. 2004. Global-scale turbulent convection and magnetic dynamo action in the solar envelope. ApJ, 614(Oct.), 1073–1098.Google Scholar
Brun, A. S., Miesch, M. S., and Toomre, J. 2011. Modeling the dynamical coupling of solar convection with the radiative interior. ApJ, 742(Dec.), 79.Google Scholar
Brun, A. S., Browning, M. K., Dikpati, M., Hotta, H., and Strugarek, A. 2013. Recent advances on solar global magnetism and variability. Space Sci. Rev., Nov, doi:10.1007/ s11214-013-0028-0.Google Scholar
Bruntt, H., Kjeldsen, H., Buzasi, D. L., and Bedding, T. R. 2005. Evidence for granulation and oscillations in Procyon from photometry with the WIRE satellite. ApJ, 633(Nov.), 440–446.Google Scholar
Bulow, R. C., Johnson, C. L., and Shearer, P. M. 2005. New events discovered in the Apollo lunar seismic data. J. Geophys. Res., 110, E10003, doi:10.1029/2005JE002414.Google Scholar
Bulow, R. C., Johnson, C. L., Bills, B. G., and Shearer, P. M. 2007. Temporal and spatial properties of some deep moonquake clusters. J. Geophys. Res., 112, E09003, doi:10.1029/2006JE002847.Google Scholar
Buzasi, D. L. 2000 (Apr.). Experiment design and data reduction for seismology: Lessons learned from WIRE. Page 9 of Teixeira, T., and Bedding, T. (eds), The Third MONS Workshop: Science Preparation and Target Selection.
Buzasi, D., Catanzarite, J., Laher, R., et al. 2000. The detection of multimodal oscillations on α Ursae Majoris. ApJ, 532(Apr.), L133–L136.Google Scholar
Buzasi, D. L., Bruntt, H., Preston, H. L., and Clausen, J. V. 2004 (Dec.). High precision photometry with WIRE: Converting spectroscopic binaries to eclipsing systems. Bull. AAS, 36, 1369.Google Scholar
Cacciani, A., and Fofi, M. 1978. The magneto-optical filter: II. Velocity field measurements. Sol. Phys., 59(Sept.), 179–189.Google Scholar
Cacciani, A., Dolci, M., Moretti, P. F., et al. 2001. Search for global oscillations on Jupiter with a double-cell sodium magneto-optical filter. A&A, 372(June), 317–325.Google Scholar
Cacciani, A., Jefferies, S. M., Finsterle, W., et al. 2003 (Feb.). A new instrument for sounding the solar atmosphere. Pages 243–245 of Sawaya-Lacoste, H. (ed), GONG+ 2002. Local and Global Helioseismology: the Present and Future. ESA Special Publication, vol. 517.
Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B., and Bonifacio, P. 2011. Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Sol. Phys., 268(Feb.), 255–269.Google Scholar
Callen, H. B., and Welton, T. A. 1951. Irreversibility and generalized noise. Phys. Rev., 83, 34–40.Google Scholar
Cally, P. S., and Bogdan, T. J. 1993. Solar p-modes in a vertical magnetic field: Trapped and damped pi-modes. ApJ, 402(Jan.), 721–732.Google Scholar
Cally, P. S., Crouch, A. D., and Braun, D. C. 2003. Probing sunspot magnetic fields with p-mode absorption and phase shift data. MNRAS, 346(Dec.), 381–389.Google Scholar
Cameron, R., Schüssler, M., Vögler, A., and Zakharov, V. 2007. Radiative magnetohydrodynamic simulations of solar pores. A&A, 474(Oct.), 261–272.Google Scholar
Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. 2006. Longperiod seismology on Europa: 1. Physically consistent interior models. J. Geophys. Res. (Planets), 111(10), 12009.Google Scholar
Campante, T. L., Handberg, R., Mathur, S., et al. 2011. Asteroseismology from multi-month Kepler photometry: The evolved Sun-like stars KIC 10273246 and KIC 10920273.A&A, 534(Oct.), A6.Google Scholar
Canuto, V. M., and Mazzitelli, I. 1991. Stellar turbulent convection: A new model and applications. ApJ, 370(Mar.), 295–311.Google Scholar
Carlsson, M. 1998. Radiative transfer and radiation hydrodynamics. Page 163 of Vial, J. C., Bocchialini, K., and Boumier, P. (eds), Space Solar Physics: Theoretical and Observational Issues in the Context ofthe SOHO Mission. Lecture Notes in Physics, Berlin: Springer Verlag, vol. 507.
Carpenter, K. G., Schrijver, C. J., and Karovska, M. 2009. The Stellar Imager (SI) project: A deep space UV/optical interferometer (UVOI) to observe the Universe at 0.1 milli-arcsec angular resolution. Ap&SS, 320(Apr.), 217–223.Google Scholar
Carpenter, K. G., Schrijver, C. J., Karovska, M., et al. 2010. Stellar Imager (SI): Developing and testing a predictive dynamo model for the Sun by imaging other stars. ArXiv:1011.5214.
Carrier, F., and Bourban, G. 2003. The acoustic spectrum of alpha Cen B. A&A, 406(July), L23.Google Scholar
Carrier, F., Eggenberger, P., and Bouchy, F. 2005. New seismological results on the G0 IV η Bootis. A&A, 434(May), 1085–1095.Google Scholar
Catala, C. 2009. PLATO: PLAnetary Transits and Oscillations of stars. Exp. Astron., 23(Mar.), 329–356.Google Scholar
Catala, C., Mangeney, A., Gautier, D., et al. 1995. COROT: A proposal to study stellar convection and internal rotation. Page 426 of Ulrich, R. K., Rhodes, Jr., E. J., and Dappen, W. (eds), GONG 1994: Helio- and Astro-Seismology from the Earth and Space. Astronomical Society of the Pacific Conference Series, vol. 76.
Ceillier, T., Eggenberger, P., García, R. A., and Mathis, S. 2013. Understanding angular momentum transport in red giants: The case of KIC 7341231.A&A, 555(July), A54.Google Scholar
Červený, V. 1985. The application of ray tracing to the numerical modeling of seismic wavefields in complex structures. Pages 1–124 of Dohr, G. P. (ed), Handbook of Geophysical Exploration, vol. 15A. London: Geophysical Press.
Chaboyer, B., Demarque, P., and Pinsonneault, M. H. 1995. Stellar models with microscopic diffusion and rotational mixing: 1. Application to the Sun. ApJ, 441(Mar.), 865–875.Google Scholar
Chakrabarti, S. K., and Manickam, S. G. 2000. Correlation among quasi-periodic oscillation frequencies and quiescent-state duration in black hole candidate GRS 1915+105. ApJ, 531(Mar.), L41–L44.Google Scholar
Chandrasekhar, S. 1964. A general variational principle governing the radial and the nonradial oscillations of gaseous masses. ApJ, 139(Feb.), 664.Google Scholar
Chaplin, W. J. 2006. Music of the Sun: Story of Helioseismology. London: Oneworld Publications.
Chaplin, W. J., and Miglio, A. 2013. Asteroseismology of solar-type and red-giant stars. ARA&A, 51, 353–392.Google Scholar
Chaplin, W. J., Elsworth, Y., Howe, R., et al. 1996. BiSON performance. Sol. Phys., 168(Sept.), 1–18.Google Scholar
Chaplin, W. J., Elsworth, Y., Isaak, G. R., et al. 1997a. Solar p-mode linewidths from recent BiSON helioseismological data. MNRAS, 288(July), 623–626.Google Scholar
Chaplin, W. J., Elsworth, Y., Howe, R., et al. 1997b. Techniques used in the analysis of data collected by the Birmingham Solar-Oscillations Network (BiSON): II. Frequency domain analysis and data merging. A&AS, 125(Oct.), 195–205.Google Scholar
Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y., et al. 1999. Rotation of the solar core from BiSON and LOWL frequency observations. MNRAS, 308(Sept.), 405–414.Google Scholar
Chaplin, W. J., Elsworth, Y., Isaak, G. R., Miller, B. A., and New, R. 2000. Variations in the excitation and damping of low-l solar p modes over the solar activity cycle. MNRAS, 313(Mar.), 32–42.Google Scholar
Chaplin, W. J., Elsworth, Y., Isaak, G. R., et al. 2001. Changes to low-l solar p-mode frequencies over the solar cycle: Correlations on different time-scales. MNRAS, 322(Mar.), 22–30.Google Scholar
Chaplin, W. J., Sekii, T., Elsworth, Y., and Gough, D. O. 2004. On the detectability of a rotation-rate gradient in the solar core. MNRAS, 355(Dec.), 535–542.Google Scholar
Chaplin, W. J., Appourchaux, T., Baudin, F., et al. 2006. Solar FLAG hare and hounds: On the extraction of rotational p-mode splittings from seismic, Sun-as-a-star data. MNRAS, 369(June), 985–996.Google Scholar
Chaplin, W. J., Appourchaux, T., Arentoft, T., et al. 2008. AsteroFLAG: First results from hare-and-hounds Exercise #1. Astron. Nachr., 329, 549.Google Scholar
Chaplin, W. J., Houdek, G., Karoff, C., Elsworth, Y., and New, R. 2009. Mode lifetimes of stellar oscillations: Implications for asteroseismology. A&A, 500(June), L21–L24.Google Scholar
Chaplin, W. J., Kjeldsen, H., Christensen-Dalsgaard, J., et al. 2011a. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission. Science, 332(Apr.), 213–216.Google Scholar
Chaplin, W. J., Kjeldsen, H., Bedding, T. R., et al. 2011b. Predicting the detectability of oscillations in solar-type stars observed by Kepler. ApJ, 732(May), 54.Google Scholar
Chaplin, W. J., Sanchis-Ojeda, R., Campante, T. L., et al. 2013a. Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65. ApJ, 766(Apr.), 101.Google Scholar
Chaplin, W. J, Kjeldsen, H., Christensen-Dalsgaard, J., et al. 2013b. Kepler white paper: Asteroseismology of solar-like oscillators in a 2-wheel mission. ArXiv:1309.0702.
Chaplin, W. J., Basu, S., Huber, D., et al. 2014. Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler mission. ApJS, 210(Jan.), 1.Google Scholar
Charbonneau, P. 2010. Dynamo models of the solar cycle. Living Rev. Solar Phys., 7(Sept.), 3.Google Scholar
Charbonneau, P., and MacGregor, K. B. 1993. Angular momentum transport in magnetized stellar radiative zones. II. The solar spin-down. ApJ, 417(Nov.), 762.Google Scholar
Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., et al. 1999. Helioseismic constraints on the structure of the solar tachocline. ApJ, 527(Dec.), 445–460.Google Scholar
Charbonnel, C., and Talon, S. 2005. Influence of gravity waves on the internal rotation and Li abundance of solar-type stars. Science, 309(Sept.), 2189–2191.Google Scholar
Chaty, S. 2007. The role of microquasars in astroparticle physics. Page 329 of Giovannelli, F., and Mannocchi, G. (eds), Vulcano Workshop: Frontier Objects in Astrophysics and Particle Physics.
Chaty, S. 2013. Optical/infrared observations unveiling the formation, nature and evolution of high-mass X-ray binaries. Adv. Space Res., 52(Dec.), 2132–2142.Google Scholar
Chen, P., Jordan, T. H., and Zhao, L. 2007. Full three-dimensional tomography: A comparison between the scattering-integral and adjoint-wavefield methods. Geophys. J. Int., 170, 175–181.Google Scholar
Chenet, H., Lognonné, Ph., Wieczorek, M., and Mizutani, H. 2006. Lateral variations of lunar crustal thickness from the Apollo seismic data set. Earth Planet. Sci. Lett., 243, 1–14.Google Scholar
Cheng, C. H., and Toksoz, M. N. 1978. Tidal stresses in the Moon. J. Geophys. Res., 83(Feb.), 845–853.Google Scholar
Cheung, M. C. M., Sdnussler, M., Tarbell, T. D., and Title, A. M. 2008. Solar surface emerging flux regions: A comparative study of radiative MHD modeling and Hinode SOT observations. ApJ, 687(Nov.), 1373–1387.Google Scholar
Chou, D.-Y., and Dai, D.-C. 2001. Solar cycle variations of subsurface meridional flows in the Sun. ApJ, 559(Oct.), L175–L178.Google Scholar
Chou, D.-Y., Sun, M.-T., Huang, T.-Y., et al. 1995. Taiwan Oscillation Network. Sol. Phys., 160(Sept.), 237–243.Google Scholar
Chou, D.-Y., Yang, M.-H., Liang, Z.-C., and Sun, M.-T. 2009a. Measurements of absorption of acoustic waves in sunspots with direction filters and cross correlation. ApJ, 690(Jan.), L23–L26.Google Scholar
Chou, D.-Y., Yang, M.-H., Zhao, H., Liang, Z.-C., and Sun, M.-T. 2009b. Spatial distributions of absorption, local suppression, and emissivity reduction of solar acoustic waves in magnetic regions. ApJ, 706(Nov.), 909–916.Google Scholar
Chicarro, A. F. 2013. INSPIRE: A future European Mars Network Science Mission. 44th Lunar and Planetary Science Conference, March 18–22. 2013 in The Woodlands, Texas. LPI Contribution No. 1719.
Christensen, E. M., Batterson, S. A., Benson, H. E., et al. 1968. Lunar Surface Mechanical Properties. Pages 44-108 of Surveyor VI Mission Report, Part II: Science Results, Jet Propulsion Laboratory, Technical Report 32–1262, Pasadena.
Christensen-Dalsgaard, J. 1984. What will asteroseismology teach us? Page 11 of Mangeney, A., and Praderie, F. (eds), Space Research in Stellar Activity and Variability. Observatoire de Paris-Meudon.Google Scholar
Christensen-Dalsgaard, J. 1989. The effect of rotation on whole-disc Doppler observations of solar oscillations. MNRAS, 239(Aug.), 977–994.Google Scholar
Christensen-Dalsgaard, J. 1993. On the asteroseismic HR diagram. Page 347 of Brown, T. M. (ed), GONG 1992: Seismic Investigation of the Sun and Stars. Astronomical Society of the Pacific Conference Series, vol. 42.
Christensen-Dalsgaard, J. 2002. Helioseismology. Rev. Mod. Phys., 74(Nov.), 1073–1129.Google Scholar
Christensen-Dalsgaard, J. 2004. Physics of solar-like oscillations. Sol. Phys., 220(Apr.), 137–168.Google Scholar
Christensen-Dalsgaard, J. 2012. Stellar model fits and inversions. Astron. Nachr., 333(Dec.), 914.Google Scholar
Christensen-Dalsgaard, J., and Di Mauro, M. P. 2007. Diffusion and helioseismology. Pages 3–16 of Straka, C. W., Lebreton, Y., and Monteiro, M. J. P. F. G. (eds), Stellar Evolution and Seismic Tools for Asteroseismology. EAS Publications Series, vol. 26.Google Scholar
Christensen-Dalsgaard, J., and Frandsen, S. 1983. Stellar 5 min oscillations. Sol. Phys., 82(Jan.), 469–486.Google Scholar
Christensen-Dalsgaard, J., and Gough, D. 0.1976. Towards aheliological inverse problem. Nature, 259(Jan.), 89–92.
Christensen-Dalsgaard, J., and Gough, D. O. 1982. On the interpretation of five-minute oscillations in solar spectrum line shifts. MNRAS, 198(Jan.), 141–171.Google Scholar
Christensen-Dalsgaard, J., and Schou, J. 1988 (Dec.). Differential rotation in the solar interior. Pages 149–153 of Rolfe, E. J. (ed), Seismology of the Sun and Sun-Like Stars. ESA Special Publication, vol. 286.
Christensen-Dalsgaard, J., and Thompson, M. J. 1997. On solar p-mode frequency shifts caused by near-surface model changes. MNRAS, 284(Jan.), 527–540.Google Scholar
Christensen-Dalsgaard, J., Duvall, Jr., T. L.Gough, D. O., Harvey, J. W., and Rhodes, Jr., E. J. 1985. Speed of sound in the solar interior. Nature, 315(May), 378–382.Google Scholar
Christensen-Dalsgaard, J., Thompson, M. J., and Gough, D. O. 1989. Differential asymptotic sound-speed inversions. MNRAS, 238(May), 481–502.Google Scholar
Christensen-Dalsgaard, J., Gough, D. O., and Thompson, M. J. 1991. The depth of the solar convection zone. ApJ, 378(Sept.), 413–137.Google Scholar
Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., et al. 1996. The current state of solar modeling. Science, 272(May), 1286–1292.Google Scholar
Christensen-Dalsgaard, J., Kjeldsen, H., and Mattei, J. A. 2001. Solar-like oscillations of semiregular variables. ApJ, 562(Dec.), L141–L144.Google Scholar
Christensen-Dalsgaard, J., di Mauro, M. P., Houdek, G., and Pijpers, F. 2009. On the opacity change required to compensate for the revised solar composition. A&A, 494(Jan.), 205–208.Google Scholar
Christensen-Dalsgaard, J., Monteiro, M. J. P. F. G., Rempel, M., and Thompson, M. J. 2011. A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology. MNRAS, 414(June), 1158–1174.Google Scholar
Claret, A., and Giménez, A. 2010. The apsidal-motion test of stellar structure and evolution: An update. A&A, 519(Sept.), A57.Google Scholar
Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B., and Cortes, T. R. 1979. Solar structure from global studies of the 5-minute oscillation. Nature, 282(Dec.), 591–594.Google Scholar
Clement, M. J. 1984. Normal modes of oscillation for rotating stars: II. Variational solutions. ApJ, 276(Jan.), 724–736.Google Scholar
Cobden, L. J., Tong, C. H., and Warner, M. R. 2010. Influence of acoustic source density on cross-correlated signals: Implications for amplitude-based tomography in helio-seismology. ApJ, 725, 313–318.Google Scholar
Cobden, L. J., Tong, C. H., and Warner, M. R. 2011. Inversion of full acoustic wavefield in local helioseismology: A study with synthetic data. ApJ, 727, 68.Google Scholar
Coleiro, A., and Chaty, S. 2013. Distribution of high-mass X-ray binaries in the Milky Way. ApJ, 764(Feb.), 185.Google Scholar
Connes, P. 1985. Absolute astronomical accelerometry. Ap&SS, 110(Mar.), 211–255.Google Scholar
Cooley, J. W., and Tukey, J. W. 1965. An algorithm for the machine calculation of complex Fourier series. Math. Comput., 19 297–301.Google Scholar
Cooper, M. R., Kovach, R. L., and Watkins, J. S. 1974. Lunar near-surface structure. Rev. Geophys. Space Phys., 12, 291–308.Google Scholar
Cooper, M. R., and Kovach, R. L. 1975. Energy, frequency, and distance of moonquakes at the Apollo 17 site. Proceedings of the 6th Lunar Science Conference, 2863–2879.Google Scholar
Corsaro, E., Stello, D., Huber, D., et al. 2012. Asteroseismology of the open clusters NGC 6791, NGC 6811, and NGC 6819 from 19 months of Kepler photometry. ApJ, 757(Oct.), 190.Google Scholar
Costa, J. E. S., and Kepler, S. O. 2008. The temporal changes of the pulsational periods of the pre-white dwarf PG 1159–035. A&A, 489(Oct.), 1225–1232.Google Scholar
Couvidat, S., and Birch, A. C. 2006. Optimal Gaussian phase-speed filters in time-distance helioseismology. Sol. Phys., 237(Sept.), 229–243.Google Scholar
Couvidat, S., García, R. A., Turck-Chieze, S., et al. 2003. The rotation of the deep solar layers. ApJ, 597(Nov.), L77–L79.Google Scholar
Couvidat, S., Birch, A. C., Kosovichev, A. G., and Zhao, J. 2004. Three-dimensional inversion of time-distance helioseismology data: Ray-path and Fresnel-zone approximations. ApJ, 607(May), 554–563.Google Scholar
Couvidat, S., Zhao, J., Birch, A. C., et al. 2012a. Implementation and comparison of acoustic travel-time measurement procedures for the Solar Dynamics Observatory/Helioseismic and Magnetic Imager time-distance helioseismology pipeline. Sol. Phys., 275(Jan.), 357–374.Google Scholar
Couvidat, S., Schou, J., Shine, R. A., et al. 2012b. Wavelength dependence of the Helioseis-mic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). Sol. Phys., 275(Jan.), 285–325.Google Scholar
Covas, E., Moss, D., and Tavakol, R. 2005. Dynamo models and differential rotation in late-type rapidly rotating stars. A&A, 429(Jan.), 657–665.Google Scholar
Cowling, T. G., and Newing, R. A. 1949. The oscillations of a rotating star. ApJ, 109(Jan.), 149.Google Scholar
Cranmer, S. R., Bastien, F. A., Stassun, K. G., and Saar, S. H. 2014. Stellar granulation as the source of high-frequency flicker in Kepler light curves. ApJ, 781(Feb.), 124.Google Scholar
Crawford, Jr., F. S. 1968. Waves. New York: McGraw-Hill Book Company.
Creevey, O. L., Monteiro, M. J. P. F. G., Metcalfe, T. S., et al. 2007. The complementary roles of interferometry and asteroseismology in determining the mass of solar-type stars. ApJ, 659(Apr.), 616–625.Google Scholar
Criswell, D. R., and Lindsay, J. F. 1974. Thermal moonquakes and booming dunes (abstract). Lunar Science V, 151–153.Google Scholar
Crouch, A. D., Cally, P. S., Charbonneau, P., Braun, D. C., and Desjardins, M. 2005. Genetic magnetohelioseismology with Hankel analysis data. MNRAS, 363(Nov.), 11881204.Google Scholar
Crouch, A. D., Birch, A. C., Braun, D. C., and Clack, C. T. M. 2011. Helioseismic probing of the subsurface structure of sunspots. Pages 384–388 of Choudhary, D. P., and Strassmeier, K. G. (eds), Physics of Sun and Star Spots. IAU Symposium273.
Cunha, M. S., and Metcalfe, T. S. 2007. Asteroseismic signatures of small convective cores. ApJ, 666(Sept.), 413–122.Google Scholar
Cunha, M. S., Aerts, C., Christensen-Dalsgaard, J., et al. 2007. Asteroseismology and interferometry. A&A Rev., 14(Nov.), 217–360.Google Scholar
Dahlen, F. A., and Tromp, J. 1998. Theoretical Global Seismology. Princeton: Princeton University Press.
Dainty, A. M., and M. N., Toksoz 1981. Seismic codas on the Earth and the Moon: A comparison. Phys. Earth Planet. Inter., 26 250–260.Google Scholar
Dainty, A. M., Toksöz, M. N., Anderson, K. R., et al. 1974. Seismic scattering and shallow structure of the Moon in Oceanus Procellarum. The Moon, 9, 11–29.Google Scholar
Daubar, I. J., McEwen, A. S., Byrne, S., Kennedy, M. R., and Ivanov, B. 2013. The current martian cratering rate. Icarus, 225(July), 506–516.Google Scholar
Davis, P. M. 1993. Meteoroid impacts as seismic sources on Mars. Icarus, 105, 469–478.Google Scholar
De Oliveira Fialho, F. 2007. Définition et impléementation des corrections instrumentales de la mission spatiale CoRoT. Ph.D. thesis, Université Pierre et Marie Curie, Paris, France.
De Ridder, J., Barban, C., Carrier, F., et al. 2006. Discovery of solar-like oscillations in the red giant ε Ophiuchi. A&A, 448(Mar.), 689–695.Google Scholar
De Ridder, J., Barban, C., Baudin, F., et al. 2009. Non-radial oscillation modes with long lifetimes in giant stars. Nature, 459(May), 398–400.Google Scholar
Decressin, T., Mathis, S., Palacios, A., et al. 2009. Diagnoses to unravel secular hydrodynamical processes in rotating main sequence stars. A&A, 495(Feb.), 271–286.Google Scholar
Degroote, P., Briquet, M., Auvergne, M., et al. 2010. Detection of frequency spacings in the young O-type binary HD 46149 from CoRoT photometry. A&A, 519(Sept.), A38.Google Scholar
Deheuvels, S., and Michel, E. 2011. Constraints on the structure of the core of subgiants via mixed modes: The case of HD 49385. A&A, 535(Nov.), A91.Google Scholar
Deheuvels, S., Bruntt, H., Michel, E., et al. 2010. Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385. A&A, 515(June), A87.Google Scholar
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012. Seismic evidence for a rapidly rotating core in a lower-giant-branch star observed with Kepler. ApJ, 756(Sept.), 19.Google Scholar
Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014. Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants. A&A, 564(Apr.), A27.Google Scholar
Delahunty, A. K., and Pike, W. T. 2013. Metal-armouring for shock protection of MEMS. Sensors and Actuators, 215, 36–43.Google Scholar
Deming, D., Mumma, M. J., Espenak, F., et al. 1989. A search for p-mode oscillations of Jupiter: Serendipitous observations of nonacoustic thermal wave structure. ApJ, 343(Aug.), 456–467.Google Scholar
Denissenkov, P. A., Pinsonneault, M., Terndrup, D. M., and Newsham, G. 2010. Angular momentum transport in solar-type stars: Testing the timescale for core-envelope coupling. ApJ, 716(June), 1269–1287.Google Scholar
Derr, J. S. 1969. Free oscillations of new lunar models. Phys. Earth Planet. Inter., 2, 61–68.Google Scholar
Deubner, F.-L. 1975. Observations of low wavenumber nonradial eigenmodes of the Sun. A&A, 44(Nov.), 371–375.Google Scholar
Deupree, R. G. 2011. Structure of uniformly rotating stars. ApJ, 735(July), 69.Google Scholar
Dikpati, M., and Charbonneau, P. 1999. A Babcock–Leighton flux transport dynamo with solar-like differential rotation. ApJ, 518(June), 508–520.Google Scholar
Dikpati, M., and Gilman, P. A. 2006. Simulating and predicting solar cycles using a flux-transport dynamo. ApJ, 649(Sept.), 498–514.Google Scholar
Dintrans, B., and Rieutord, M. 2000. Oscillations of a rotating star: A non-perturbative theory. A&A, 354(Feb.), 86–98.Google Scholar
Dintrans, B., Brandenburg, A., Nordlund, A., and Stein, R. F. 2005. Spectrum and amplitudes of internal gravity waves excited by penetrative convection in solar-type stars. A&A, 438(July), 365–376.Google Scholar
Domingo, V., Fleck, B., and Poland, A. I. 1995. The SOHO mission: An overview. Sol. Phys., 162, 1–37.Google Scholar
Donati, J.-F., and Landstreet, J. D. 2009. Magnetic fields of nondegenerate stars. ARA&A, 47(Sept.), 333–370.Google Scholar
Donea, A. 2011. Seismic transients from flares in solar cycle 23. Space Sci. Rev., 158(July), 451–169.Google Scholar
Donea, A.-C., and Lindsey, C. 2005. Seismic emission from the solar flares of 2003 October 28 and 29. ApJ, 630(Sept.), 1168–1183.Google Scholar
Donea, A. C., Lindsey, C., and Braun, D. 1999. Helioseismic holography: A technique for understanding solar flares. Romanian Astron. J., 9, 71.Google Scholar
Dorman, J., Evans, S., Nakamura, Y., and Latham, G. 1978. On the time-varying properties of the lunar seismic meteoroid population. Proceedings of the 9th Lunar and Planetary Science Conference, 3615–3626.Google Scholar
Doschek, G. A., Warren, H. P., and Young, P. R. 2013. Chromospheric evaporation in an M1.8 flare observed by the Extreme-ultraviolet Imaging Spectrometer on Hinode. ApJ, 767(Apr.), 55.Google Scholar
Drummond, R., Vandenbussche, B., Aerts, C., De Oliveira Fialho, F., and Auvergne, M. 2006. Jitter correction algorithms for the COROT satellite mission. PASP, 118(June), 874.Google Scholar
Dubus, G., Hameury, J.-M., and Lasota, J.-P. 2001. The disc instability model for X-ray transients: Evidence for truncation and irradiation. A&A, 373(July), 251271.Google Scholar
Duennebier, F. 1976. Thermal movement of the regolith. Proceedings of the 7th Lunar Science Conference, 1073–1086.Google Scholar
Duennebier, F., and Sutton, G.H. 1974. Thermal moonquakes. J. Geophys. Res., 79(29), 4351–4363.Google Scholar
Duennebier, F., Dorman, J., Lammlein, D., Latham, G., and Nakamura, Y. 1975. Meteoroid flux from passive seismic experiment data. Proceedings of the 6th Lunar Science Conference, 2417–2426.Google Scholar
Duennebier, F. K., Nakamura, Y, Latham, G. V., and Dorman, H. J. 1976. Meteoroid storms detected on the Moon. Science, 192, 1000–1002.Google Scholar
Duez, V., and Mathis, S. 2010. Relaxed equilibrium configurations to model fossil fields: I. A first family. A&A, 517(July), A58.Google Scholar
Duez, V., Braithwaite, J., and Mathis, S. 2010. On the stability of non-force-free magnetic equilibria in stars. ApJ, 724(Nov.), L34–L38.Google Scholar
Dupret, M.-A., Thoul, A., Scuflaire, R., et al. 2004. Asteroseismology of the β Cep star HD 129929: II. Seismic constraints on core overshooting, internal rotation and stellar parameters. A&A, 415(Feb.), 251–257.Google Scholar
Dupret, M.-A., Belkacem, K., Samadi, R., et al. 2009. Theoretical amplitudes and lifetimes of non-radial solar-like oscillations in red giants. A&A, 506(Oct.), 57–67.Google Scholar
Duvall, Jr., T. L. 1982. A dispersion law for solar oscillations. Nature, 300(Nov.), 242.Google Scholar
Duvall, Jr., T. L., and Birch, A. C. 2010. The vertical component of the supergranular motion. ApJ, 725(Dec.), L47–L51.Google Scholar
Duvall, T. L., and Hanasoge, S. M. 2013. Subsurface supergranular vertical flows as measured using large distance separations in time-distance helioseismology. Sol. Phys., 287(Oct.), 71–83.Google Scholar
Duvall, Jr., T. L., and Harvey, J. W. 1983. Observations of solar oscillations of low and intermediate degree. Nature, 302(Mar.), 24–27.Google Scholar
Duvall, Jr., T. L., Dziembowski, W. A., Goode, P. R., et al. 1984. Internal rotation of the sun. Nature, 310(July), 22–25.Google Scholar
Duvall,Jr., T. L., Harvey, J. W., and Pomerantz, M. A. 1986. Latitude and depth variation of solar rotation. Nature, 321(May), 500.Google Scholar
Duvall, Jr., T. L., Jefferies, S. M., Harvey, J. W., Osaki, Y., and Pomerantz, M. A. 1993a. Asymmetries of solar oscillation line profiles. ApJ, 410(June), 829–836.Google Scholar
Duvall, Jr., T. L., Jefferies, S. M., Harvey, J. W., and Pomerantz, M. A. 1993b. Time-distance helioseismology. Nature, 362(Apr.), 430–432.Google Scholar
Duvall, T. L., D'Silva, S., Jefferies, S. M., Harvey, J. W., and Schou, J. 1996. Downflows under sunspots detected by helioseismic tomography. Nature, 379(Jan.), 235–237.Google Scholar
Duvall, Jr., T. L., Kosovichev, A. G., Scherrer, P. H., et al. 1997. Time-distance helioseismology with the MDI instrument: Initial results. Sol. Phys., 170, 63–73.Google Scholar
Dziembowski, W., and Kosovichev, A. 1987. Low frequency oscillations in slowly rotating stars: I. General properties. Acta Astronomica, 37, 313.Google Scholar
Dziembowski, W. A. 1977. Light and radial velocity variations in a nonradially oscillating star. Acta Astron., 27, 203–211.Google Scholar
Dziembowski, W. A., and Goode, P. R. 1992. Effects of differential rotation on stellar oscillations: A second-order theory. ApJ, 394(Aug.), 670–687.Google Scholar
Dziembowski, W. A., and Pamyatnykh, A. A. 1991. A potential asteroseismological test for convective overshooting theories. A&A, 248(Aug.), L11–L14.Google Scholar
Dziembowski, W. A., and Pamyatnykh, A. A. 2008. The two hybrid B-type pulsators: ν Eridani and 12 Lacertae. MNRAS, 385(Apr.), 2061–2068.Google Scholar
Dziembowski, W. A., Goode, P. R., and Libbrecht, K. G. 1989. The radial gradient in the Sun's rotation. ApJ, 337(Feb.), L53–L57.Google Scholar
Dziembowski, W. A., Pamyatnykh, A. A., and Sienkiewicz, R. 1990. Solar model from helioseismology and the neutrino flux problem. MNRAS, 244(June), 542–550.Google Scholar
Dziewonski, A. M., and Anderson, D. L. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(June), 297–356.Google Scholar
Dziewonski, A. M., Hager, B. H., and O'Connell, R. J. 1977. Large-scale heterogeneities in the lower mantle. J. Geophys. Res., 82(Jan.), 239–255.Google Scholar
Eckart, C. 1960. Hydrodynamics of Oceans and Atmospheres. New York: Pergamon.
Eddington, A. S. 1925. Circulating currents in rotating stars. The Observatory, 48(Mar.), 73–75.Google Scholar
Edmonds, P. D., and Cram, L. E. 1995. A search for global acoustic oscillations on a1 Cen and α1 and β Hyi. MNRAS, 276(Oct.), 1295.Google Scholar
Edwards, W. N. 2008. Meteor generated infrasound: Theory and observation. Pages 355408 of Le Pichon, A. (ed), Infrasound Monitoring for Atmospheric Studies. New York: Springer.
Edwards, W. N., Eaton, D. W., and Brown, P. G. 2008. Seismic observations of meteors: Coupling theory and observations, Rev. Geophys. 46, RG4007.Google Scholar
Eff-Darwich, A., and Korzennik, S. G. 2013. The dynamics of the solar radiative zone. Sol. Phys., 287(Oct.), 43–56.Google Scholar
Eggenberger, P., Miglio, A., Montalban, J., et al. 2010. Effects of rotation on the evolution and asteroseismic properties of red giants. A&A, 509(Jan.), A72.Google Scholar
Eggenberger, P., Montalbán, J., and Miglio, A. 2012a. Angular momentum transport in stellar interiors constrained by rotational splittings of mixed modes in red giants. A&A, 544(Aug.), L4.Google Scholar
Eggenberger, P., Haemmerlé, L., Meynet, G., and Maeder, A. 2012b. Impact of rotation and disc lifetime on pre-main sequence lithium depletion of solar-type stars. A&A, 539(Mar.), A70.Google Scholar
Elliott, J. R., and Kosovichev, A. G. 1998. The adiabatic exponent in the solar core. ApJ, 500(June), L199–L202.Google Scholar
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., and New, R. 1990. Evidence from solar seismology against non-standard solar-core models. Nature, 347(Oct.), 536–539.Google Scholar
Endal, A. S., and Sofia, S. 1978. The evolution of rotating stars: II. Calculations with time-dependent redistribution of angular momentum for 7- and 10-solar-mass stars. ApJ, 220(Feb.), 279–290.Google Scholar
Epstein, C. R., and Pinsonneault, M. H. 2014. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars. ApJ, 780(Jan.), 159.Google Scholar
Espinosa Lara, F., and Rieutord, M. 2013. Self-consistent 2D models of fast-rotating earlytype stars. A&A, 552(Apr.), A35.Google Scholar
Ewing, M., Latham, G., Press, F., et al. 1971. Seismology of the Moon and implications on internal structure, origin and evolution. Pages 155–172 of de Jager, C. (ed), Highlights of Astronomy. Dordrecht: D. Reidel.
Eyer, L., and Mowlavi, N. 2008. Variable stars across the observational HR diagram. J. Phys. Conf. Ser., 118(1), 012010.Google Scholar
Eyer, L., Holl, B., Pourbaix, D., et al. 2013. The Gaia Mission. Central Eur. Astrophys. Bull., 37, 115–126.Google Scholar
Fan, Y., Braun, D. C., and Chou, D.-Y. 1995. Scattering of p-modes by sunspots: II. Calculations of phase shifts from a phenomenological model. ApJ, 451(Oct.), 877.Google Scholar
Fares, R., Donati, J.-F., Moutou, C., et al. 2009. Magnetic cycles of the planet-hosting star τ Bootis: II. A second magnetic polarity reversal. MNRAS, 398(Sept.), 1383–1391.Google Scholar
Favata, F. 2004 (Jan.). The Eddington baseline mission. Pages 3-11 of Favata, F., Aigrain, S., and Wilson, A. (eds), Stellar Structure and Habitable Planet Finding. ESA Special Publication, vol. 538.
Favre, A. 1969. In Statistical equations of turbulent gases, Problems of Hydrodynamics and Continuum Mechanics, Society for Industrial and Applied Mathematics.
Featherstone, N. A., Hindman, B. W., and Thompson, M. J. 2011. Ring-analysis flow measurements of sunspot outflows. J. Phys. Conf. Ser., 271(1), 012002.Google Scholar
Feigelson, E. D., and Montmerle, T. 1999. High-energy processes in young stellar objects. ARA&A, 37, 363–408.Google Scholar
Felipe, T., Braun, D., Crouch, A., and Birch, A. 2012. Scattering of the f-mode by small magnetic flux elements from observations and numerical simulations. ApJ, 757(Oct.), 148.Google Scholar
Fernandes, J., and Monteiro, M. J. P. F. G. 2003. HR diagram and asteroseismic analysis of models for beta Hydri. A&A, 399(Feb.), 243–251.Google Scholar
Fichtner, A., and Trampert, J. 2011. Resolution analysis in full waveform inversion. Geophys. J. Int., 187, 1604–1624.Google Scholar
Fichtner, A., Bunge, H.-P., and Igel, H. 2006. The adjoint method in seismology. Phys. Earth Planet. Inter., 157, 86–104.Google Scholar
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P. 2008. Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophys. J. Int., 175, 665–685.Google Scholar
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P. 2009. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int., 179, 1703–1725.Google Scholar
Fichtner, A., Trampert, J., Cupillard, P., et al. 2013. Multiscale full waveform inversion. Geophys. J. Int., 194, 534–556.Google Scholar
Fisher, G. H., Canfield, R. C., and McClymont, A. N. 1985. Flare loop radiative hydrodynamics: VII. Dynamics of the thick target heated chromosphere. ApJ, 289(Feb.), 434.Google Scholar
Fleming, W. P. 1895. Stars having peculiar spectra: Eleven new variable stars. ApJ, 1(May), 411–415.Google Scholar
Fletcher, S. T., Chaplin, W. J., Elsworth, Y., and New, R. 2009. Efficient pseudo-global fitting for helioseismic data. ApJ, 694(Mar.), 144–150.Google Scholar
Foglizzo, T., García, R. A., Boumier, P., et al. 1998. Are solar acoustic modes correlated?A&A, 330(Feb.), 341–350.Google Scholar
Fogtmann-Schulz, A., Hinrup, B., Van Eylen, V., et al. 2014. Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited. ApJ, 781(Feb.), 67.Google Scholar
Forbriger, T., Widmer-Schnidrig, R., Wielandt, E., Hayman, M., and Ackerley, N. 2010. Magnetic field background variations can limit the resolution of seismic broad-band sensors. Geophys. J. Int., 183, 303–312.Google Scholar
Forgács-Dajka, E., and Petrovay, K. 2002. Dynamics of the fast solar tachocline: I. Dipolar field. A&A, 389(July), 629–640.Google Scholar
Fortney, J. J., and Nettelmann, N. 2010. The interior structure, composition, and evolution of giant planets. Space Sci. Rev., 152(May), 423–447.Google Scholar
Fossat, E. 1991. The IRIS network for full disk helioseismology: Present status of the programme. Sol. Phys., 133(May), 1–12.Google Scholar
Frandsen, S. 1987. An upper limit on p-mode amplitudes in Beta Hyi. A&A, 181(July), 289–292.Google Scholar
Frandsen, S., Carrier, F., Aerts, C., et al. 2002. Detection of solar-like oscillations in the G7 giant star xi Hya. A&A, 394(Oct.), L5–L8.Google Scholar
Frankel, A., and Clayton, R. W. 1986. Finite difference simulations of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity. J. Geophys. Res., 91(May), 6465–6489.Google Scholar
French, S. W., Lekic, V., and Romanowicz, B. 2013. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science, 334, 783–787.Google Scholar
Fridlund, M., Gough, D. O., Jones, A., et al. 1995. STARS: A proposal for a dedicated space mission to study stellar structure and evolution. Page 416 of Ulrich, R. K., Rhodes, Jr., E. J., and Dappen, W. (eds), GONG 1994: Helio- and Astro-Seismology from the Earth and Space. Astronomical Society of the Pacific Conference Series, vol. 76.
Frohlich, C., and Nakamura, Y. 2006. Possible extra-solar-system cause for certain lunar seismic events. Icarus, 185, 21–28.Google Scholar
Fröhlich, C., and Nakamura, Y. 2009. The physical mechnisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different?Phys. Earth Planet. Inter., 173, 365–374.Google Scholar
Fröhlich, C., Romero, J., Roth, H., et al. 1995. VIRGO: Experiment for helioseismology and solar irradiance monitoring. Sol. Phys., 162, 101–128.Google Scholar
Fröhlich, C., Crommelynck, D. A., Wehrli, C., et al. 1997. In-flight performance of the Virgo solar irradiance instruments on SOHO. Sol. Phys., 175(Oct.), 267–286.Google Scholar
Fröhlich, H.-E., Frasca, A., Catanzaro, G., et al. 2012. Magnetic activity and differential rotation in the young Sun-like stars KIC 7985370 and KIC 7765135. A&A, 543(July), A146.Google Scholar
Fujiwara, A., Kawaguchi, J., D. K., Yeomans, et al. 2006. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 312, 1330–1334.Google Scholar
Fuller, J., Lai, D., and Storch, N. I. 2014. Non-radial oscillations in rotating giant planets with solid cores: Application to Saturn and its rings. Icarus, 231(Mar.), 34–50.Google Scholar
Gabriel, A. H., Grec, G., Charra, J., et al. 1995. Global oscillations at low frequency from the SOHO mission (GOLF). Sol. Phys., 162, 61–99.Google Scholar
Gabriel, A. H., Charra, J., Grec, G., et al. 1997. Performance and early results from the GOLF instrument flown on the SOHO mission. Sol. Phys., 175(Oct.), 207–226.Google Scholar
Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., Lombardi, D., and Spohn, T. 2006. A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter., 159 140–166.Google Scholar
Gangi, A. F., and Yen, T. E. 1979. Velocity structure of the shallow lunar crust. The Moon and The Planets, 20, 439–468.Google Scholar
Gallet, F., and Bouvier, J. 2013. Improved angular momentum evolution model for solar-like stars. A&A, 556(Aug.), A36.Google Scholar
Gandorfer, A., Solanki, S. K., Woch, J., et al. 2011. The Solar Orbiter mission and its Polarimetric and Helioseismic Imager (SO/PHI). J. Phys. Conf. Ser., 271(1), 012086.Google Scholar
García, R. A., Pallé, P. L., Turck-Chièze, S., et al. 1998. High-frequency peaks in the power spectrum of solar velocity observations from the GOLF experiment. ApJ, 504(Sept.), L51.Google Scholar
García, R. A., Corbard, T., Chaplin, W. J., et al. 2004. About the rotation of the solar radiative interior. Sol. Phys., 220(Apr.), 269–285.Google Scholar
Garcia, R., Lognonné, P., and Bonnin, X. 2005. Detecting atmospheric perturbations produced by Venus quakes. Geophys. Res. Lett., 32, L16205.Google Scholar
García, R. A., Turck-Chièze, S., Boumier, P., et al. 2005. Global solar Doppler velocity determination with the GOLF/SOHO instrument. A&A, 442(Oct.), 385–395.Google Scholar
García, R. A., Turck-Chièze, S., Jiménez-Reyes, S. J., et al. 2007. Tracking solar gravity modes: The dynamics of the solar core. Science, 316(June), 1591–1593.Google Scholar
García, R. A., Mathur, S., Ballot, J., et al. 2008a. Influence of low-degree high-order p-mode splittings on the solar rotation profile. Sol. Phys., 251(Sept.), 119–133.Google Scholar
García, R. A., Jiménez, A., Mathur, S., et al. 2008b. Update on g-mode research. Astron. Nachr., 329, 476.Google Scholar
García, R. A., Mathur, S., Salabert, D., et al. 2010. CoRoT reveals a magnetic activity cycle in a Sun-like star. Science, 329(Aug.), 1032.Google Scholar
García, R. A., Salabert, D., Ballot, J., et al. 2011. New insights on the solar core. J. Phys. Conf. Ser., 271(1), 012046.Google Scholar
Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S., and Lognonné, P. 2011. Very preliminary reference Moon model. Phys. Earth Planet. Inter., 188, 96–113.Google Scholar
Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S., and Lognonne, P. 2012. Erratum to “Very preliminary reference Moon model” by R. F., Garcia, J., Gagnepain-Beyneix, S., Chevrot, P., Lognonné [Phys. Earth Planet. Inter. 188 (2011) 96–113], Phys. Earth Planet. Inter., 202–203, 89–91.Google Scholar
García, R. A., Ceillier, T., Mathur, S., and Salabert, D. 2013 (Dec.). Measuring reliable surface rotation rates from Kepler photometric observations. Page 129 of Shibahashi, H., and Lynas-Gray, A. E. (eds), Progress in Physics of the Sun and Stars: A New Era in Helio-and Asteroseismology. Astronomical Society of the Pacific Conference Series, vol. 479.
García, R. A., Pérez Hernández, F., Benomar, O., et al. 2014a. Study of KIC 8561221 observed by Kepler: An early red giant showing depressed dipolar modes. A&A, 563(Mar.), A84.Google Scholar
García, R. A., Ceillier, T., Salabert, D., et al. 2014b. Towards asteroseismically calibrated age-rotation-activity relations for Kepler solar-like stars. ArXiv:1403.7155.
Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S., and Lognonné, P. 2011. Very preliminary reference Moon model. Phys. Earth Planet. Inter., 188(Sept.), 96–113.Google Scholar
Gaskell, R., Saito, J., and Ishiguro, M., et al. 2008. Itokawa Shape Model V1.0. HAY-A-AMICA-5-ITOKAWASHAPE-V1.0. Technical Report NASA Planetary Data System.
Gaulme, P., and Mosser, B. 2005. Coupling of acoustic waves to clouds in the jovian troposphere. Icarus, 178 (Nov.), 84–96.Google Scholar
Gaulme, P., Schmider, F.X., Gay, J., et al. 2008. SYMPA, a dedicated instrument for Jovian seismology: II.Real performance and first results. A&A, 490 (Nov.), 859-871.Google Scholar
Gaulme, P., Schmider, F.-X., Gay, J., Guillot, T., and Jacob, C. 2011. Detection of Jovian seismic waves: A new probe of its interior structure. A&.A, 531 (July), A104.Google Scholar
Gaulme, P., McKeever, J., Rawls, M.L., et al. 2013. Red giants in eclipsing binary and multiple-star systems: Modeling and asteroseismic analysis of 70 candidates from Kepler data. ApJ, 767 (Apr.), 82.Google Scholar
Gauthier, O., Virieux, J., and Tarantola, A. 1986. Two-dimensional nonlinear inversion of seismic wave-forms: Numerical results. Geophysics, 51, 1387–1403.Google Scholar
Gelly, B., Gree, G., and Fossat, E. 1986. Evidence for global pressure oscillations in Procyon and Alpha Centauri. A&A, 164 (Aug.), 383–394.Google Scholar
Georgobiani, D., Kosovichev, A.G., Nigam, R., Nordlund, A., and Stein, R.F. 2000. Numerical simulations of oscillation modes of the solar convection zone. ApJ, 530 (Feb.), L139-L142.Google Scholar
Georgobiani, D., Stein, R.F., and Nordlund, Å. 2003.Asymmetry reversal in solar acoustic modes.Pages 279-282 of Sawaya-Lacoste, H. (ed), GONG+ 2002. Local and Global Helioseismology: The Present and Future. ESA Special Publication, vol.517.
Georgobiani, D., Zhao, J., Kosovichev, A.G., et al. 2007. Local helioseismology and correlation tracking analysis of surface structures in realistic simulations of solar convection. ApJ, 657 (Mar.), 1157–1161.Google Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys.Fluids, 3 (July), 1760–1765.Google Scholar
Giacconi, R., Gursky, H., Paolini, F.R., and Rossi, B.B. 1962. Evidence for X-rays from sources outside the Solar System. Phys.Rev.Lett., 9 (Dec.), 439–443.Google Scholar
Giles, P.M., Duvall, T.L., Scherrer, P.H., and Bogart, R.S. 1997. A subsurface flow of material from the Sun's equator to its poles. Nature, 390 (Nov.), 52–54.Google Scholar
Gilliland, R.L. 2008. Photometric oscillations of low-luminosity red giant stars. AJ, 136 (Aug.), 566–579.Google Scholar
Gilliland, R.L., and Brown, T.M. 1988. Time-resolved CCD photometry of an ensemble of stars. PASP, 100 (June), 754–765.Google Scholar
Gilliland, R.L., and Brown, T.M. 1992. Limits to CCD ensemble photometry precision and prospects for asteroseismology. PASP, 104, 582–591.Google Scholar
Gilliland, R.L., Brown, T.M., Duncan, D.K., et al. 1991. Time-resolved CCD photometry of an ensemble of stars in the open cluster M67. AJ, 101 (Feb.), 541–561.Google Scholar
Gilliland, R.L., Brown, T.M., Kjeldsen, H., et al. 1993. A search for solar-like oscillations in the stars of M67 with CCD ensemble photometry on a network of 4 M telescopes. AJ, 106 (Dec.), 2441–2476.Google Scholar
Gilliland, R.L., Brown, T.M., Christensen-Dalsgaard, J., et al. 2010. Kepler asteroseismology program: Introduction and first results. PASP, 122 (Feb.), 131–143.Google Scholar
Gilman, P.A., and Howe, R. 2003.(Feb.).Meridional motion and the slope of isorotation contours.Pages 283-285 of Sawaya-Lacoste, H. (ed), GONG+ 2002.Local and Global Helioseismology: The Present and Future. ESA Special Publication, vol.517.
Gilman, P.A., Morrow, C.A., and Deluca, E.E. 1989. Angular momentum transport and dynamo action in the Sun: Implications of recent oscillation measurements. ApJ, 338 (Mar.), 528–537.Google Scholar
Gizon, L., and Birch, A.C. 2002. Time-distance helioseismology: The forward problem for random distributed sources. ApJ, 571 (June), 966–986.Google Scholar
Gizon, L., and Birch, A.C. 2004. Time-distance helioseismology: Noise estimation. ApJ, 614 (Oct.), 472–489.Google Scholar
Gizon, L., and Birch, A.C. 2005. Local helioseismology. Living Rev.Sol.Phys., 2 (Nov.), 6.Google Scholar
Gizon, L., and Birch, A.C. 2012. Helioseismology challenges models of solar convection. Proc.Nat.Acad.Sci., 109 (July), 1189–1189.Google Scholar
Gizon, L., and Solanki, S.K. 2003. Determining the inclination of the rotation axis of a Sun-like star. ApJ, 589 (June), 1009–1019.Google Scholar
Gizon, L., Duvall, Jr., T., L., and Larsen, R.M. 2000. Seismic tomography of the near solar surface. J.Astrophys.Astron., 21 (June), 339.Google Scholar
Gizon, L., Duvall, T.L., and Schou, J. 2003. Wave-like properties of solar supergranulation. Nature, 421 (Jan.), 43–44.Google Scholar
Gizon, L., Schunker, H., Baldner, C.S., et al. 2009. Helioseismology of sunspots: A case study of NOAA Region 9787. Space Sci.Rev., 144 (Apr.), 249–.273.Google Scholar
Gizon, L., Birch, A.C., and Spruit, H.C. 2010. Local helioseismology: Three-dimensional imaging of the solar interior. ARA&A, 48 (Sept.), 289–338.Google Scholar
Gizon, L., Ballot, J., Michel, E., et al. 2013. Seismic constraints on rotation of Sun-like star and mass of exoplanet. Proc.Nat.Acad.Sci., 110 (Aug.), 1326–1327.Google Scholar
Goins, N.R., and Lazarewicz, A.R. 1979. Martian seismicity. Geophys.Res.Lett., 6, 368-370.Google Scholar
Goins, N.R., Dainty, A.M., and Toksöz, M.N. 1977. The deep seismic structure of the Moon, Proceedings of the 8th Lunar Science Conference, 471–486.Google Scholar
Goins, N.R., Dainty, A.M., and Toksöz, M.N. 1981. Seismic energy release of the Moon. J.Geophys.Res., 86 378–388.Google Scholar
Goins, N.R., Dainty, A.M., and Toksöz, M.N. 1981. Structure of the lunar crust at highland site Apollo Station 16. Geophys.Res.Lett., 8 29–32.Google Scholar
Goins, N.R., Dainty, A.M., and Toksöz, M.N. 1981c. Lunar seismology: The internal structure of the Moon. J.Geophys.Res., 86, 5061–5074.Google Scholar
Gold, T., and Soter, S. 1970. Apollo 12 seismic signal: Indication of a deep layer of powder. Science, 169, 1071–1075.Google Scholar
Goldreich, P., and Keeley, D.A. 1977. Solar seismology: II.The stochastic excitation of the solar p-modes by turbulent convection. ApJ, 212 (Feb.), 243–251.Google Scholar
Goldreich, P., and Nicholson, P.D. 1989. Tides in rotating fluids. ApJ, 342 (July), 1075-1078.Google Scholar
Goldreich, P., Murray, N., Willette, G., and Kumar, P. 1991. Implications of solar p-mode frequency shifts. ApJ, 370 (Apr.), 752–762.Google Scholar
Goldreich, P., Murray, N., and Kumar, P. 1994. Excitation of solar p-modes. ApJ, 424 (Mar.), 466–479.Google Scholar
Golombek, M.P. 2002.A revision of Mars seismicity from surface faulting.Lunar and Planetary Science Conference, XXXIII, Abstract #1244.
Golombek, M.P., Banerdt, W.B., Tanaka, K.L., and Tralli, D.M. 1992. A prediction of Mars seismicity from surface faulting. Science, 258 (Nov.), 979–981.Google Scholar
Goode, P.R., and Thompson, M.J. 1992. The effect of an inclined magnetic field on solar oscillation frequencies. ApJ, 395 (Aug.), 307–315.Google Scholar
Goode, P.R., Gough, D., and Kosovichev, A.G. 1992. Localized excitation of solar oscillations. ApJ, 387 (Mar.), 707–711.Google Scholar
Goodricke, J. 1783. A series of observations on, and a discovery of, the period of the variation of the light of the bright star in the Head of Medusa, called Algol.In a letter from John Goodricke, Esq.to the Rev.Anthony Shepherd, D.D.F.R.S. and Plumian, Professor at Cambridge. Phil.Trans.R.Soc.London Ser.I, 73, 474–482.Google Scholar
Goodricke, J., and Englefield, H.C. 1785. Observations of a new variable star.By John Goodricke, Esq.; Communicated by Sir H.C., Englefield, Bart, F.R.S. and A., S.Phil.Trans.R.Soc.London Ser.I, 75 153–164.Google Scholar
Gough, D. 2013. What have we learned from helioseismology, what have we really learned, and what do we aspire to learn?Sol.Phys., 287 (Oct.), 9–41.Google Scholar
Gough, D.O. 1984. On the rotation of the Sun. Phil.Trans.R.Soc.London Ser.A, 313 (Nov.), 27–38.Google Scholar
Gough, D.O. 1990.Comments on helioseismic inference.Page 283 of Osaki, Y., and Shibahashi, H. (eds), Progress of Seismology of the Sun and Stars. Lecture Notes in Physics, Berlin: Springer Verlag, vol.367.
Gough, D.O., and Kosovichev, A.G. 1993. Seismic analysis of stellar P-mode spectra.Page 351 of Brown, T.M. (ed), GONG 1992.Seismic Investigation of the Sun and Stars.Astronomical Society of the Pacific Conference Series, vol.42.Google Scholar
Gough, D.O., and McIntyre, M.E. 1998. Inevitability of a magnetic field in the Sun's radiative interior. Nature, 394 (Aug.), 755–757.Google Scholar
Gough, D.O., and Thompson, M.J. 1990. The effect of rotation and a buried magnetic field on stellar oscillations. MNRAS, 242 (Jan.), 25–55.Google Scholar
Gough, D.O., Kosovichev, A.G., Toomre, J., et al. 1996. The seismic structure of the Sun. Science, 272 (May), 1296–1300.Google Scholar
Goulty, N.R. 1979. Tidal triggering of deep moonquakes. Phys.Earth Planet.Int., 19 (May), 52–58.Google Scholar
Goupil, M.J., Dziembowski, W.A., and Fontaine, G. 1998. On some observational consequences of nonlinearities in stellar pulsations. Baltic Astron., 7 (Mar.), 21–41.Google Scholar
Goupil, M.J., Mosser, B., Marques, J.P., et al. 2013. Seismic diagnostics for transport of angular momentum in stars: II.Interpreting observed rotational splittings of slowly rotating red giant stars. A&A, 549 (Jan.), A75.Google Scholar
Gowen, R.A., Smith, A., Fortes, A.D., et al. 2011. Penetrators for in situ subsurface investigations of Europa. Adv.Space Res., 48, 725–742.Google Scholar
Grec, G., Fossat, E., and Vernin, J. 1976. A spectrophotometer for the study of long period solar photospheric oscillations. A&A, 50 (July), 221–225.Google Scholar
Grec, G., Fossat, E., and Pomerantz, M. 1980. Solar oscillations: Full disk observations from the geographic South Pole. Nature, 288 (Dec.), 541–544.Google Scholar
Grec, G., Fossat, E., and Pomerantz, M.A. 1983. Full-disk observations of solar oscillations from the geographic South Pole: Latest results. Sol.Phys., 82 (Jan.), 55–66.Google Scholar
Greenberg, J.M., and Huebner, W.F. 2002. Summary of the Workshop on Geophysical and Geological Properties of NEOs: ‘Know Your Enemy’.Pages 419-432 of International Seminars on Nuclear War and Planetary Emergencies, vol.26.Google Scholar
Grevesse, N., and Sauval, A.J. 1998. Standard solar composition. Space Sci.Rev., 85 (May), 161–174.Google Scholar
Grimm, H.-J., Gilfanov, M., and Sunyaev, R. 2002. The Milky Way in X-rays for an outside observer: Log(N)-Log(S) and luminosity function of X-ray binaries from RXTE/ASM data. A&A, 391 (Sept.), 923–944.Google Scholar
Gruberbauer, M., Kallinger, T., Weiss, W.W., and Guenther, D.B. 2009. On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors. A&A, 506 (Nov.), 1043–1053.Google Scholar
Gruberbauer, M., Guenther, D.B., and Kallinger, T. 2012. Toward a new kind of asteroseismic grid fitting. ApJ, 749 (Apr.), 109.Google Scholar
Grundahl, F., Kjeldsen, H., Christensen-Dalsgaard, J., Arentoft, T., and Frandsen, S. 2007. Stellar oscillations network group. Commun.Asteroseismol., 150 (June), 300.Google Scholar
Grundahl, F., Christensen-Dalsgaard, J., Gråe Jørgensen, U., et al.2011. SONG: Getting ready for the prototype. J.Phys.Conf.Ser., 271 (1), 01203.
Gruneisen, R. 1998.High precision photometry from space with COROT: Effect of spatial image jitter on the photometric performances of CCDs.Page 217 of Beletic, J., and Amico, P. (eds), Optical Detectors for Astronomy. Astrophysics and Space Science Library, vol.228.
Guasch, L., Warner, M., Nangoo, T., et al. 2012. Elastic 3D full-waveform inversion, 82nd Annual International Meeting, SEG, Expanded Abstracts, SI6.8.Google Scholar
Gudkova, T., Mosser, B., Provost, J., et al. 1995. Seismological comparison of giant planet interior models. A&A, 303 (Nov.), 594.Google Scholar
Gudkova, T., Lognonne, P., and Gagnepain-Beyneix, J. 2011. Large impacts detected by the Apollo seismometers: Impactor mass and source cutoff frequency estimations. Icarus, 211, 1049–1065.Google Scholar
Gudkova, T., Lognonne, P., Miljkovic, K., and Gagnepain-Beyneix, J. 2014. Impact cutoff frequency-momentum scaling law inverted from Apollo seismic data. Earth Planet.Sci.Lett.Guillot, T. 1999.Interior of giant planets inside and outside the Solar System.Science, 286 (Oct.), 72–77.Google Scholar
Guillot, T. 2005. The interiors of giant planets: Models and outstanding questions. Annu.Rev.Earth Planet.Sci., 33 (Jan.), 493–530.Google Scholar
Guillot, T., Stevenson, D.J., Hubbard, W.B., and Saumon, D. 2004.The interior of Jupiter.Pages 35-57 of Bagenal, F., Dowling, T.E., and McKinnon, W.B. (eds), Jupiter: The Planet, Satellites and Magnetosphere.Cambridge: Cambridge University Press.
Haber, D.A., and Hindman, B.W. 2005. Solar meridional flows: Recent findings. Highlights of Astronomy, 13 (Jan.), 431.Google Scholar
Haber, D.A., Hindman, B.W., Toomre, J., et al. 2002. Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. ApJ, 570 (May), 855–864.Google Scholar
Haber, D.A., Hindman, B.W., Toomre, J., and Thompson, M.J. 2004. Organized subsurface flows near active regions. Sol.Phys., 220 (Apr.), 371–380.Google Scholar
Hall, R.C. 1977. Lunar Impact: A History of Project Ranger, NASA History Series, NASA SP-4210.Washington, D.C.
Hammel, H.B., Beebe, R.F., Ingersoll, A.P., et al. 1995. HST imaging of atmospheric phenomena created by the impact of comet Shoemaker-Levy 91. Science, 267, 1288-1296.Google Scholar
Hammel, H.B., Wong, M.H., Clarke, J.T., et al. 2010. Jupiter after the 2009.impact: Hubble Space Telescope imaging of the impact-generated debris and its temporal evolution. Astron.J.Lett., 715, L150.Google Scholar
Hanasoge, S.M. 2013. The influence of noise sources on cross-correlation amplitudes. Geophys.J.Int., 192 (Jan.), 295–309.Google Scholar
Hanasoge, S.M. 2014. Measurements and kernels for source-structure inversions in noise tomography. Geophys.J.Int., 196 (Feb.), 971–985.Google Scholar
Hanasoge, S.M., Duvall, Jr., T., L., and Couvidat, S. 2007. Validation of helioseismology through forward modeling: Realization noise subtraction and kernels. ApJ, 664 (Aug.), 1234-1243.Google Scholar
Hanasoge, S.M., Duvall, Jr., T., L., and De Rosa, M.L. 2010. Seismic constraints on interior solar convection. ApJ, 712 (Mar.), L98-L102.Google Scholar
Hanasoge, S.M., Birch, A., Gizon, L., and Tromp, J. 2011. The adjoint method applied to time-distance helioseismology. ApJ, 738 (Sept.), 100.Google Scholar
Hanasoge, S., Birch, A., Gizon, L., and Tromp, J. 2012. Seismic probes of solar interior magnetic structure. Phys.Rev.Lett., 109 (10), 101101.
Hanasoge, S.M., Duvall, T.L., and Sreenivasan, K.R. 2012. Anomalously weak solar convection. Proc.Nat.Acad.Sci., 109 (July), 1192–1193.Google Scholar
Handberg, R., and Campante, T.L. 2011. Bayesian peak-bagging of solar-like oscillators using MCMC: A comprehensive guide. A&A, 527 (Mar.), A56.Google Scholar
Hansen, C.J., Kawaler, S.D., and Trimble, V. 2004.Stellar Interiors: Physical Principles, Structure, and Evolution.New York: Springer.
Harlow, F.H., and Welch, J.E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys.Fluids, 8, 2182–2189.Google Scholar
Hartlep, T., Kosovichev, A.G., Zhao, J., and Mansour, N.N. 2011. Signatures of emerging subsurface structures in acoustic power maps of the Sun. Sol.Phys., 268 (Feb.), 321-327.Google Scholar
Hartlep, T., Zhao, J., Kosovichev, A.G., and Mansour, N.N. 2013. Solar wave-field simulation for testing prospects of helioseismic measurements of deep meridional flows. ApJ, 762 (Jan.), 132.Google Scholar
Harvey, J. 1985.High-resolution helioseismology.Page 199 of Rolfe, E., and Battrick, B. (eds), Future Missions in Solar, Heliospheric & Space Plasma Physics.ESA Special Publication, vol.235.
Harvey, J., Tucker, R., and Britanik, L. 1998.High resolution upgrade of the GONG instruments.Page 209 of Korzennik, S. (ed), Structure and Dynamics of the Interior of the Sun and Sun-like Stars.ESA Special Publication, vol.418.
Harvey, J.W. 1988.Techniques forobserving stellaroscillations.Page 497 of Christensen-Dalsgaard, J., and Frandsen, S. (eds), Advances in Helio- and Asteroseismology. IAU Symposium, vol.123.Google Scholar
Harvey, J.W., Hill, F., Hubbard, R., et al. 1996. The Global Oscillation Network Group (GONG) Project. Science, 272 (May), 1284.Google Scholar
Hathaway, D.H. 2012. Supergranules as probes of the Sun's meridional circulation. ApJ, 760 (Nov.), 84.Google Scholar
Hedman, M.M., and Nicholson, P.D. 2013. Kronoseismology: Using density waves in Saturn's C ring to probe the planet's interior. AJ, 146 (July), 12.Google Scholar
Hekker, S., Barban, C., Baudin, F., et al. 2010. Oscillation mode lifetimes of red giants observed during the initial and first anticentre long run of CoRoT. A&A, 520 (Sept.), A60.Google Scholar
Hekker, S., Gilliland, R.L., Elsworth, Y., et al. 2011. Characterization of red giant stars in the public Kepler data. MNRAS, 414 (July), 2594-2601.Google Scholar
Helled, R., and Guillot, T. 2013. Interior models of Saturn: Including the uncertainties in shape and rotation. ApJ, 767 (Apr.), 113.Google Scholar
Hello, Y., Ogé, A., Sukhovich, A., and Nolet, G. 2011. Modern mermaids: New floats image the deep Earth. EOS Trans., 92 (4 Oct.), 337–338.Google Scholar
Hempel, S., Knapmeyer, M., Jonkers, A.R.T., and Oberst, J. 2012. Uncertainty of Apollo deep moon quake locations andimplications for future network designs. Icarus, 220 (Aug.), 971–980.Google Scholar
Hill, F. 1984. The effects of a nearly 100% duty cycle in observations of solar oscillations. Pages 271-277 of Ulrich, R.K., Harvey, J., Rhodes, Jr., E.J., and Toomre, J. (eds), Solar Seismology from Space. NASA JPL.
Hill, F. 1988. Rings and trumpets: Three-dimensional power spectra of solar oscillations. ApJ, 333 (Oct.), 996–1013.Google Scholar
Hill, F., and Newkirk, Jr., G. 1985. On the expected performance of a solar oscillation network. Sol.Phys., 95 (Feb.), 201–219.Google Scholar
Hill, F., Stark, P.B., and Stebbins, R.T., et al. 1996. The solar acoustic spectrum and eigenmode parameters. Science, 272 (May), 1292-1295.Google Scholar
Hill, F., Anderson, E., Howe, R., et al. 1998.Estimated mode parameters from the fitting of GONG spectra.Page 231 of Korzennik, S. (ed.), Structure and Dynamics of the Interior of the Sun andSun-like Stars. ESA Special Publication, vol.418.
Hill, F., Baldner, C.S., García, R.A., Roth, M., and Schunker, H. 2013.Where to go from here: The future of helio- and astero-seismology.Pages 401-408 of Jain, K., Tripathy, S.C., Hill, F., Leibacher, J.W., and Pevtsov, A.A. (eds), Fifty Years of Seismology of the Sun and Stars. Astronomical Society of the Pacific Conference Series, vol.478.Google Scholar
Hill, H.A., Stebbins, R.T., and Brown, T.M. 1976.Recent oblateness observations: Data, interpretation and significance for earlier work.Page 622 of Sanders, J.H., and Wapstra, A.H. (eds), Atomic Masses and Fundamental Constants, vol.5.New York: Plenum.
Hilton, J.L. 2002. Asteroid masses and densities. Asteroids III, 103–112.Google Scholar
Hopf, T., Kumar, S., Karl, W.J., and Pike, W.T. 2010. Shock protection of penetrator-based instrumentation via a sublimation approach. Adv.Space Res., 45, 460–467.Google Scholar
Horvath, P., Latham, G., Nakamura, Y., and Dorman, H.J. 1980. Lunar near-surface shear wave velocities at the Apollo landing sites as inferred from spectral amplitude ratios. J.Geophys.Res., 85, 6572–6578.Google Scholar
Houdek, G., and Gough, D.O. 2007. An asteroseismic signature of helium ionization. MNRAS, 375 (Mar.), 861–880.Google Scholar
Houdek, G., Balmforth, N.J., Christensen-Dalsgaard, J., and Gough, D.O. 1999. Amplitudes of stochastically excited oscillations in main-sequence stars. A&A, 351 (Nov.), 582–596.Google Scholar
Howe, R. 2009. Solar interior rotation and its variation. Living Rev.Sol.Phys., 6 (Feb.), 1.Google Scholar
Howe, R., and Hill, F. 1998.Estimating low-degree mode parameters from GONG data using the leakage matrix.Page 237 of Korzennik, S. (ed), Structure and Dynamics of the Interior of the Sun and Sun-like Stars.ESA Special Publication, vol.418.
Howe, R., and Thompson, M.J. 1998. A strategy for fitting partially blended ridges in GONG solar p-mode spectra. A&AS, 131 (Sept.), 539–548.Google Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., et al. 2000. Dynamic variations at the base of the solar convection zone. Science, 287 (Mar.), 2456–2460.Google Scholar
Howe, R., Christensen-Dalsgaard, J., and Hill, F., et al. 2005. Solar convection-zone dynamics, 1995–2004. ApJ, 634 (Dec.), 1405–1415.Google Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., et al. 2009. A note on the torsional oscillation at solar minimum. ApJ, 701 (Aug.), L87-L90.Google Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., et al. 2013. The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. ApJ, 767 (Apr.), L20.Google Scholar
Howell, S.B., Sobeck, C., Haas, M., et al. 2014. The K2 mission: Characterization and early results. PASP, 126 (Apr.), 398–408.Google Scholar
Hu, H., Tout, C.A., Glebbeek, E., and Dupret, M.-A. 2011. Slowing down atomic diffusion in subdwarf B stars: Mass loss or turbulence?MNRAS, 418 (Nov.), 195–205.Google Scholar
Huber, D., Bedding, T.R., Stello, D., et al. 2011. Testing scaling relations for solar-like oscillations from the main sequence to red giants using Kepler data. ApJ, 743 (Dec.), 143.Google Scholar
Huber, D., Chaplin, W.J., Christensen-Dalsgaard, J., et al. 2013. Fundamental properties of Kepler planet-candidate host stars using asteroseismology. ApJ, 767 (Apr.), 127.Google Scholar
Huber, D., Carter, J.A., Barbieri, M., et al. 2013. Stellar spin-orbit misalignment in a multiplanet system. Science, 342 (Oct.), 331–334.Google Scholar
Huber, D., Silva Aguirre, V., Matthews, J.M., et al. 2014. Revised stellar properties of Kepler targets for the quarter 1-16 transit detection run. ApJS, 211 (Mar.), 2.Google Scholar
Hudson, H.S., Fisher, G.H., and Welsch, B.T. 2008.Flare energy and magnetic field variations.Page 221 of Howe, R., Komm, R.W., Balasubramaniam, K.S., and Petrie, G.J. D.(eds), Subsurface and Atmospheric Influences on Solar Activity.Astronomical Society of the Pacific Conference Series, vol.383.Google Scholar
Huebner, W.F., Cellino, A., Cheng, A.F., and Greenberg, J.M. 2001. NEOs: Physical properties.Pages 309-34 of International Seminars on Nuclear War and Planetary Emergencies, vol.25.Google Scholar
Hueso, R., Sánchez-Lavega, A., and Guillot, T. 2002. A model for large-scale convective storms in Jupiter. J.Geophys.Res.(Planets), 107 (Oct.), 5075.Google Scholar
Hunt, M.L., and Vriend, N.M. 2010.Booming sand dunes.Annu.Rev.Earth Planet.Sci., 2010.38:281-301, doi:10.1146.annurev-earth-040809–152336.
Iben, Jr., I. 1971. Globular cluster stars: Results of theoretical evolution and pulsation studies compared with the observations. PASP, 83 (Dec.), 697.Google Scholar
Ibrahim, M.I. 2012. The elastic properties of carbonaceous chondrites.Ph.D.thesis, University of Calgary, Alberta, Canada.
Ilonidis, S., Zhao, J., and Kosovichev, A.G. 2011. Detection of emerging sunspot regions in the solar interior by helioseismology. AGU Fall Meeting Abstracts, Dec., A1.Google Scholar
Irwin, P.G.J. 2009. Giant Planets of Our Solar System.Springer-Praxis.
Jackiewicz, J., Gizon, L., and Birch, A.C. 2008. High-resolution mapping of flows in the solar interior: Fully consistent OLA inversion of helioseismic travel times. Sol.Phys., 251 (Sept.), 381–415.Google Scholar
Jackiewicz, J., Nettelmann, N., Marley, M., and Fortney, J. 2012. Forward and inverse modeling for jovian seismology. Icarus, 220 (Aug.), 844–854.Google Scholar
Jackiewicz, J., Birch, A.C., Gizon, L., et al. 2012. Multichannel three-dimensional SOLA inversion for local helioseismology. Sol.Phys., 276 (Feb.), 19–33.Google Scholar
Jackson, J.D., and Fox, R.F. 1999. Classical Electrodynamics, 3rd edn.New York: John Wiley & Sons.
Jacoutot, L., Kosovichev, A.G., Wray, A.A., and Mansour, N.N. 2008. Numerical simulation of excitation of solar oscillation modes for different turbulent models. ApJ, 682 (Aug.), 1386–1391.Google Scholar
Jacoutot, L., Kosovichev, A.G., Wray, A., and Mansour, N.N. 2008. Realistic numerical simulations of solar convection and oscillations in magnetic regions. ApJ, 684 (Sept.), L51-L54.Google Scholar
Jain, R., and Haber, D. 2002. Solar p-modes and surface magnetic fields: Is there an acoustic emission? MDI/SOHO observations. A&A, 387 (June), 1092–1099.Google Scholar
Jaupart, C., and Mareschal, J.-C. 2010. Heat Generation and Transport in the Earth.Cambridge: Cambridge University Press.
Jensen, J.M., and Pijpers, F.P. 2003. Sensitivity kernels for time-distance inversion based on the Rytov approximation. A&A, 412 (Dec.), 257–265.Google Scholar
Jensen, J.M., Duvall, Jr., T., L., Jacobsen, B.H., and Christensen-Dalsgaard, J. 2001. Imaging an emerging active region with helioseismic tomography. ApJ, 553 (June), L193-L196.Google Scholar
Jiménez-Reyes, S.J., Chaplin, W.J., Garcia, R.A., et al. 2008. SolarFLAG hare and hounds: Estimation of p-mode frequencies from Sun-as-star helioseismology data. MNRAS, 389 (Oct.), 1780-1790.Google Scholar
Johnston, D.H., and Toksöz, M.N. 1977. Internal structure and properties of Mars. Icarus, 32 73–84.Google Scholar
Jones, S.F. 2009. Elastic wave velocity, porosity, and pore geometry of ordinary chondrites and artificially shocked samples.M.Phil.thesis, University of Calgary, Alberta, Canada.
Kallinger, T., Mosser, B., Hekker, S., et al. 2010. Asteroseismology of red giants from the first four months of Kepler data: Fundamental stellar parameters. A&A, 522 (Nov.), A1.Google Scholar
Kallinger, T., Weiss, W.W., Barban, C., et al. 2010. Oscillating red giants in the CoRoT exofield: Asteroseismic mass and radius determination. A&A, 509 (Jan.), A77.Google Scholar
Kallinger, T., Hekker, S., Mosser, B., et al. 2012. Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations. A&A, 541 (May), A51.Google Scholar
Kanamori, H. 1977. The energy release in great earthquakes. J.Geophys.Res., 82, 2981-987.Google Scholar
Kanamori, H. 1994. Mechanics of earthquakes. Annu.Rev.Earth Planet.Sci., 22, 207-237.Google Scholar
Kanamori, H. 2004. Some fluid-mechanical problems in geophysics: waves in the atmosphere and fault lubrication. Fluid Dyn.Res., 34, 1–19.Google Scholar
Kanamori, H., and Anderson, D.L. 1975. Theoretical basis of some empirical relations in seismology. Bull.Seismol.Soc.Am., 65, 1073–1095.Google Scholar
Kanamori, H., and Anderson, D.L. 1975. Amplitude of the Earth's free oscillations and long-period characteristics of the earthquake source. J.Geophys.Res., 80 (Mar.), 1075-1078.Google Scholar
Karato, S. 2013. Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth Planet.Sci.Lett., 384, 144–153.Google Scholar
Karoff, C., and Kjeldsen, H. 2008. Evidence that solar flares drive global oscillations in the Sun. ApJ, 678 (May), L73-L76.Google Scholar
Karoff, C., Metcalfe, T.S., Chaplin, W.J., et al. 2013. Sounding stellar cycles with Kepler: II.Ground-based observations. MNRAS, 433 (Aug.), 3227-3238.Google Scholar
Kato, S., and Fukue, J. 1980. Trapped radial oscillations of gaseous disks around a black hole. PASJ, 32, 377.Google Scholar
Kato, S., and Nakamura, K.E. 1998. Transition radius from cooling-dominated to advection-dominated regimes in two temperature disks. PASJ, 50 (Dec.), 559–566.Google Scholar
Kawaler, S.D. 1988. Angular momentum loss in low-mass stars. ApJ, 333 (Oct.), 236–247.Google Scholar
Kawaler, S.D., Sekii, T., and Gough, D. 1999. Prospects for measuring differential rotation in white dwarfs through asteroseismology. ApJ, 516 (May), 349–365.Google Scholar
Kawaler, S.D., Reed, M.D., Quint, A.C., et al. 2010. First Kepler results on compact pulsators: II.KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode. MNRAS, 409 (Dec.), 1487-1495.Google Scholar
Kawamura, T., Tanaka, S., Kobayashi, N., and Lognonné, P. 2010.The Lunar Surface Gravimeter as a lunar seismometer.In Ground-Based Geophysics on the Moon, January 21-22, 2010.Tempe, Arizona.LPI Contribution No.1530.
Kawamura, T., Morota, T., Kobayashi, N., and Tanaka, S. 2011. Cratering asymmetry on the Moon: New insight from the Apollo Passive Seismic Experiment. J.Geophys.Res., 38, L15201, doi: 10.1029/2011GL048047.Google Scholar
Keihm, S.J., and Langseth, M.G., Jr. 1973. Surface brightness temperatures at the Apollo 17 heat flow site: Thermal conductivity of the upper 15 cm of regolith. Proceedings of the 4th Lunar Science Conference Geochim.Cosmochim.Acta, Suppl. 4, 2503-2513.Google Scholar
Kennett, B.L.N., Engdahl, E.R., and Buland, R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys.J.Int., 122 (July), 108–124.Google Scholar
Kenyon, S.L., Lawrence, J.S., Ashley, M.C.B., et al. 2006. Atmospheric scintillation at Dome C, Antarctica: Implications for photometry and astrometry. PASP, 118 (June), 924–932.Google Scholar
Kepler, S.O., Mukadam, A., Winget, D.E., et al. 2000. Evolutionary timescale of the pulsating white dwarf G117-B15A: The most stable optical clock known. ApJ, 534 (May), L185-L188.Google Scholar
Khan, A., and Mosegaard, K. 2001. New information on the deep lunar interior from an inversion of lunar free oscillation periods. Geophys.Res.Lett., 28, 1791–1794.Google Scholar
Khan, A., and Mosegaard, K. 2002. An inquiry into the Lunar interior: A nonlinear inversion of the Apollo lunar seismic data. J.Geophys.Res., 107, E6, doi:10.1029/2001JE001658.Google Scholar
Khan, A., Mosegaard, K., and Rasmussen, K.L. 2000. A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophys.Res.Lett., 27 1591–1594.Google Scholar
Kholikov, S. 2013. A search for helioseismic signature of emerging active regions. Sol Phys, 287 (Oct.), 229–237.Google Scholar
Kholikov, S., Serebryanskiy, A., and Jackiewicz, J. 2014. Meridional flow in the solar convection zone: I.Measurements from GONG data. ApJ, 784 (Apr.), 145.Google Scholar
Khomenko, E., and Collados, M. 2008. Magnetohydrostatic sunspot models from deep subphotospheric to chromospheric layers. ApJ, 689 (Dec.), 1379–1387.Google Scholar
Khomenko, E., Kosovichev, A., Collados, M., Parchevsky, K., and Olshevsky, V. 2009. Theoretical modeling of propagation of magnetoacoustic waves in magnetic regions below sunspots. ApJ, 694 (Mar.), 411–424.Google Scholar
Kippenhahn, R., and Weigert, A. 1990. Stellar Structure and Evolution.Berlin: Springer-Verlag.
Kippenhahn, R., Weigert, A., and Weiss, A. 2013. Stellar Structure and Evolution, 2nd edn.Berlin, Heidelberg: Springer.
Kitiashvili, I.N., Kosovichev, A.G., Wray, A.A., and Mansour, N.N. 2009. Traveling waves of magnetoconvection and the origin of the Evershed effect in sunspots. ApJ, 700 (Aug.), L178-L181.Google Scholar
Kitiashvili, I.N., Bellot Rubio, L.R., Kosovichev, A.G., et al. 2010. Explanation of the sea-serpent magnetic structure of sunspot penumbrae. ApJ, 716 (June), L181-L184.Google Scholar
Kitiashvili, I.N., Kosovichev, A.G., Wray, A.A., and Mansour, N.N. 2010. Mechanism of spontaneous formation of stable magnetic structures on the Sun. ApJ, 719 (Aug.), 307–312.Google Scholar
Kitiashvili, I.N., Kosovichev, A.G., Mansour, N.N., and Wray, A.A. 2011. Excitation of acoustic waves by vortices in the quiet Sun. ApJ, 727 (Feb.), L50.Google Scholar
Kitiashvili, I.N., Kosovichev, A.G., Mansour, N.N., and Wray, A.A. 2011. Numerical MHD simulations of solar magnetoconvection and oscillations in inclined magnetic field regions. Sol.Phys., 268 (Feb.), 283–291.Google Scholar
Kitiashvili, I.N., Kosovichev, A.G., Mansour, N.N., Lele, S.K., and Wray, A.A. 2012. Vortex tubes of turbulent solar convection. Phys.Scr., 86 (1), 018403.Google Scholar
Kitiashvili, I.N., Kosovichev, A.G., Lele, S.K., Mansour, N.N., and Wray, A.A. 2013. Ubiquitous solar eruptions driven by magnetized vortex tubes. ApJ, 770 (June), 37.Google Scholar
Kivelson, M.G., Khurana, K.K., Russell, C.T., et al.2000. Galileo magnetometer mea-surements: A stronger case for a subsurface ocean at Europa. Science, 289 (Aug.), 1340-1343.
Kjeldsen, H., and Bedding, T.R. 1995. Amplitudes of stellar oscillations: The implications for asteroseismology. A&A, 293 (Jan.), 87–106.Google Scholar
Kjeldsen, H., Bedding, T.R., Viskum, M., and Frandsen, S. 1995. Solarlike oscillations in eta Boo. AJ, 109 (Mar.), 1313–1319.Google Scholar
Kjeldsen, H., Bedding, T.R., Baldry, I.K., et al. 2003. Confirmation of solar-like oscillations in η Bootis. AJ, 126 (Sept.), 1483–1488.Google Scholar
Kjeldsen, H., Bedding, T.R., Butler, R.P., et al. 2005. Solar-like oscillations in a Centauri B. ApJ, 635 (Dec.), 1281–1290.Google Scholar
Kjeldsen, H., Bedding, T.R., and Christensen-Dalsgaard, J. 2008. Correcting stellar oscillation frequencies for near-surface effects. ApJ, 683 (Aug.), L175-L178.Google Scholar
Kjeldsen, H., Bedding, T.R., Arentoft, T., et al. 2008. The amplitude of solar oscillations using stellar techniques. ApJ, 682 (Aug.), 1370–1375.Google Scholar
Kjeldsen, H., Christensen-Dalsgaard, J., Handberg, R., et al.2010. The Kepler asteroseismic investigation: Scientific goals and first results. Astron.Nachr., 331 (Dec.), 966.
Knapmeyer, M. 2008. Location of seismic events using inaccurate data from very sparse networks. Geophys.J.Int., 175 (Dec.), 975–991.Google Scholar
Knapmeyer, M., Oberst, J., Hauber, E., et al. 2006. Working models for spatial distribution and level of Mars' seismicity. J.Geophys.Res.(Planets), 111 (10), 1100.Google Scholar
Kochan, H., Feibig, W., Konopka, U., et al. 2000. CASSE - The ROSETTA lander comet acoustic surface sounding experiment: Status of some aspects, the technical realisation and laboratory simulations. Planet.Space Sci., 48, 385–399.Google Scholar
Komatitsch, D., and Vilotte, J.P. 1998. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull.Seismol.Soc.Am., 88, 368–392.Google Scholar
Komatitsch, D., and Tromp, J. 2002. Spectral-element simulations of global seismic wave propagation: I.Validation. Geophys.J.Int., 149 (May), 390–412.Google Scholar
Komm, R.W., Gu, Y., Hill, F., Stark, P.B., and Fodor, I.K. 1999. Multitaper spectral analysis and wavelet denoising applied to helioseismic data. ApJ, 519 (July), 407-421.Google Scholar
Komm, R.W., Howe, R., and Hill, F. 2000. Solar-cycle changes in GONG p-mode widths and amplitudes 1995–1998. ApJ, 531 (Mar.), 1094–1108.Google Scholar
Komm, R.W., Gonzalez Hernandez, I., and Hill, F., et al. 2013. Subsurface meridional flow from HMI using the ring-diagram pipeline. Sol.Phys., 287 (Oct.), 85–106.Google Scholar
Kormendy, J., and Ho, L.C. 2013. Coevolution (or not) of supermassive black holes and host galaxies. ARA&A, 51 (Aug.), 511–653.Google Scholar
Kornilov, V. 2012. Stellar scintillation on large and extremely large telescopes. MNRAS, 426 (Oct.), 647–655.Google Scholar
Kornilov, V., Sarazin, M., Tokovinin, A., Travouillon, T., and Voziakova, O. 2012. Comparison of the scintillation noise above different observatories measured with MASS instruments. A&A, 546 (Oct.), A41.Google Scholar
Korzennik, S.G. 2008. YAOPBM-II: Extension to higher degrees and to shorter time series. J.Phys.Conf.Ser., 118 (1), 012082.Google Scholar
Korzennik, S.G., Rabello-Soares, M.C., Schou, J., and Larson, T.P. 2013. Accurate characterization of high-degree modes using MDI observations. ApJ, 772, 87.Google Scholar
Kosovichev, A.G. 1986. Simulating thermal and gasdynamic processes in solar-flare pulse phases. Bull.Crimean Astrophys.Observatory, 75, 6.Google Scholar
Kosovichev, A.G. 1996. Tomographic imaging of the Sun's interior. ApJ, 461 (Apr.), L55.Google Scholar
Kosovichev, A.G. 2006.Direct observations of acoustic waves excited by solar flares and their propagation in sunspot regions.Page 154 of Leibacher, J., Stein, R.F., and Uitenbroek, H. (eds), Solar MHD Theory and Observations: A High Spatial Resolution Perspective. Astronomical Society of the Pacific Conference Series, vol.354.
Kosovichev, A. G. 2006b. Properties of flares-generated seismic waves on the Sun. Sol. Phys., 238 (Oct.), 1–11.Google Scholar
Kosovichev, A. G. 2006. Sunquake sources and wave propagation. In Proceedings of SOHO 18/GONG 2006.HELAS I, Beyond the Spherical Sun.ESA Special Publication, vol. 624.
Kosovichev, A. G. 2007. The cause of photospheric and helioseismic responses to solar flares: high-energy electrons or protons?ApJ, 670 (Nov.), L65-L68.Google Scholar
Kosovichev, A. G. 2009. Solar oscillations. Pages 547-559 of Guzik, J. A. and Bradley, P. A. (eds), Stellar Pulsation.American Institute of Physics Conference Series, vol. 1170.
Kosovichev, A. G. 2011. Advances in global and local helioseismology: An introductory review. Pages 3-642 of Rozelot, J.-P., and Neiner, C. (eds), The Pulsations of the Sun and the Stars. Lecture Notes in Physics, Berlin: Springer Verlag, vol. 832.
Kosovichev, A. G. 2012. Local helioseismology of sunspots: Current status and perspectives. Sol. Phys., 279 (Aug.), 323–348.Google Scholar
Kosovichev, A. G. 2012b. (May). Physics of sunquakes events observed with SDO. Page 109.03 of American Astronomical Society Meeting Abstracts 220, vol. 220.Google Scholar
Kosovichev, A. G. 2014.(Feb.). Sunquakes and starquakes. Pages 349-352 of Guzik, J. A., Chaplin, W. J., Handler, G., and Pigulski, A. (eds), Precision Asteroseismology. IAU Symposium 301.
Kosovichev, A. G., and Duvall, Jr., T. L. 1997.(Dec.). Acoustic tomography of solar convective flows and structures. Pages 241-260 of Pijpers, F. P., Christensen-Dalsgaard, J., and Rosenthal, C. S. (eds), SCORe' 96: Solar Convection and Oscillations and their Relationship.Astrophysics and Space Science Library, Springer, vol. 225.
Kosovichev, A. G., and Zhao, J., in preparation
Kosovichev, A. G., and Zharkova, V. V. 1995. Seismic response to solar flares: Theoretical predictions. Page 341 of Helioseismology.ESA Special Publication, vol. 376.
Kosovichev, A. G., and Zharkova, V. V. 1998. X-ray flare sparks quake inside the Sun. Nature, 393 (May), 317.Google Scholar
Kosovichev, A. G., and Zharkova, V. V. 2001. Magnetic energy release and transients in the solar flare of 2000.July 14. ApJ, 550 (Mar.), L105-L108.Google Scholar
Kosovichev, A. G., Schou, J., Scherrer, P. H., et al. 1997. Structure and rotation of the solar interior: Initial results from the MDI Medium-L Program. Sol. Phys., 170, 43–61.Google Scholar
Kosovichev, A. G., Duvall, Jr., T. L., and Scherrer, P. H. 2000. Time-distance inversion methods and results (Invited Review). Sol. Phys., 192 (Mar.), 159–176.Google Scholar
Kostiuk, N. D., and Pikelner, S. B. 1975. Gasdynamics of a flare region heated by a stream of high-velocity electrons. Soviet Ast., 18 (Apr.), 590–599.Google Scholar
Kovach, R. L., and Chyba, C. F. 2001. Seismic detectability of a subsurface ocean on Europa. Icarus, 150, 279–287.Google Scholar
Kovach, R. L., and Watkins, J. S. 1973a. The velocity structure of the lunar crust. The Moon, 7, 63–75.Google Scholar
Kovach, R. L., and Watkins, J. S. 1973b. Apollo 17 seismic profiling: Probing the lunar crust. Science, 180, 1063–1064.Google Scholar
Kovach, R. L., Watkins, J. S., and Landers, T. 1971. Active Seismic Experiment. In Apollo 14 Preliminary Science Report (prepared by NASA Manned Spacecraft Center). Washington, D.C.: U.S. Government Printing Office.Google Scholar
Kovach, R. L., Watkins, J. S., and Talwani, P. 1972. Active Seismic Experiment. In Apollo 16 Preliminary Science Report (prepared by NASA Manned Spacecraft Center). Washington, D.C.: U.S. Government Printing Office.Google Scholar
Kovach, R. L., Watkins, J. S., and Talwani, P. 1973. Lunar Seismic Profiling Experiment. In Apollo 17 Preliminary Science Report NASA-SP-330 (prepared by Johnson Space Center, NASA). Washington, D.C.: U.S. Government Printing Office 1-10-1–12.
Koyama, J., and Nakamura, Y. 1979. Re-examination of the lunar seismic velocity structure, abstract, Proceedings 10th Lunar and Planetary Science Conference, 685–686.Google Scholar
Koyama, J., and Nakamura, Y. 1980. Focal mechanism of deep moonquakes. Proceedings 11th Lunar Planetary Science Conference, 1835–1865.Google Scholar
Kraft, R. P. 1967. Studies of stellar rotation: V. The dependence of rotation on age among solar-type stars, ApJ, 150, 551.Google Scholar
Krasinsky, G. A., Pitjeva, E. V., Vasilyev, M. V., and Yagudina, E. I. 2002. Hidden mass in the asteroid belt.Icarus, 158(Jul), 98–105.Google Scholar
Krishnamurthi, A., Pinsonneault, M. H., Barnes, S., and Sofia, S. 1997. Theoretical models of the angular momentum evolution of solar-type stars.ApJ, 480(May), 303.Google Scholar
Ksanfomaliti, L. V., Zubkova, V. M., Morozov, N. A., and Petrova, E. V. 1982. Microseisms at the Venera 13 and Venera 14 landing sites.Sov. Astron. Lett., 8, 241–242.Google Scholar
Kumar, P., and Lu, E. 1991. The location of the source of high-frequency solar acoustic oscillations.ApJ, 375(July), L35–L39.Google Scholar
Kurtz, D. W. 1978. 12.15 minute light variations in Przybylski's star, HD 101065. Information Bulletin on Variable Stars, 1436(June), 1.Google Scholar
Kurtz, D. W., and Martinez, P. 2000. Observing roAp Stars with WET: A primer.Baltic Astron., 9 253–353.Google Scholar
Kurtz, D. W., and Shibahashi, H. 1986. An analysis of the L = 1 dipole oscillation in HR 3831 (HD 83368). MNRAS, 223(Dec.), 557–579.Google Scholar
Labeyrie, A., Le Coroller, H., and Dejonghe, J. 2008. Steps toward hypertelescopes on Earth and in space. In Optical and Infrared Interferometry. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7013.Google Scholar
Labeyrie, A., Le Coroller, H., Dejonghe, J., et al. 2009. Luciola hypertelescope space observatory: Versatile, upgradable high-resolution imaging, from stars to deep-field cosmology.Exp. Astron., 23(Mar.), 463–490.Google Scholar
Lammlein, D. R. 1977. Lunar seismicity and tectonics.Phys. Earth Planet. Inter., 14(June), 224–273.Google Scholar
Lammlein, D. R., Latham, G. V., Dorman, J., Nakamura, Y., and Ewing, M. 1974. Lunar seismicity, structure, and tectonics.Rev. Geophys. Space Phys., 12, 1–21.Google Scholar
Langseth, M. G., Keihm, S. J., and Peters, K. 1976. Revised lunar heat-flow values.Proceedings 7th Lunar Science Conference, 3143–3171.Google Scholar
Lanza, A. F. 2013. Current state of the modelling of photospheric activity. Page 215 of Suarez, J. C., Garrido, R., Balona, L. A., and Christensen-Dalsgaard, J. (eds), Advances in Solid State Physics. Berlin: Springer, vol. 31.
Larose, E., Khan, A., Nakamura, Y., and Campillo, M. 2005. Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett., 32, L16201, doi:10.1029/2005GL023518.
Larson, T., and Schou, J. 2011. HMI global helioseismology data analysis pipeline.J. Phys. Conf. Ser., 271(1), 012062.Google Scholar
Laster, S. J., and Press, F. 1968. A new estimate of lunar seismicity due to meteorite impact.Phys. Earth Planet. Int., 1, 151–154.Google Scholar
Lasota, J.-P. 2001. The disc instability model of dwarf novae and low-mass X-ray binary transients.New Astron. Rev., 45(June), 449–508.Google Scholar
Latham, G. V., Ewing, M., Press, F., and Sutton, G. 1969a. Passive seismic experiment.Science, 165 241–250.Google Scholar
Latham, G. V., Ewing, M., Press, F., et al. 1969b. Passive Seismic Experiment. In Apollo 11 Preliminary Science Report, NASA SP–214.Google Scholar
Latham, G. V., Ewing, M., Dorman, J., et al. 1970. Seismic data from man-made impacts on the Moon.Science, 170, 620–626.Google Scholar
Latham, G., Ewing, M., Dorman, J., et al. 1971. Moonquakes.Science, 174, 687–692.Google Scholar
Latham, G. V., Ewing, M., Press, F., et al. 1972. Passive Seismic Experiment. In Apollo 15 Preliminary Science Report, NASA Scientific and Technical Information Office, Washington, D.C., 8-1-8–25.
Latham, G. V., Ewing, M., Press, F., et al. 1973. Passive Seismic Experiment. In Apollo 17 Preliminary Science Report, NASA Scientific and Technical Information Office, NASA Sp-330, Washington, D.C., 11-1-11–9.
Lay, T., and Wallace, T. C. 1995. Modern Global Seismology. Orlando, Florida: Academic Press.
Lazarewicz, A. R., Anderson, D. L., Anderson, K., et al. (eds). 1981. The Viking Seismometry Final Report. NASA Contract Report, vol. 3408.Google Scholar
Lazrek, M., Baudin, F., Bertello, L., et al. 1997. First results on p modes from GOLF experiment.Sol. Phys., 175(Oct.), 227–246.Google Scholar
Le Bihan, B., and Burrows, A. 2013. Pulsation frequencies and modes of giant exoplanets.ApJ, 764(Feb.), 18.Google Scholar
Leahy, D. A., Elsner, R. F., and Weisskopf, M. C. 1983. On searches for periodic pulsed emission: The Rayleigh test compared to epoch folding.ApJ, 272(Sept.), 256–258.Google Scholar
Leconte, J., and Chabrier, G. 2012. A new vision of giant planet interiors: Impact of double diffusive convection.A&A, 540(Apr.), A20.Google Scholar
Ledoux, P. 1951. The nonradial oscillations of gaseous stars and the problem of Beta Canis Majoris.ApJ, 114(Nov.), 373.Google Scholar
Ledoux, P., and Walraven, T. 1958. Variable stars.Handbuch der Physik, 51, 353–604.Google Scholar
Lee, U., and Baraffe, I. 1995. Pulsational stability of rotating main sequence stars: The second order effects of rotation on the nonadiabatic oscillations.A&A, 301(Sept.), 419.Google Scholar
LeFeuvre, M., and Wieczorek, M. A. 2008. Nonuniform cratering of the terrestrial planets.Icarus, 197, 291–306.Google Scholar
LeFeuvre, M., and Wieczorek, M. A. 2011. Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System.Icarus, 214, 1–20.Google Scholar
Lee, U., Jeffery, C. S., and Saio, H. 1992. Line profile variations caused by low-frequency non-radial pulsations ofrapidly rotating stars: II.MNRAS, 254(Jan.), 185–191.Google Scholar
Lehner, F. E., Witt, E. O., Miller, W. F., and Gurney, R. D. 1962. A seismometer for lunar experiments.J. Geophys. Res., 67 4779–4786.Google Scholar
Leibacher, J. W., and Stein, R. F. 1971. A new description of the solar five-minute oscillation.Astrophys.Lett., 7 191–192.Google Scholar
Leighton, R. B., Noyes, R. W., and Simon, G. W. 1962. Velocity fields in the solar atmosphere: I. Preliminary report.ApJ, 135(Mar.), 474.Google Scholar
Lenz, P., and Breger, M. 2005. Period04 User Guide.Commun. Asteroseismol., 146(June), 53–136.Google Scholar
Lesieur, M., Meitais, O., and Comte, P. 2005. Large-Eddy Simulations of Turbulence. Cambridge: Cambridge University Press.
Libbrecht, K. G. 1988. Solar p-mode phenomenology. ApJ, 334(Nov.), 510–516.Google Scholar
Libbrecht, K. G. 1989. Solar p-mode frequency splittings. ApJ, 336(Jan.), 1092–1097.Google Scholar
Libbrecht, K. G. 1992. On the ultimate accuracy of solar oscillation frequency measurements. ApJ, 387(Mar.), 712.Google Scholar
Libbrecht, K. G., and Kaufman, J. M. 1988. Frequencies of high-degree solar oscillations. ApJ, 324(Jan.), 1172–1183.Google Scholar
Libbrecht, K. G., and Woodard, M. F. 1990. Solar-cycle effects on solar oscillation frequencies.Nature, 345(June), 779–782.Google Scholar
Lignieres, F., and Georgeot, B. 2008. Wave chaos in rapidly rotating stars.Phys. Rev. E, 78(1), 016215.Google Scholar
Lignières, F., and Georgeot, B. 2009. Asymptotic analysis of high-frequency acoustic modes in rapidly rotating stars. A&A, 500(June), 1173–1192.Google Scholar
Lignierès, F., Rieutord, M., and Reese, D. 2006. Acoustic oscillations of rapidly rotating polytropic stars: I. Effects of the centrifugal distortion.A&A, 455(Aug.), 607620.Google Scholar
Lindal, G. F. 1992. The atmosphere of Neptune: An analysis of radio occultation data acquired with Voyager 2. AJ, 103(Mar.), 967–982.Google Scholar
Lindsey, C., and Braun, D. C. 1990. Helioseismic imaging of sunspots at their antipodes.Sol. Phys., 126(Mar.), 101–115.Google Scholar
Lindsey, C., and Braun, D. C. 2000a. Basic principles of solar acoustic holography (Invited Review). Sol. Phys., 192(Mar.), 261–284.Google Scholar
Lindsey, C., and Braun, D. C. 2000b. Seismic images of the far side of the Sun.Science, 287(Mar.), 1799–1801.Google Scholar
Lindsey, C., and Braun, D. C. 2005a. The acoustic showerglass: I. Seismic diagnostics of photospheric magnetic fields. ApJ, 620(Feb.), 1107–1117.Google Scholar
Lindsey, C., and Braun, D. C. 2005b. The acoustic showerglass: II. Imaging active region subphotospheres. ApJ, 620(Feb.), 1118–1131.Google Scholar
Lindsey, C., Braun, D. C., Gonzalez Hernandez, I., and Donea, A. 2011. Computational seismic holography of acoustic waves in the solar interior. Pages 81–106 of Ramirez, F. A. M. (ed), Holography: Different Fields of Application. Intech.
Lingenfelter, R. E., and Schubert, G. 1973. Evidence for convection in planetary interiors from first-order topography.The Moon, 7, 172–180.Google Scholar
Linkin, V., Harri, A. M., Lipatov, A., et al. 1998. A sophisticated lander for scientific exploration of Mars: Scientific objectives and implementation of the Mars96 Small Station.Planet. Space Sci., 46, 717–737.Google Scholar
Lions, J. L. 1971. Optimal Control of Systems Governed by Partial Differential Equations.Berlin: Springer-Verlag.
Lisle, J. P., Rast, M. P., and Toomre, J. 2004. Persistent north-south alignment of the solar supergranulation.ApJ, 608(June), 1167–1174.Google Scholar
Liu, Q. Z., van Paradijs, J., and van den Heuvel, E. P. J. 2006. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition). A&A, 455(Sept.), 1165–1168.Google Scholar
Liu, Q. Z., van Paradijs, J., and van den Heuvel, E. P. J. 2007. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition). A&A, 469(July), 807–810.Google Scholar
Livshits, M. A., Badalian, O. G., Kosovichev, A. G., and Katsova, M. M. 1981. The optical continuum of solar and stellar flares.Sol. Phys., 73(Oct.), 269–288.Google Scholar
Lognonné, P. 2005. Planetary seismology.Annu. Rev. Earth Planet. Sci., 33, 571–604.Google Scholar
Lognonné, P., and Johnson, C. L. 2007. Planetary seismology. Pages 69–122 of Shubert, G.(ed), Treatise on Geophysics, 10, Planets and Moons. Elsevier.
Lognonné, P., and Mosser, B. 1993. Planetary seismology.Surv. Geophysics, 14, 239–302.Google Scholar
Lognonne, P., Mosser, B., and Dahlen, F. A. 1994. Excitation of Jovian seismic waves by the Shoemaker-Levy 9 cometary impact.Icarus, 110(Aug.), 180–195.Google Scholar
Lognonne, P., Beyneix, J. G., Banerdt, W. B., et al. 1996. Ultra broad band seismology on InterMarsNet.Planet. Space Sci., 44(Nov.), 1237–1249.Google Scholar
Lognonné, P., Zharkov, V. N., Karczewski, J. K., et al. 1998. The Seismic Optimism Experiment.Planet. Space Sci., 46, 739–747.Google Scholar
Lognonné, P., Gagnepain-Beyneix, J., and Chenet, H. 2003. A new seismic model of the Moon: Implications for structure, thermal evolution and formation of the Moon.Earth Planet. Sci. Lett., 211, 27–44.Google Scholar
Lognonné, P., LeFeuvre, M., Johnson, C. L., and Weber, R. C. 2009. Moon meteoritic seismic hum: Steady state prediction.J. Geophys. Res., 114, E12003.Google Scholar
Lognonné, P., Spiga, A., Hurst, K., et al. 2012. Martian atmospheric induced micro-seismic noise generation: Large eddy simulations.43rd Lunar and Planetary Science Conference, March 19-23, 2012 at The Woodlands, Texas, LPI Contribution No. 1659.Google Scholar
Longuet-Higgins, M. S. 1950. A theory of the origin of microseisms.Phil. Trans. R. Soc. London Ser. A, 243(Sept.), 1–35.Google Scholar
Lorenz, R. D., and Nakamura, Y. 2013. Viking seismometer record: Data restoration and dust devil search.44th Lunar and Planetary Science Conference, abstract 1178.Google Scholar
Loudin, M. G. 1979. Structural-compositional models of the lunar interior and interpretation of observed estimates of the Moon's fundamental spheroidal free oscillations. M.S. thesis, Pennsylvania State University.
Lynden-Bell, D., and Ostriker, J. P. 1967. On the stability of differentially rotating bodies.MNRAS, 136, 293.Google Scholar
MacDonald, G. J. F. 1960. Stress history of the Moon.Planet. Space Sci., 2, 249–255.Google Scholar
MacGregor, K. B., and Brenner, M. 1991. Rotational evolution of solar-type stars: I. Mainsequence evolution.ApJ, 376(July), 204–213.Google Scholar
MacGregor, K. B., Jackson, S., Skumanich, A., and Metcalfe, T. S. 2007. On the structure and properties of differentially rotating, main-sequence stars in the 1-2 M solar range.ApJ, 663(July), 560–572.Google Scholar
Maeder, A. 2009. Physics, Formation and Evolution of Rotating Stars. Berlin, Heidelberg: Springer.
Maeder, A., and Zahn,, J.-P. 1998. Stellar evolution with rotation: III. Meridional circulation with μ-gradients and non-stationarity. A&A, 334(June), 1000–1006.Google Scholar
Magic, Z., Serenelli, A., Weiss, A., and Chaboyer, B. 2010. On using the color-magnitude diagram morphology of M67 to test solar abundances. ApJ, 718(Aug.), 1378–1387.Google Scholar
Maillard, J. P., and Michel, G. 1982. A high resolution Fourier transform spectrometer for the Cassegrain focus at the CFH telescope. Pages 213-222 of ASSL Vol. 92: IAU Colloquium 67: Instrumentation for Astronomy with Large Optical Telescopes.
Marchis, F., Hestroffer, D., and Descamps, P., et al. 2006. A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus.Nature, 439, 565–567.Google Scholar
Marfurt, K. J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave-equations.Geophysics, 49, 533–549.Google Scholar
Markey, P., and Tayler, R. J. 1973. The adiabatic stability of stars containing magnetic fields: II. Poloidal fields.MNRAS, 163, 77.Google Scholar
Marley, M. S., and Porco, C. C. 1993. Planetary acoustic mode seismology: Saturn's rings.Icarus, 106(Dec.), 508.Google Scholar
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013. Seismic diagnostics for transport of angular momentum in stars: I. Rotational splittings from the pre-main sequence to the red-giant branch.A&A, 549(Jan.), A74.Google Scholar
Marsden, S. C., Petit, P., Jeffers, S. V., et al. 2013. A Bcool magnetic snapshot survey of solar-type stars. ArXiv:1311.3374.Google Scholar
Martic, M., Lebrun, J.-C., Appourchaux, T., and Korzennik, S. G. 2004. P-mode frequencies in solar-like stars: I. Procyon A.A&A, 418(Apr.), 295–303.Google Scholar
Mathis, S. 2009. Transport by gravito-inertial waves in differentially rotating stellar radiation zones: I. Theoretical formulation.A&A, 506(Nov.), 811–828.Google Scholar
Mathis, S., and de Brye, N. 2011. Low-frequency internal waves in magnetized rotating stellar radiation zones: I. Wave structure modification by a toroidal field. A&A, 526(Feb.), A65.Google Scholar
Mathis, S., and de Brye, N. 2012. Low-frequency internal waves in magnetized rotating stellar radiation zones: II. Angular momentum transport with a toroidal field. A&A, 540(Apr.), A37.Google Scholar
Mathis, S., and Zahn, J.-P. 2004. Transport and mixing in the radiation zones of rotating stars: I. Hydrodynamical processes.A&A, 425(Oct.), 229–242.Google Scholar
Mathis, S., and Zahn, J.-P. 2005. Transport and mixing in the radiation zones of rotating stars: II. Axisymmetric magnetic field. A&A, 440(Sept.), 653–666.Google Scholar
Mathis, S., Talon, S., Pantillon, F.-P., and Zahn, J.-P. 2008. Angular momentum transport in the Sun's radiative zone by gravito-inertial waves.Sol. Phys., 251(Sept.), 101–118.Google Scholar
Mathur, S., Turck-Chieze, S., Couvidat, S., and Garcia, R. A. 2007. On the characteristics of the solar gravity mode frequencies.ApJ, 668(Oct.), 594–602.Google Scholar
Mathur, S., Eff-Darwich, A., Garcia, R. A., and Turck-Chieze, S. 2008. Sensitivity of helioseismic gravity modes to the dynamics of the solar core. A&A, 484(June), 517522.Google Scholar
Mathur, S., Garcia, R. A., Catala, C., et al. 2010. The solar-like CoRoT target HD 170987: Spectroscopic and seismic observations.A&A, 518(July), A53.Google Scholar
Mathur, S., Hekker, S., Trampedach, R., et al. 2011a. Granulation in red giants: Obser-vations by the Kepler mission and three-dimensional convection simulations.ApJ, 741(Nov.), 119.Google Scholar
Mathur, S., Handberg, R., Campante, T. L., et al. 2011b. Solar-like oscillations in KIC 11395018 and KIC 11234888 from 8 months of Kepler data. ApJ, 733(June), 95.Google Scholar
Mathur, S., Metcalfe, T. S., Woitaszek, M., et al. 2012. A uniform asteroseismic analysis of 22 solar-type stars observed by Kepler.ApJ, 749(Apr.), 152.Google Scholar
Mathur, S., Bruntt, H., Catala, C., et al. 2013. Study of HD 169392A observed by CoRoT and HARPS.A&A, 549(Jan.), A12.Google Scholar
Mathur, S., García, R. A., Ballot, J., et al. 2014. Magnetic activity of F stars observed by Kepler. A&A, 562(Feb.), A124.Google Scholar
Matt, S. P., MacGregor, K. B., Pinsonneault, M. H., and Greene, T. P. 2012. Magnetic braking formulation for Sun-like stars: Dependence on dipole field strength and rotation rate.ApJ, 754(Aug.), L26.Google Scholar
Matthews, J. M., Kuschnig, R., Walker, G. A. H., et al. 2000. Ultraprecise photometry from space: The MOST Microsat mission. Pages 74–75 of Szabados, L. and Kurtz, D. (eds), IAU Colloquium 176: The Impact of Large-Scale Surveys on Pulsating Star Research. Astronomical Society of the Pacific Conference Series, vol. 203.Google Scholar
Matthews, J. M., Kusching, R., Guenther, D. B., et al. 2004. No stellar p-mode oscillations in space-based photometry of Procyon.Nature, 430(July), 51–53.Google Scholar
Mazumdar, A. 2005. Asteroseismic diagrams for solar-type stars. A&A, 441(Oct.), 1079–1086.Google Scholar
Mazumdar, A., Michel, E., Antia, H. M., and Deheuvels, S. 2012. Seismic detection of acoustic sharp features in the CoRoT target HD 49933. A&A, 540(Apr.), A31.Google Scholar
Mazumdar, A., Monteiro, M. J.P. F. G., Ballot, J., et al. 2014. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler.ApJ, 782(Feb.), 18.Google Scholar
McClintock, J. E., and Remillard, R. A. 2006. Black hole binaries. Pages 157–213 of Lewin, W. and van der Klis, M. (eds), Compact Stellar X-ray Sources. Cambridge: Cambridge University Press.
McGarr, A. G., Latham, V., and Gault, D. E. 1969. Meteoroid impacts as sources of seismicity on the Moon.J. Geophys. Res., 74, 5981–5994.Google Scholar
McGlaun, J. M., Thompson, S. L., and Elrick, M. G. 1990. CTH: A three-dimensional shock wave physics code.Int. J. Impact Engng., 10, 351–360.Google Scholar
McQuillan, A., Mazeh, T., and Aigrain, S. 2013. Stellar rotation periods of the Kepler objects of interest: A dearth of close-in planets around fast rotators.ApJ, 775(Sept.), L11.Google Scholar
Mercerat, E. D., and Nolet, G. 2013. On the linearity of cross-correlation delay times in finite-frequency tomography.Geophys. J. Int., 192(Feb.), 681–687.Google Scholar
Mestel, L. 1965. “Fossil” magnetic fields. Page 420 of Lust, R. (ed), Stellar and Solar Magnetic Fields. IAU Symposium 22.Google Scholar
Mestel, L., Tayler, R. J., and Moss, D. L. 1988. The mutual interaction of magnetism, rotation and meridian circulation in stellar radiative zones.MNRAS, 231(Apr.), 873885.Google Scholar
Mészáros, P. 2006. Gamma-ray bursts.Rep. Prog. Phys., 69(Aug.), 2259–2321.Google Scholar
Mészáros, S., Holtzman, J., Garcia Perez, A. E., et al. 2013. Calibrations of atmospheric parameters obtained from the first year of SDSS-III APOGEE observations. AJ, 146(Nov.), 133.Google Scholar
Metcalfe, T. S., Dziembowski, W. A., Judge, P. G., and Snow, M. 2007. Asteroseismic signatures of stellar magnetic activity cycles.MNRAS, 379(July), L16–L20.Google Scholar
Metcalfe, T. S., Creevey, O. L., and Christensen- Dalsgaard, J. 2009. A stellar model-fitting pipeline for asteroseismic data from the Kepler mission.ApJ, 699(July), 373–382.Google Scholar
Metcalfe, T. S., Monteiro, M. J.P. F. G., Thompson, M. J., et al. 2010a. A precise astero-seismic age and radius for the evolved Sun-like star KIC 11026764. ApJ, 723(Nov.), 1583–1598.Google Scholar
Metcalfe, T. S., Basu, S., Henry, T. J., etal. 2010b. Discovery of a 1.6 year magnetic activity cycle in the exoplanet host star i Horologii. ApJ, 723(Nov.), L213–L217.Google Scholar
Metcalfe, T. S., Chaplin, W. J., Appourchaux, T., et al. 2012. Asteroseismology of the solar analogs 16 Cyg A and B from Kepler observations. ApJ, 748(Mar.), L10.Google Scholar
Metcalfe, T. S., Buccino, A. P., Brown, B. P., et al. 2013. Magnetic activity cycles in the exoplanet host star epsilon Eridani.ApJ, 763(Feb.), L26.Google Scholar
Michel, E., Baglin, A., Auvergne, M., et al. 2008. CoRoT measures solar-like oscillations and granulation in stars hotter than the Sun.Science, 322, 558–560.Google Scholar
Miesch, M. S. 2005. Large-scale dynamics of the convection zone and tachocline.Living Rev. Sol. Phys., 2(Apr.), 1.Google Scholar
Miesch, M. S., Elliott, J. R., Toomre, J., etal. 2000. Three-dimensional spherical simulations of solar convection: I. Differential rotation and pattern evolution achieved with laminar and turbulent states.ApJ, 532(Mar.), 593–615.Google Scholar
Miesch, M. S., Brun, A. S., De Rosa, M. L., and Toomre, J. 2008. Structure and evolution of giant cells in global models of solar convection.ApJ, 673(Jan.), 557–575.Google Scholar
Miglio, A., Montalbán, J., Baudin, F., et al. 2009. Probing populations of red giants in the galactic disk with CoRoT. A&A, 503(Sept.), L21–L24.Google Scholar
Miglio, A., Montalban, J., Carrier, F., et al. 2010. Evidence for a sharp structure variation inside a red-giant star.A&A, 520(Sept.), L6.Google Scholar
Miglio, A., Brogaard, K., Stello, D., et al. 2012a. Asteroseismology of old open clusters with Kepler: Direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819. MNRAS, 419(Jan.), 2077–2088.Google Scholar
Miglio, A., Morel, T., Barbieri, M., et al. 2012b. Solar-like pulsating stars as distance indicators: G-K giants in the CoRoT and Kepler fields. In Reylé, C., Robin, A., and Schultheis, M. (eds), Assembling the Puzzle of the Milky Way, Le Grand-Bornand, France, EPJ Web of Conferences, vol. 19(Feb.), 5012.
Miglio, A., Chiappini, C., Morel, T., et al. 2013a (Mar.). Differential population studies us-ing asteroseismology: Solar-like oscillating giants in CoRoT fields LRc01 andLRa01. Page 3004 of 40th Liege International Astrophysical Colloquium Ageing Low Mass Stars. EPJ Web of Conferences, vol. 43.
Miglio, A., Chiappini, C., Morel, T., etal. 2013b. Galactic archaeology: Mapping and dating stellar populations with asteroseismology of red-giant stars.MNRAS, 429(Feb.), 423428.Google Scholar
Miglio, A., Chaplin, W. J., Farmer, R., et al. 2014. Prospects for detecting asteroseismic binaries in Kepler data.ApJ, 784(Mar.), L3.Google Scholar
Militzer, B., Hubbard, W. B., Vorberger, J., Tamblyn, I., and Bonev, S. A. 2008. A massive core in Jupiter predicted from first-principles simulations. ApJ, 688(Nov.), L45-L48.Google Scholar
Miller, M. C., Lamb, F. K., and Psaltis, D. 1998. Sonic-point model of kilohertz quasi-periodic brightness oscillations in low-mass X-ray binaries. ApJ, 508(Dec.), 791–830.Google Scholar
Mimoun, D., Wieczorek, M., Alkalai, L., etal. 2012. Farside explorer: Unique science from a mission to the farside of the Moon.Exp. Astron., 33 529–585.Google Scholar
Minshull, T. A., and Goulty, N. R. 1988. The influence of tidal stresses on deep moonquake activity.Phys. Earth Planet. Int., 52(Oct.), 41–55.Google Scholar
Mitra-Kraev, U., and Thompson, M. J. 2007. Meridional flow profile measurements with SOHO/MDI.Astron. Nachr., 328(Dec.), 1009–1012.Google Scholar
Moczo, P., Kristek, J., Vavryčuk, V., Archuleta, R. J., and Halada, L. 2002. 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities.Bull. Seismol. Soc. Am., 92, 3042–3066.Google Scholar
Moin, P., Squires, K., Cabot, W., and Lee, S. 1991. A dynamic subgrid-scale model for compressible turbulence and scalar transport.Phys. Fluids, 3(Nov.), 2746–2757.Google Scholar
Molenda-Zakowicz, J., Bruntt, H., Sousa, S., et al. 2010. Asteroseismology of solar-type stars with Kepler: III. Ground-based data.Astron. Nachr., 331(Dec.), 981.Google Scholar
Montálban, J., Miglio, A., Noels, A., et al. 2013. Testing convective-core overshooting using period spacings of dipole modes in red giants.ApJ, 766(Apr.), 118.Google Scholar
Monteiro, M. J. P. F. G. 2009. Evolution and Seismic Tools for Stellar Astrophysics. Springer.
Monteiro, M.J.P.F.G., and Thompson, M. J. 1998. Looking for variations with latitude of the base of the solar convection zone. Page 819 of Korzennik, S. (ed), Structure and Dynamics ofthe Interior ofthe Sun and Sun-like Stars. ESA Special Publication, vol. 418.Google Scholar
Monteiro, M. J.P. F. G., Christensen-Dalsgaard, J., and Thompson, M. J. 1994. Seismic study of overshoot at the base of the solar convective envelope.A&A, 283(Mar.), 247–262.Google Scholar
Montelli, R., Nolet, G., Dahlen, F. A., and Masters, G. 2006. A catalogue of deep mantle plumes: New results from finite-frequency tomography.Geochem., Geophys., Geosyst., 7(Nov.), 11007.Google Scholar
Moradi, H., Baldner, C., Birch, A. C., et al. 2010. Modeling the subsurface structure of sunspots.Sol. Phys., 267(Nov.), 1–62.Google Scholar
Morgan, J. V., Warner, M. R., Collins, G. S., et al. 2011. Full waveform tomographic images of the peak ring at the Chicxulub impact crater, J. Geophys. Res., 116, B06303.Google Scholar
Moss, D. 1992. Magnetic fields and differential rotation in stars.MNRAS, 257(Aug.), 593–601.Google Scholar
Mosser, B. 1990. The pressure mode oscillation spectrum of a rotating gaseous sphere: Application to Jupiter.Icarus, 87(Sept.), 198–209.Google Scholar
Mosser, B. 1995. Propagation and trapping of global oscillations in the Jovian troposphere and stratosphere.A&A, 293(Jan.), 586–593.Google Scholar
Mosser, B., Mekarnia, D., Maillard, J. P., et al. 1993. Seismological observations with a Fourier transform spectrometer: Detection of Jovian oscillations.A&A, 267(Jan.), 604–622.Google Scholar
Mosser, B., Galdemard, P., Lagage, P., etal. 1996. Impact seismology: A search for primary pressure waves following impacts A and H.Icarus, 121(June), 331–340.Google Scholar
Mosser, B., Maillard, J. P., Mekarnia, D., and Gay, J. 1998. New limit on the p-mode oscillations of Procyon obtained by Fourier transform seismometry.A&A, 340(Dec.), 457–462.Google Scholar
Mosser, B., Maillard, J. P., and Mekarnia, D. 2000. New attempt at detecting the jovian oscillations.Icarus, 144(Mar.), 104–113.Google Scholar
Mosser, B., Baudin, F., Lanza, A. F., et al. 2009. Short-lived spots in solar-like stars as observed by CoRoT.A&A, 506(Oct.), 245–254.Google Scholar
Mosser, B., Belkacem, K., Goupil, M.-J., et al. 2010. Red-giant seismic properties analyzed with CoRoT.A&A, 517(July), A22.Google Scholar
Mosser, B., Barban, C., Montalbán, J., et al. 2011. Mixed modes in red-giant stars observed with CoRoT.A&A, 532(Aug.), A86.Google Scholar
Mosser, B., Elsworth, Y., Hekker, S., et al. 2012a. Characterization of the power excess of solar-like oscillations in red giants with Kepler.A&A, 537(Jan.), A30.Google Scholar
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012b. Spin down of the core rotation in red giants.A&A, 548(Dec.), A10.Google Scholar
Mosser, B., Dziembowski, W. A., Belkacem, K., et al. 2013. Period-luminosity relations in evolved red giants explained by solar-like oscillations. A&A, 559(Nov.), A137.Google Scholar
Motta, S. E., Belloni, T. M., Stella, L., Munoz-Darias, T., and Fender, R. 2014. Precise mass and spin measurements for a stellar-mass black hole through X-ray timing: The case of GRO J 1655–40. MNRAS, 437(Jan.), 2554–2565.Google Scholar
Muller, P. M., and Sjogren, W. L. 1968. Mascons: Lunar mass concentrations.Science, 161, 680–684.Google Scholar
Nagashima, K. 2010 (May). Local helioseismology with solar optical telescope onboard Hinode. Page 319.04 of American Astronomical Society Meeting Abstracts 216. Bulletin ofthe American Astronomical Society, vol. 41.Google Scholar
Nagashima, K., Zhao, J., Kosovichev, A. G., and Sekii, T. 2011. Detection of supergran-ulation alignment in polar regions of the Sun by helioseismology.ApJ, 726(Jan.), L17.Google Scholar
Nakamura, T., Noguchi, T., and Tanaka, M., et al. 2011. Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites.Science, 333(6046), 1113–1116.Google Scholar
Nakamura, Y. 1976. Seismic energy transmission in the lunar surface zone determined from signals generated by movement of lunar rovers.Bull. Seismol. Soc. Am., 66, 593–606.Google Scholar
Nakamura, Y. 1977. Seismic energy transmission in an intensively scattering environment.J. Geophys., 43, 389–399.Google Scholar
Nakamura, Y. 1978. A1 moonquakes: Source distribution and mechanism.Proceedings of the 9th Lunar and Planetary Science Conference, 3589–3607.Google Scholar
Nakamura, Y. 1983. Seismic velocity structure of the lunar mantle.J. Geophys. Res., 88(Jan.), 677–686.Google Scholar
Nakamura, Y. 2003. New identification of deep moonquakes in the Apollo lunar seismic data.Phys. Earth Planet. Int., 139 197–205.Google Scholar
Nakamura, Y. 2005. Farside deep moonquakes and deep interior of the Moon.J. Geophys. Res., 110(Jan.), E01001.Google Scholar
Nakamura, Y. 2010. Lunar seismology: Current status and future challenges.DGGMitteilungen, 3/2010, 4–13.Google Scholar
Nakamura, Y. 2011. Timing problem with the Lunar Module impact data as recorded by the LSPE and corrected near-surface structure at the Apollo 17 landing site.J. Geophys. Res., 116, E12005, doi:10.1029/2011JE003972.Google Scholar
Nakamura, Y., and Anderson, D. L. 1979. Martian wind activity detected by a seismometer at Viking Lander 2 site.Geophys. Res. Lett., 6, 499–502.Google Scholar
Nakamura, Y., Lammlein, D., Latham, G., et al. 1973. New seismic data on the state of the deep lunar interior.Science, 181, 49–51.Google Scholar
Nakamura, Y., Latham, G., Lammlein, D., et al. 1974a. Deep lunar interior inferred from recent seismic data.Geophys. Res. Lett., 1, 137–140.Google Scholar
Nakamura, Y., Dorman, J., Duennebier, F., et al. 1974b. High-frequency lunar teleseismic events, Proceedings of the 5th Lunar Science Conference (Suppl. 5, Geochim Cosmochim Acta), 3, 2883–2890.Google Scholar
Nakamura, Y., Latham, G. V., Dorman, H. J., and Duennebier, F. K. 1976. Seismic structure of the moon: A summary of current status.Proceedings ofthe 7th Lunar Science Conference, 3113–3121.Google Scholar
Nakamura, Y., Latham, G. V., Dorman, H. J., et al. 1979. Shallow moonquakes: Depth, distribution and implications as to the present state of the lunar interior.Proceedings of the 10th Lunar and Planetary Science Conference, 2299–2309.Google Scholar
Nakamura, Y., Latham, G. V., and Dorman, H. J. 1980. How we processed Apollo lunar seismic data.Phys. Earth Planet. Int., 21, 218–224.Google Scholar
Nakamura, Y., Latham, G. V., Dorman, H. J., and Harris, J. E. 1981. Passive Seismic Experiment Long-Period Event Catalog, Final version, 1969 day 202 - 1977 day 273. Galveston Geophysics Laboratory, Galveston, UTIG Technical Report No. 18, available online: ftp://utig.ig.utexas.edu/pub/PSE/catsrepts/levent.1008.
Nakamura, Y., Latham, G. V., and Dorman, H. J. 1982. Apollo Lunar Seismic Experiment: Final summary. Proceedings 13th Lunar and Planetary Science Conference, pt. 1. J. Geophys. Res., 87 suppl., A117-A123.Google Scholar
Nather, R. E., Winget, D. E., Clemens, J. C., Hansen, C. J., and Hine, B. P. 1990. The Whole Earth Telescope: A new astronomical instrument.ApJ, 361(Sept.), 309317.Google Scholar
Nawa, K., Suda, N., Fukao, Y., et al. 1998. Incessant excitation of the Earth's free oscilla-tions.Earth, Planets, and Space, 50(Jan.), 3–8.Google Scholar
Neal, C. R., Banerdt, W. B., Alkalai, L., etal. 2011. Lunette: A two-lander discovery-class geophysics mission to the Moon.42nd Lunar and Planetary Science Conference, March 7-11, 2011 at The Woodlands, Texas, LPI Contribution No. 1608.Google Scholar
Neiner, C., Floquet, M., Samadi, R., et al. 2012. Stochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452. A&A, 546(Oct.), A47.Google Scholar
Nettelmann, N., Helled, R., Fortney, J. J., and Redmer, R. 2013a. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data.Planet. Space Sci., 77(Mar.), 143–151.Google Scholar
Nettelmann, N., Pustow, R., and Redmer, R. 2013b. Saturn layered structure and homogeneous evolution models with different EOSs.Icarus, 225(July), 548–557.Google Scholar
Nielsen, M. B., Gizon, L., Schunker, H., and Karoff, C. 2013. Rotation periods of 12 000 main-sequence Kepler stars: Dependence on stellar spectral type and comparison with v sin i observations. A&A, 557(Sept.), L10.Google Scholar
Nigam, R., and Kosovichev, A. G. 1998. Measuring the Sun's eigenfrequencies from velocity and intensity helioseismic spectra: Asymmetrical line profile-fitting formula. ApJ, 505(Sept.), L51.Google Scholar
Nigam, R., Kosovichev, A. G., Scherrer, P. H., and Schou, J. 1998. Asymmetry in velocity and intensity helioseismic spectra: A solution to a long-standing puzzle. ApJ, 495(Mar.), L115.Google Scholar
Nobili, L., Turolla, R., Zampieri, L., and Belloni, T. 2000. A Comptonization model for phase-lag variability in GRS 1915+105. ApJ, 538(Aug.), L137–L140.Google Scholar
Nolet, G. 2008. A Breviary of Seismic Tomography. Cambridge: Cambridge University Press.
Nordlund, Å. 1985. Solar convection. Sol. Phys., 100(Oct.), 209–235.Google Scholar
Nordlund, Å., and Stein, R. F. 2001. Solar oscillations and convection. I. Formalism for radial oscillations. ApJ, 546(Jan.), 576–584.Google Scholar
Nordlund, Å., Stein, R. F., and Asplund, M. 2009. Solar surface convection. Living Rev. Sol. Phys., 6(Apr.), 2.Google Scholar
Nowak, M. A., and Wagoner, R. V. 1991. Diskoseismology: Probing accretion disks. I. Trapped adiabatic oscillations. ApJ, 378(Sept.), 656–664.Google Scholar
Nowak, M. A., and Wagoner, R. V. 1992. Diskoseismology: Probing accretion disks. II. G-modes, gravitational radiation reaction, and viscosity. ApJ, 393(July), 697–707.Google Scholar
Oberst, J. 1987. Unusually high stress drops associated with shallow moonquakes. J. Geophys. Res., 92, 1397–1405.Google Scholar
Oberst, J. 1989. Meteoroids near the Earth-Moon system as inferred from temporal and spatial distribution of impacts detected by the Lunar Seismic Network. Ph.D. thesis, University of Texas, Austin, TX.
Oberst, J., and Nakamura, Y. 1987. Distinct meteoroid families identified on the lunar seismograms. J. Geophys. Res., 92, 769–773.Google Scholar
Oberst, J., and Nakamura, Y. 1991. A search for clustering among the meteoroid impacts detected by the Apollo lunar seismic network. Icarus, 91, 315–325.Google Scholar
Olbers, W. 1850. Materialien zu einer Lebensbeschreibung der beiden Astronomen David und Johannes Fabricius, von W., Olbers. Astron. Nachr., 31(Sept.), 129.Google Scholar
Olver, F. W., Lozier, D. W., Boisvert, R. F., and Clark, C. W. 2010. NIST Handbook of Mathematical Functions. Cambridge: Cambridge University Press.
Ortiz, J. L., Aceituno, F. J., Quesada, J. A., et al. 2006. Detection of sporadic impact flashes on the Moon: Implications for the luminous efficiency of hypervelocity impacts and derived terrestrial impact rates. Icarus, 184, 319–326.Google Scholar
Ortiz, A., Bellot Rubio, L. R., and Rouppe van der Voort, L. 2010. Downflows in sunspot umbral dots. ApJ, 713(Apr.), 1282–1291.Google Scholar
Osaki, J. 1975. Nonradial oscillations of a 10 solar mass star in the main-sequence stage. PASJ, 27, 237–258.Google Scholar
Ostro, S. J., Benner, L. A. M., and Nolan, M. C., et al. 2004. Radar observations of asteroid 25143 Itokawa (1998 SF36). Meteor. Planet Sci., 39, 407–424.Google Scholar
Otí Floranes, H., Christensen-Dalsgaard, J., and Thompson, M. J. 2005. The use of frequency-separation ratios for asteroseismology. MNRAS, 356(Jan.), 671–679.Google Scholar
Ouazzani, R. 2011. La rotation et son interaction avec les oscillations dans les etoiles. Ph.D. thesis, Université Pierre et Marie Curie (Paris 6), France.
Paik, H. J., and Venkateswara, K. Y. 2009. Gravitational wave detection on the Moon and the moons of Mars. Adv. Space Res., 43, 167–170.Google Scholar
Pallavicini, R., Serio, S., and Vaiana, G. S. 1977. A survey of soft X-ray limb flare images: The relation between their structure in the corona and other physical parameters. ApJ, 216(Aug.), 108–122.Google Scholar
Pamyatnykh, A. A., Handler, G., and Dziembowski, W. A. 2004. Asteroseismology of the β Cephei star ν Eridani: Interpretation and applications of the oscillation spectrum. MNRAS, 350(May), 1022–1028.Google Scholar
Panning, M., Lekic, V., Manga, M., Cammarano, F., and Romanowicz, B. 2006. Long-period seismology on Europa: 2. Predicted seismic response. J. Geophys. Res. (Planets), 111(10), 12008.Google Scholar
Panning, M. P., Beucler, E., Drilleau, M., Mocquet, A., Lognonné, P., and Banerdt, W. B. 2015. Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars. Icarus, 248, 230–242.Google Scholar
Pápics, P. I., Briquet, M., Baglin, A., et al. 2012. Gravito-inertial and pressure modes detected in the B3 IV CoRoT target HD 43317. A&A, 542(June), A55.Google Scholar
Parchevsky, K. V., and Kosovichev, A. G. 2007. Three-dimensional numerical simulations of the acoustic wave field in the upper convection zone of the Sun. ApJ, 666(Sept.), 547–558.Google Scholar
Parchevsky, K. V., and Kosovichev, A. G. 2009a. Excitation, propagation and conversion of helioseismic MHD waves in strong field regions. Page 61 of Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., and Hill, F. (eds), Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21. Astronomical Society of the Pacific Conference Series, vol. 416.Google Scholar
Parchevsky, K. V., and Kosovichev, A. G. 2009b. Numerical simulation of excitation and propagation of helioseismic MHD waves: Effects of inclined magnetic field. ApJ, 694(Mar.), 573–581.Google Scholar
Parchevsky, K., Kosovichev, A., Khomenko, E., Olshevsky, V., and Collados, M. 2010. Numerical simulation of excitation and propagation of helioseismic MHD waves in magnetostatic models of sunspots. ArXiv:1002.1117.
Parker, E. N. 1979. Sunspots and the physics of magnetic flux tubes: I. The general nature of the sunspot; II. Aerodynamic drag. ApJ, 230(June), 905–923.Google Scholar
Parker, E. N. 1993. A solar dynamo surface wave at the interface between convection and nonuniform rotation. ApJ, 408(May), 707–719.Google Scholar
Pasek, M., Georgeot, B., Lignières, F., and Reese, D. R. 2011. Regular modes in rotating stars. Phys. Rev. Lett., 107(12), 121101.Google Scholar
Pasek, M., Lignières, F., Georgeot, B., and Reese, D. R. 2012. Regular oscillation subspectrum of rapidly rotating stars. A&A, 546(Oct.), A11.Google Scholar
Patrón, J., Gonzalez Hernandez, I., Chou, D.-Y., et al. 1997. Comparison of two fitting methods for ring diagram analysis of very high ℓ solar oscillations. ApJ, 485(Aug.), 869–874.Google Scholar
Pätzold, M., Andert, T. P., Asmar, S. W., et al. 2011. Asteroid 21 Lutetia: Low mass, high density. Science, 334(Oct.), 491–492.Google Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011. Modules for Experiments in Stellar Astro-physics (MESA). ApJS, 192(Jan.), 3.Google Scholar
Paxton, B., Cantiello, M., Arras, P., et al. 2013. Modules for Experiments in Stellar Astro-physics (MESA): Planets, oscillations, rotation, and massive stars. ApJS, 208(Sept.), 4.Google Scholar
Pepe, F., Mayor, M., Delabre, B., et al. 2000 (Aug.). HARPS: A new high-resolution spectrograph for the search of extrasolar planets. Pages 582-592 of Iye, M., and Moorwood, A. F. (eds), Optical and IR Telescope Instrumentation and Detectors. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4008.Google Scholar
Perdang, J. 1988. Stellar acoustic ray patterns. Page 125 of Christensen-Dalsgaard, J., and Frandsen, S. (eds), Advances in Helio- and Asteroseismology. IAU Symposium 123.Google Scholar
Pérez Hernández, F., and Christensen-Dalsgaard, J. 1994. The phase function for stellar acoustic oscillations: III. The solar case. MNRAS, 269(July), 475.Google Scholar
Pérez Hernández, F., and Christensen-Dalsgaard, J. 1998. The phase function for stellar acoustic oscillations: IV. Solar-like stars. MNRAS, 295(Apr.), 344–352.Google Scholar
Pesnell, W. D. 2008. Predictions of solar cycle 24. Sol. Phys., 252(Oct.), 209–220.Google Scholar
Pesnell, W. D., Thompson, B. J., and Chamberlin, P. C. 2012. The Solar Dynamics Observatory (SDO).Sol. Phys., 275(Jan.), 3–15.Google Scholar
Peterson, J. 1993. Observations and Modeling of Seismic Background Noise. US Geological Survey Open-file Report, 93–322.
Petersson, N. A., and Sjogreen, B. 2010. Reference guide to WPP version 2.0. Lawrence Livermore National Laboratory Technical Report LLNL-TR-422928.
Petrovic, J. J. 2001. Review: Mechanical properties of meteorites and their constituents. J. Mater. Sci., 36, 1579–1583.Google Scholar
Phillips, R. J. 1991. Expected rates of marsquakes. Pages 35–38 of Scientific Rationale and Requirements for a Global Seismic Network on Mars. Lunar and Planetary Institute Technical Report.
Pijpers, F. P., and Thompson, M. J. 1992. Faster formulations of the optimally localized averages method for helioseismic inversions. A&A, 262(Sept.), L33–L36.Google Scholar
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., and Demarque, P. 1989. Evolutionary models of the rotating sun.ApJ, 338(Mar.), 424–452.Google Scholar
Pipin, V. V., and Kosovichev, A. G. 2013. The mean-field solar dynamo with a double cell meridional circulation pattern.ApJ, 776(Oct.), 36.Google Scholar
Podolak, M., Podolak, J. I., and Marley, M. S. 2000. Further investigations of random models of Uranus and Neptune.Planet. Space Sci., 48(Feb.), 143–151.Google Scholar
Pottasch, E. M., Butcher, H. R., and van Hoesel, F. H. J. 1992. Solar-like oscillations on Alpha Centauri A.A&A, 264(Oct.), 138–146.Google Scholar
Pötzi, W., and Brandt, P. N. 2005. Is solar plasma sinking down in vortices.Hvar Observatory Bulletin, 29, 61–70.Google Scholar
Pratt, R., Song, Z.-M., Williamson, P., and Warner, M. 1996. Two-dimensional velocity models from wide-angle seismic data by wavefield inversion.Geophys. J. Int., 124, 323–340.Google Scholar
Press, F., and Ewing, M. 1951. Propagation of elastic waves in a floating ice sheet.Trans. Am. Geophys. Union, 32, 673–678.Google Scholar
Press, F., Buwalda, P., and Neugebauer, M. 1960. A lunar seismic experiment.J. Geophys. Res., 65, 3097–3105.Google Scholar
Press, W. H., and Rybicki, G. B. 1989. Fast algorithm for spectral analysis of unevenly sampled data.ApJ, 338(Mar.), 277–280.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in FORTRAN: The Art of Scientific Computing (2nd edn). Cambridge: Cambridge University Press.
Priest, E. R. 2003. Solar magnetohydrodynamics. Pages 217–237 of Dwivedi, B. N. (ed), Dynamic Sun. Cambridge: Cambridge University Press.
Provost, J., Mosser, B., and Berthomieu, G. 1993. A new asymptotic formalism for jovian seismology.A&A, 274(July), 595–611.Google Scholar
Qin, C., Muirhead, A. C., and Zhong, S. 2012. Correlation of deep moonquakes and mare basalts: Implications for lunar mantle structure and evolution.Icarus, 220, 100105.Google Scholar
Queloz, D., Mayor, M., Weber, L., et al. 2000. The CORALIE survey for southern extra-solar planets: I. A planet orbiting the star Gliese 86. A&A, 354(Feb.), 99–102.Google Scholar
Quirion, P.-O., Christensen-Dalsgaard, J., and Arentoft, T. 2010. Automatic determination of stellar parameters via asteroseismology of stochastically oscillating stars: Comparison with direct measurements.ApJ, 725(Dec.), 2176–2189.Google Scholar
Rabello-Soares, M. C., Christensen-Dalsgaard, J., Rosenthal, C. S., and Thompson, M. J. 1999. Effects of line asymmetries on the determination of solar internal structure.A&A, 350(Oct.), 672–679.Google Scholar
Rabello-Soares, M. C., Basu, S., Christensen-Dalsgaard, J., and Di Mauro, M. P. 2000. The potential of solar high-degree modes for structure inversion.Sol. Phys., 193(Apr.), 345–356.Google Scholar
Rahoui, F., Chaty, S., Rodriguez, J., et al. 2010. Long-term multi-wavelength studies of GRS 1915+105. I. A high-energy and mid-infrared focus with RXTE/INTEGRAL and Spitzer. ApJ, 715(June), 1191–1202.Google Scholar
Rajaguru, S. P., Basu, S., and Antia, H. M. 2001. Ring diagram analysis of the characteristics of solar oscillation modes in active regions.ApJ, 563(Dec.), 410–418.Google Scholar
Rajaguru, S. P., Wachter, R., Sankarasubramanian, K., and Couvidat, S. 2010. Local helioseismic and spectroscopic analyses of interactions between acoustic waves and a sunspot.ApJ, 721(Oct.), L86–L91.Google Scholar
Rashba, T. I., Semikoz, V. B., Turck-Chièze, S., and Valle, J. W. F. 2007. Probing the internal solar magnetic field through g modes.MNRAS, 377(May), 453–458.Google Scholar
Rauer, H., Catala, C., Aerts, C., et al. 2013. The PLATO 2.0 Mission. ArXiv:1310.0696.
Reed, W. M. 1893. Stars that have been found variable in the photograph.AJ, 13(May), 62–63.Google Scholar
Reese, D., Ligniéres, F., and Rieutord, M. 2006. Acoustic oscillations of rapidly rotating polytropic stars: II. Effects of the Coriolis and centrifugal accelerations. A&A, 455(Aug.), 621–637.Google Scholar
Reese, D., Lignières, F., and Rieutord, M. 2008. Regular patterns in the acoustic spectrum of rapidly rotating stars.A&A, 481(Apr.), 449–452.Google Scholar
Reese, D. R., MacGregor, K. B., Jackson, S., Skumanich, A., and Metcalfe, T. S. 2009. Pulsation modes in rapidly rotating stellar models based on the self-consistent field method. A&A, 509(Oct.), 183–188.Google Scholar
Reiners, A. 2006. Rotation- and temperature-dependence of stellar latitudinal differential rotation.A&A, 446(Jan.), 267–277.Google Scholar
Reiners, A., and Mohanty, S. 2012. Radius-dependent angular momentum evolution in low-mass stars. I. ApJ, 746(Feb.), 43.Google Scholar
Reinhold, T., Reiners, A., and Basri, G. 2013. Rotation and differential rotation of active Kepler stars.A&A, 560(Dec.), A4.Google Scholar
Remillard, R. A., and McClintock, J. E. 2006. X-ray properties of black-hole binaries.ARA&A, 44(Sept.), 49–92.Google Scholar
Rempel, M. 2007. Origin of solar torsional oscillations.ApJ, 655(Jan.), 651–659.Google Scholar
Rempel, M. 2011. Subsurface magnetic field and flow structure of simulated sunspots.ApJ, 740(Oct.), 15.Google Scholar
Rempel, M., Schüssler, M., and Knölker, M. 2009. Radiative magnetohydrodynamic simulation of sunspot structure.ApJ, 691(Jan.), 640–649.Google Scholar
Retter, A., Bedding, T. R., Buzasi, D. L., Kjeldsen, H., and Kiss, L. L. 2003. Oscillations in Arcturus from WIRE photometry.ApJ, 591(July), L151–L154.Google Scholar
ReVelle, D. 1976. On meteor generated infrasound.J. Geophys. Res., 81, 1217–1229.Google Scholar
Reville, V., Brun, A. S., Matt, S. P., Strugarek, A., and Pinto, P. 2014. The effect of magnetic topology on thermally-driven wind: Towards a general formulation of the braking law.ApJ, in press.
Rhodes, Jr., E. J., Didkovsky, L., Chumak, O. V., and Scherrer, P. H. 1995. Status of the Mt. Wilson–Crimean–Kazakhstan High-Degree Helioseismology Network. Page 398 of Ulrich, R. K., Rhodes, Jr., E. J., and Dappen, W. (eds), GONG 1994. Helio- and Astro-Seismology from the Earth and Space. Astronomical Society of the Pacific Conference Series, vol. 76.Google Scholar
Richard, O., Vauclair, S., Charbonnel, C., and Dziembowski, W. A. 1996. New solar models including helioseismological constraints and light-element depletion.A&A, 312(Aug.), 1000–1011.Google Scholar
Richardson, J. E., Melosh, H. J., and Greenberg, R. 2004. Impact-induced seismic activity on Asteroid 433 Eros: A surface modification process.Science, 306, 1526–1529.Google Scholar
Ricker, G. R., Latham, D. W., Vanderspek, R. K., et al. 2010 (Jan.). Transiting Exoplanet Survey Satellite (TESS). Page 450.06 of American Astronomical Society Meeting Abstracts 215. Bulletin of the American Astronomical Society, vol. 42.
Rickett, J. E., and Claerbout, J. F. 2000. Calculation of the Sun's acoustic impulse response by multi-dimensional spectral factorization.Sol. Phys., 192(Mar.), 203–210.Google Scholar
Rieutord, M., and Espinosa Lara, F. 2013. Ab initio modelling of steady rotating stars. Page 49 of Goupil, M., Belkacem, K., Neiner, C., Lignières, F., and Green, J. J. (eds), Studying Stellar Rotation and Convection: Theoretical Background and Seismic Diagnostics. Lecture Notes in Physics, Berlin: Springer Verlag, vol. 865.Google Scholar
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements.Geophys. J. Int., 184(Mar.), 1223–1236.Google Scholar
Roberson, F. I., and Kaula, W. M. 1972. Orbital Science Investigations Part D: Apollo 15 Laser Altimeter. In Apollo 15 Preliminary Science Report, NASA Scientific and Information Office SP-289, Washington D.C., 25-48-25-50.
Roberts, I. 1889. On a photographic method for determining variability in stars. [Abstract]. R. Soc. London Proc. Ser. I, 47, 137–138.Google Scholar
Robinson, M. S., Brylow, S. M., Tschimmel, M., et al. 2010. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview.Space Sci. Rev., 150, 81–124.Google Scholar
Roca Cortés, T., and Pallé, P. L. 2014. The Mark I helioseismic experiment: I. Measurements of the solar gravitational redshift (1976–2013). ArXiv:1406.5944.
Rogers, F. J., Swenson, F. J., and Iglesias, C. A. 1996. OPAL equation-of-state tables for astrophysical applications.ApJ, 456(Jan.), 902.Google Scholar
Rogers, T. M., and Glatzmaier, G. A. 2005. Gravity waves in the Sun.MNRAS, 364(Dec.), 1135–1146.Google Scholar
Ronan, R. S., and Labonte, B. J. 1994. Intermediate degree p-mode frequency splittings near solar maximum.Sol. Phys., 149(Jan.), 1–21.Google Scholar
Roulston, M. S., and Ahrens, T. J. 1997. Impact mechanics and frequency of SL9-type events on Jupiter.Icarus, 126, 138–147.Google Scholar
Roxburgh, I. W. 2002. Background to the Eddington mission. Pages 11–15 of Battrick, B., Favata, F., Roxburgh, I. W., and Galadi, D. (eds), Stellar Structure and Habitable Planet Finding. ESA Special Publication, vol. 485.Google Scholar
Roxburgh, I. W. 2006. 2-dimensional models of rapidly rotating stars: II. Hydrostatic and acoustic models with Ω = Ω(r, θ). A&A, 454(Aug.), 883–888.Google Scholar
Roxburgh, I. W. 2010. Asteroseismology of solar and stellar models.Ap&SS, 328(July), 3–11.Google Scholar
Roxburgh, I. W. 2015. Surface layer independent model fitting by phase matching: Theory and application to HD49933 and HD177153 (aka Perky).A&A, 574(Feb.), A45.Google Scholar
Roxburgh, I. W., and Vorontsov, S. V. 1994. Seismology of the solar envelope: The base of the convective zone as seen in the phase shift of acoustic waves.MNRAS, 268(June), 880.Google Scholar
Roxburgh, I. W., and Vorontsov, S. V. 2003. The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars.A&A, 411(Nov.), 215–220.Google Scholar
Roxburgh, I. W., and Vorontsov, S. V. 2013. On the use of the ratio of small to large separations in asteroseismic model fitting.A&A, 560(Dec.), A2.Google Scholar
Royer, F., Zorec, J., and Gómez, A. E. 2007. Rotational velocities of A-type stars: III. Velocity distributions. A&A, 463(Feb.), 671–682.Google Scholar
Rubio da Costa, F., Zuccarello, F., Labrosse, N., et al. 2011 (June). Solar flares: Observations vs simulations. Pages 182–184 of Bonanno, A., de Gouveia Dal Pino, E., and Kosovichev, A. G. (eds), Advances in Plasma Astrophysics. IAU Symposium 274.
Rudiger, G., and Kitchatinov, L. L. 1997. The slender solar tachocline: A magnetic model.Astron. Nachr., 318(Aug.), 273.Google Scholar
Rüdiger, G., Kitchatinov, L. L., and Elstner, D. 2012. Helicity and dynamo action in magnetized stellar radiation zones.MNRAS, 425(Sept.), 2267–2276.Google Scholar
Russell, C. T., Raymond, C. A., and Coradini, A., et al. 2012. Dawn at Vesta: Testing the protoplanetary paradigm.Science, 336(6082), 684–686.Google Scholar
Saar, S. H., and Brandenburg, A. 2002. A new look at dynamo cycle amplitudes.Astron. Nachr., 323(July), 357–360.Google Scholar
Saio, H. 1981. Rotational and tidal perturbations of nonradial oscillations in a polytropic star.ApJ, 244(Feb.), 299–315.Google Scholar
Salabert, D., Leibacher, J., Appourchaux, T., and Hill, F. 2009a. Measurement of low signal-to-noise ratio solar p-modes in spatially resolved helioseismic data. ApJ, 696(May), 653–667.Google Scholar
Salabert, D., García, R. A., Pallé, P. L., and Jiménez-Reyes, S. J. 2009b. The onset of solar cycle 24. What global acoustic modes are telling us. A&A, 504(Sept.), L1–L4.Google Scholar
Salabert, D., Régulo, C., Ballot, J., García, R. A., and Mathur, S. 2011. About the p-mode frequency shifts in HD 49933.A&A, 530(June), A127.Google Scholar
Samadi, R., Belkacem, K., Ludwig, H.-G., et al. 2013. Stellar granulation as seen in disk-integrated intensity: II. Theoretical scaling relations compared with observations. A&A, 559(Nov.), A40.Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012. Binary interaction dominates the evolution of massive stars.Science, 337(July), 444–446.Google Scholar
Sanz-Forcada, J., Stelzer, B., and Metcalfe, T. S. 2013. tHorologi, the first coronal activity cycle in a young solar-like star.A&A, 553(May), L6.Google Scholar
Saumon, D., and Guillot, T. 2004. Shock compression of deuterium and the interiors of Jupiter and Saturn.ApJ, 609(July), 1170–1180.Google Scholar
Savonije, G. J. 2005. Unstable quasi g-modes in rotating main-sequence stars.A&A, 443(Nov.), 557–570.Google Scholar
Savonije, G. J., Papaloizou, J. C. B., and Alberts, F. 1995. Nonadiabatic tidal forcing of a massive uniformly rotating star.MNRAS, 277(Nov.), 471.Google Scholar
Scargle, J. D. 1982. Studies in astronomical time series analysis: II. Statistical aspects of spectral analysis of unevenly spaced data. ApJ, 263(Dec.), 835–853.Google Scholar
Schad, A., Timmer, J., and Roth, M. 2012. Measuring the solar meridional flow from perturbations of eigenfunctions of global oscillations.Astron. Nachr., 333(Dec.), 991.Google Scholar
Schad, A., Timmer, J., and Roth, M. 2013. Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells.ApJ, 778(Dec.), L38.Google Scholar
Schatzman, E. 1993. Transport of angular momentum and diffusion by the action of internal waves.A&A, 279(Nov.), 431–446.Google Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995. The Solar Oscillations Investigation: Michelson Doppler Imager.Sol. Phys., 162(Dec.), 129–188.Google Scholar
Scherrer, P. H., Schou, J., Bush, R. I., et al. 2012. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO).Sol. Phys., 275(Jan.), 207–227.Google Scholar
Schmider, F.-X., Fossat, E., and Mosser, B. 1991. Possible detection of Jovian global oscillations.A&A, 248(Aug.), 281–291.Google Scholar
Schmider, F. X., Gay, J., Gaulme, P., et al. 2007. SYMPA, a dedicated instrument for Jovian seismology: I. Principle and performance. A&A, 474(Nov.), 1073–1080.Google Scholar
Schmidt, B. E., Thomas, P. C., and Bauer, J. M., et al. 2008 (March). Hubble takes a look at Pallas: Shape, size and surface. Page 2502 of Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Institute Technical Report, vol. 39.
Schmitt, J., Bouchy, F., and Bestaux, J. L. 2000. First results of the EMILIE spectrograph with the AAA system on extrasolar planets. Page 607 of Garzón, G., Eiroa, C., de Winter, D., and Mahoney, T. J. (eds), Disks, Planetesimals, and Planets. Astronomical Society of the Pacific Conference Series, vol. 219.Google Scholar
Schou, J. 1992. On the analysis of helioseismic data. Ph.D. thesis, Aarhus University, Aarhus, Denmark.
Schou, J., and Bogart, R. S. 1998. Flows and horizontal displacements from ring diagrams.ApJ, 504(Sept.), L131–L134.Google Scholar
Schou, J., and Brown, T. M. 1994. Generation of artificial helioseismic time-series.A&A Suppl. Ser., 107(Nov.), 541–550.Google Scholar
Schou, J., and Buzasi, D. L. 2001 (Jan.). Observations of p-modes in α Cen. Pages 391–394 of Wilson, A. and Pallei, P. L. (eds), SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium. ESA Special Publication, vol. 464.
Schou, J., Howe, R., Basu, S., et al. 2002. A comparison of solar p-mode parameters from the Michelson Doppler Imager and the Global Oscillation Network Group: Splitting coefficients and rotation inversions.ApJ, 567(Mar.), 1234–1249.Google Scholar
Schou, J., Scherrer, P. H., Bush, R. I., et al. 2012. Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO).Sol. Phys., 275(Jan.), 229–259.Google Scholar
Schrijver, C. J., and Zwaan, C. 2000. Solar and Stellar Magnetic Activity. New York: Cambridge University Press.
Schunker, H., Cameron, R. H., Gizon, L., and Moradi, H. 2011. Constructing and characterising solar structure models for computational helioseismology.Sol. Phys., 271(July), 1–26.Google Scholar
Schunker, H., Gizon, L., Cameron, R. H., and Birch, A. C. 2013. Helioseismology of sunspots: How sensitive are travel times to the Wilson depression and to the subsurface magnetic field?A&A, 558(Oct.), A130.Google Scholar
Schüssler, M., and Vögler, A. 2006. Magnetoconvection in a sunspot umbra.ApJ, 641(Apr.), L73–L76.Google Scholar
Schuster, G. 2009. Seismic Interferometry, Cambridge: Cambridge University Press.
Sekii, T., Kosovichev, A. G., Zhao, J., et al. 2007. Initial helioseismic observations by Hinode/SOT.PASJ, 59(Nov.), 637.Google Scholar
Sens-Schönfelder, C., and Larose, E. 2010. Lunar noise correlation, imaging and monitoring.Earthq. Sci., 23, 519–530.Google Scholar
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. 2005. High-resolution surface-wave tomography from ambient seismic noise.Science, 307(Mar.), 1615–1618.Google Scholar
Shipp, R. M., and Singh, S. C. 2002. Two-dimensional full wavefield inversion of wideaperture marine seismic streamer data.Geophys. J. Int., 151, 325–344.Google Scholar
Shiraishi, H., Tanaka, S., Fujimura, A., and Hayakawa, H. 2008. The present status of the Japanese Penetrator Mission: LUNAR-A.Adv. Space Res., 42, 386–393.Google Scholar
Shirley, J. H. 1985. Shallow moonquakes and large shallow earthquakes: A temporal correlation.Earth Planet. Sci. Lett., 76, 241–253.Google Scholar
Showman, A. P., and Guillot, T. 2002. Atmospheric circulation and tides of “51 Pegasus b-like” planets.A&A, 385(Apr.), 166–180.Google Scholar
Sierks, H., Lamy, P., Barbieri, C., et al. 2011. Images of Asteroid 21 Lutetia: A remnant planetesimal from the early Solar System.Science, 334(6055), 487–490.Google Scholar
Sills, A., and Pinsonneault, M. H. 2000. Rotation of horizontal-branch stars in globular clusters.ApJ, 540(Sept.), 489–503.Google Scholar
Silva Aguirre, V., Chaplin, W. J., Ballot, J., et al. 2011. Constructing a one-solar-mass evolutionary sequence using asteroseismic data from Kepler.ApJ, 740(Oct.), L2.Google Scholar
Silva Aguirre, V., Casagrande, L., Basu, S., et al. 2012. Verifying asteroseismically deter-mined parameters of Kepler stars using Hipparcos parallaxes: Self-consistent stellar properties and distances.ApJ, 757(Sept.), 99.Google Scholar
Silva Aguirre, V., Basu, S., Brandão, I. M., et al. 2013. Stellar ages and convective cores in field main-sequence stars: First asteroseismic application to two Kepler targets.ApJ, 769(June), 141.Google Scholar
Silvotti, R., Schuh, S., Janulis, R., et al. 2007. A giant planet orbiting the ‘extreme horizontal branch’ star V391 Pegasi.Nature, 449(Sept.), 189–191.Google Scholar
Simons, F. J., Nolet, G., Georgief, P., et al. 2009. On the potential of recording earthquakes for global seismic tomography by low-cost autonomous instruments in the oceans.J. Geophys. Res. (Solid Earth), 114(May), 5307.Google Scholar
Simons, F. J., Loris, I., Nolet, G., et al. 2011. Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity.Geophys. J. Int., 187(Nov.), 969–988.Google Scholar
Skartlien, R., Stein, R. F., and Nordlund, Å. 2000. Excitation of chromospheric wave transients by collapsing granules.ApJ, 541(Sept.), 468–488.Google Scholar
Skumanich, A. 1972. Time scales for Ca II emission decay, rotational braking, and lithium depletion.ApJ, 171(Feb.), 565.Google Scholar
Smagorinsky, J. 1963. General circulation experiments with the primitive equations.Mon. Wea. Rev., 91, 99.Google Scholar
Smith, A., Crawford, I. A., Gowen, R. A., et al. 2009. Lunar Net: A proposal in response to an ESA M3 call in 2010 for a medium sized mission.Exp. Astron., 33, 587–644.Google Scholar
Smith, D., Zuber, M. T., Neumann, G. A., et al. 2010. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA).Geophys. Res. Lett., 37, L18204, doi:10.1029/2010GL043751. Snieder, R., Fan, Y., Slob, E., and Wapenaar, K. 2010. Equipartitioning is not sufficient for Green's function extraction.Earthquake Sci., 23(Oct.), 403–415.Google Scholar
Sohl, F., Wagner, F. W., Hussmann, H., and Grott, M. 2009. Planetary interiors. Pages 200-224 of Trumper, J. E. (ed.), Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group VI: Astronomy and Astrophysics, vol. 4, subvol. B.Google Scholar
Soszyński, I., Udalski, A., Szymański, M. K., et al. 2009. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. IV. Long-period variables in the Large Magellanic Cloud. Acta Astron., 59(Sept.), 239–253.Google Scholar
Soulat, L., Schmider, F.-X., Robbe-Dubois, S., et al. 2012 (Sept.). Echoes: A new instrumental concept of spectro-imaging for Jovian seismology. In Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8442.
Spada, F., Lanzafame, A. C., and Lanza, A. F. 2010. A semi-analytic approach to angular momentum transport in stellar radiative interiors. MNRAS, 404(May), 641660.Google Scholar
Speake, C. C. 1996. Forces and force gradients due to patch fields and contact-potential differences. Class. Quantum Grav., 13, A291–A297.Google Scholar
Spiegel, E. A., and Zahn, J.-P. 1992a. The solar tachocline. A&A, 265(Nov.), 106–114.Google Scholar
Spiegel, E. A., and Zahn, J.-P. 1992b. The turbulent tachycline. Page 188 of Giampapa, M. S., and Bookbinder, J. A. (eds), Cool Stars, Stellar Systems, and the Sun. Astronomical Society of the Pacific Conference Series, vol. 26.
Spruit, H. C. 1999. Differential rotation and magnetic fields in stellar interiors. A&A, 349(Sept.), 189–202.Google Scholar
Spruit, H. C. 2002. Dynamo action by differential rotation in a stably stratified stellar interior. A&A, 381(Jan.), 923–932.Google Scholar
Spruit, H. C. 2003. Origin of the torsional oscillation pattern of solar rotation. Sol. Phys., 213(Mar.), 1–21.Google Scholar
Spruit, H. C., and Bogdan, T. J. 1992. The conversion of p-modes to slow modes and the absorption of acoustic waves by sunspots. ApJ, 391(June), L109–L112.Google Scholar
Stebbins, J. 1911. The measurement of the light of stars with a selenium photometer, with an application to the variations of Algol. Pop. Astron., 19(Feb.), 65–80.Google Scholar
Stebbins, J. 1915. The electrical photometry of stars. Science, 41(June), 809–813.Google Scholar
Stebbins, J., and Brown, F. C. 1907. A determination of the Moon's light with a selenium photometer. ApJ, 26(Dec.), 326.Google Scholar
Stein, R. F., and Nordlund, Æ. 2001. Solar oscillations and convection: II. Excitation of radial oscillations. ApJ, 546(Jan.), 585–603.Google Scholar
Stein, R. F., and Nordlund, Æ. 2012. On the formation of active regions. ApJ, 753(July), L13.Google Scholar
Steiner, O., Franz, M., Bello González, N., et al. 2010. Detection of vortex tubes in solar granulation from observations with SUNRISE. ApJ, 723(Nov.), L180–L184.Google Scholar
Stello, D., Kjeldsen, H., Bedding, T. R., and Buzasi, D. 2006. Oscillation mode lifetimes in ξ Hydrae: Will strong mode damping limit asteroseismology of red giant stars?A&A, 448(Mar.), 709–715.Google Scholar
Stello, D., Bruntt, H., Kjeldsen, H., et al. 2007. Multisite campaign on the open cluster M67: II. Evidence for solar-like oscillations in red giant stars. MNRAS, 377(May), 584–594.Google Scholar
Stello, D., Bruntt, H., Preston, H., and Buzasi, D. 2008. Oscillating K giants with the WIRE satellite: Determination of their asteroseismic masses. ApJ, 674(Feb.), L53–L56.Google Scholar
Stello, D., Chaplin, W. J., Bruntt, H., et al. 2009a. Radius determination of solar-type stars using asteroseismology: What to expect from the Kepler mission. ApJ, 700(Aug.), 1589–1602.Google Scholar
Stello, D., Chaplin, W. J., Basu, S., Elsworth, Y., and Bedding, T. R. 2009b. The relation between Δν and νmax for solar-like oscillations. MNRAS, 400(Nov.), L80–L84.Google Scholar
Stello, D., Meibom, S., Gilliland, R. L., et al. 2011. An asteroseismic membership study of the red giants in three open clusters observed by Kepler: NGC 6791, NGC 6819, and NGC 6811. ApJ, 739(Sept.), 13.Google Scholar
Stello, D., Huber, D., Bedding, T. R., et al. 2013. Asteroseismic classification of stellar populations among 13,000 red giants observed by Kepler. ApJ, 765(Mar.), L41.Google Scholar
Stello, D., Compton, D. L., Bedding, T. R., et al. 2014. Non-radial oscillations in M-giant semi-regular variables: Stellar models and Kepler observations. ApJ, 788, 10.Google Scholar
Strugarek, A., Brun, A. S., and Zahn, J.-P. 2011a. Magnetic confinement of the solar tachocline: The oblique dipole. Astron. Nachr., 332(Dec.), 891.Google Scholar
Strugarek, A., Brun, A. S., and Zahn, J.-P. 2011b. Magnetic confinement of the solar tachocline: II. Coupling to a convection zone. A&A, 532(Aug.), A34.Google Scholar
Sturrock, P. A. 1966. Model of the high-energy phase of solar flares. Nature, 211(Aug.), 695–697.xsGoogle Scholar
Suárez, J. C., Goupil, M. J., and Morel, P. 2006. Effects of moderately fast shellular rotation on adiabatic oscillations. A&A, 449(Apr.), 673–685.Google Scholar
Sutton, G. H., and Latham, G. V. 1964. Analysis of a feedback controlled seismometer. J. Geophys. Res., 69, 3865–3882.Google Scholar
Svestka, Z. 1986. On the varieties of solar flares. Pages 332–355 of Neidig, D. F. (ed), The Lower Atmosphere of Solar Flares. Proceedings of the Solar Maximum Mission Symposium, Sunspot, NM, Aug. 20–24, 1985 (A87-26201 10-92).Google Scholar
Tagger, M., and Pellat, R. 1999. An accretion-ejection instability in magnetized disks. A&A, 349(Sept.), 1003–1016.Google Scholar
Takata, M., and Saio, H. 2013. Rosette modes of oscillations of rotating stars caused by close degeneracies: I. Axisymmetric modes. PASJ, 65(June), 68.Google Scholar
Talon, S., and Charbonnel, C. 2005. Hydrodynamical stellar models including rotation, internal gravity waves, and atomic diffusion: I. Formalism and tests on Pop I dwarfs. A&A, 440(Sept.), 981–994.Google Scholar
Talon, S., and Charbonnel, C. 2010 (Apr.). Light elements as diagnostics on the structure and evolution of low-mass stars. Pages 365–374 of Charbonnel, C., Tosi, M., Primas, F., and Chiappini, C. (eds), Light Elements in the Universe. IAU Symposium268.
Tanaka, S., Mitani, T., Otake, H., et al. 2013. Present status of the lunar lander project SELENE-2. 44th Lunar and Planetary Science Conference, March 18–22. 2013 in The Woodlands, Texas, LPI Contribution No. 1719.
Tanimoto, T., Eitzel, M., and Yano, T. 2008. The noise cross-correlation approach for Apollo 17 LSPE data: Diurnal change in seismic parameters in shallow lunar crust. J. Geophys. Res., 113, E08011, doi:10.1029/2007JE3016.Google Scholar
Tape, C., Liu, Q., Maggi, A., and Tromp, J. 2010. Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophys. J. Int., 180, 433–462.Google Scholar
Tassoul, M. 1980. Asymptotic approximations for stellar nonradial pulsations. ApJS, 43(Aug.), 469–490.Google Scholar
Tauris, T. M., and van den Heuvel, E. P. J. 2006. Formation and evolution of compact stellar X-ray sources. Pages 623–665 of Lewin, W., and van der Klis, M. (eds), Compact Stellar X-ray Sources. Cambridge: Cambridge University Press.
Tauzin, B., Debayle, E., Quantin, C., and Coltice, N. 2013. Seismoacoustic coupling induced by the breakup of the 15 February 2013 Chelyabinsk meteor. Geophys. Res. Lett., 40, 3522–3526.Google Scholar
Tayler, R. J. 1973. The adiabatic stability of stars containing magnetic fields: I. Toroidal fields. MNRAS, 161, 365.Google Scholar
Teanby, N., and Wookey, J. 2011. Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter., 186, 70–80.Google Scholar
Telting, J. H., Østensen, R. H., Baran, A. S., et al. 2012. Three ways to solve the orbit of KIC 11 558 725: A 10-day beaming sdB+WD binary with a pulsating subdwarf. A&A, 544(Aug.), A1.Google Scholar
Theobald, M. L., Fox, P. A., and Sofia, S. 1994. A subgrid-scale resistivity for magnetohydrodynamics. Phys. Plasmas, 1(Sept.), 3016–3032.Google Scholar
Thomas, J. H., and Weiss, N. O. 2012. Sunspots and Starspots. Cambridge: Cambridge University Press.
Thomas, J. H., Cram, L. E., and Nye, A. H. 1982. Five-minute oscillations as a subsurface probe of sunspot structure. Nature, 297(June), 485–487.Google Scholar
Thompson, M. J., and Christensen-Dalsgaard, J. 2002. On inverting asteroseismic data. Pages 95–101 of Battrick, B., Favata, F., Roxburgh, I. W., and Galadi, D. (eds), Stellar Structure and Habitable Planet Finding. ESA Special Publication, vol. 485.
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., and Toomre, J. 2003. The internal rotation of the Sun. ARA&A, 41, 599–643.Google Scholar
Titarchuk, L., and Osherovich, V. 2000. The global normal disk oscillations and the persistent low-frequency quasi-periodic oscillations in X-ray binaries. ApJ, 542(Oct.), L111–L114.Google Scholar
Toksöz, M. N., Press, F., Anderson, K., et al. 1972a. Velocity structure and properties of the lunar crust. The Moon, 4, 490–504.
Toksöz, M. N., Solomon, S. C., Minear, J. W., and Johnston, D. H. 1972b. Thermal evolution of the Moon. The Moon, 4 190–213.Google Scholar
Toksoz, M. N., Dainty, A. M., Solomon, S. C., and Anderson, K. R. 1974. Structure of the Moon. Rev. Geophys. Space Phys., 12, No. 4, 539–567.Google Scholar
Toksöz, M. N., Goins, N. R., and Cheng, C. H. 1977. Moonquakes: Mechanisms and relation to tidal stresses. Science, 196(May), 979–981.Google Scholar
Tomczyk, S., Streander, K., Card, G., et al. 1995. An instrument to observe low-degree solar oscillations. Sol. Phys., 159(June), 1–21.Google Scholar
Tomczyk, S., Jiménez Reyes, S. J., Jiménez, A., and Pallé, P. L. 2000 (May). The ECHO (Experiment for Coordinated Helioseismic Observations) Network. Page 804 of AAS/Solar Physics Division Meeting #31. Bulletin of the American Astronomical Society, vol. 32.
Tong, C. H., 2005. Imaging sunspots using seismic methods. Phil. Trans. R. Soc. Math., Phys. Eng. Sci., 363, 2761–2775.Google Scholar
Tong, C. H., Thompson, M. J., Warner, M. R., Rajaguru, S. P., and Pain, C. C. 2003a. Acoustic wave propagation in the Sun: Implications for wave field and time-distance helioseismology. ApJ, 582, L121éL124.Google Scholar
Tong, C. H., Thompson, M. J., Warner, M. R., and Pain, C. C. 2003b. Helioseismic signals and wave field helioseismology. ApJ, 593, 1242–1248.Google Scholar
Tong, C. H., Thompson, M. J., Warner, M. R., and Pain, C. C. 2003c. The significance of density and attenuation in the local helioseismology. ApJ, 596, L263–L266.Google Scholar
Toomre, J., Augustson, K. C., Brown, B. P., et al. 2012 (Sept.). New era in 3-D modeling of convection and magnetic dynamos in stellar envelopes and cores. Page 331 of Shibahashi, H., Takata, M., and Lynas-Gray, A. E. (eds), Progress in Solar/Stellar Physics with Helio-and Asteroseismology. Astronomical Society of the Pacific Conference Series, vol. 462.
Toriumi, S., and Yokoyama, T. 2010. Two-step emergence of the magnetic flux sheet from the solar convection zone1. ApJ, 714(May), 505–516.Google Scholar
Toriumi, S., Ilonidis, S., Sekii, T., and Yokoyama, T. 2013. Probing the shallow convection zone: Rising motion of subsurface magnetic fields in the solar active region. ApJ, 770(June), L11.Google Scholar
Toutain, T., and Gouttebroze, P. 1993. Visibility of solar p-modes. A&A, 268(Feb.), 309–318.Google Scholar
Toutain, T., Appourchaux, T., Baudin, F., et al. 1997. Tri-phonic helioseismology: Comparison of solar p modes observed by the helioseismology instruments aboard SOHO. Sol. Phys., 175(Oct.), 311–328.Google Scholar
Townsend, R. H. D. 1997. Spectroscopic modelling of non-radial pulsation in rotating early-type stars. MNRAS, 284(Feb.), 839–858.Google Scholar
Trampert, J. 1998. Global seismic tomography: The inverse problem and beyond. Inverse Probl., 14, 371–385.Google Scholar
Tromp, J., Luo, Y., Hanasoge, S., and Peter, D. 2010. Noise cross-correlation sensitivity kernels. Geophys. J. Int., 183(Nov.), 791–819.Google Scholar
Tsai, V. C., Nettles, M., Ekstrom, G., and Dziewonski, A. M. 2005. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys. Res. Lett., 32, L17304, doi:10.1029/2005GL023813.Google Scholar
Turck-Chièze, S., and Couvidat, S. 2011. Solar neutrinos, helioseismology and the solar internal dynamics. Rep. Prog. Phys., 74(8), 086901.Google Scholar
Turck-Chièze, S., Nghiem, P., Couvidat, S., and Turcotte, S. 2001. Solar internal composition and nuclear reaction rates in the light of helioseismology. Sol. Phys., 200(May), 323–342.Google Scholar
Turck-Chièze, S., Palacios, A., Marques, J. P., and Nghiem, P. A. P. 2010. Seismic and dynamical solar models: I. The impact of the solar rotation history on neutrinos and seismic indicators. ApJ, 715(June), 1539–1555.Google Scholar
Turck-Chièze, S., Carton, P.-H., Barriere, J.-C., et al. 2012 (Sept.). Solar global oscillations of low-degree modes (GOLD): The status of the multi-channel resonance spectrometer GOLF-NG. Page 240 of Shibahashi, H., Takata, M., and Lynas-Gray, A. E. (eds), Progress in Solar/Stellar Physics with Helio- and Asteroseismology. Astronomical Society of the Pacific Conference Series, vol. 462.
Ulrich, R. K. 1970. The five-minute oscillations on the solar surface. ApJ, 162(Dec.), 993.Google Scholar
Ulrich, R. K. 1986. Determination of stellar ages from asteroseismology. ApJ, 306(July), L37–L40.Google Scholar
Unno, W., Osaki, Y., Ando, H., Saio, H., and Shibahashi, H. 1989. Nonradial Oscillations of Stars. Berlin: Springer-Verlag.
Utsu, T. 2002. Relationships between magnitude scales. In Lee, W. H. K., et al. (ed.), International Handbook of Erthquake and Engineering Seismology, Part A. Amsterdam, Boston: Academic Press.
Uytterhoeven, K., Briquet, M., Bruntt, H., et al. 2010. Ground-based follow-up in relation to Kepler asteroseismic investigation. Astron. Nachr., 331(Dec.), 993.Google Scholar
van der Klis, M. 2005 (Oct.). Timing neutron stars. Pages 345–358 of Burderi, L., Antonelli, L. A., D'Antona, F., et al. (eds), Interacting Binaries: Accretion, Evolution, and Outcomes. American Institute of Physics Conference Series, vol. 797.
van der Klis, M., Wijnands, R. A. D., Horne, K., and Chen, W. 1997. Kilohertz quasi-periodic oscillation peak separation is not constant in Scorpius X-1. ApJ, 481(June), L97–L100.Google Scholar
van Leeuwen, F. 2007. Hipparcos, the New Reduction of the Raw Data. Astrophysics and Space Science Library, vol. 350. Springer.
van Saders, J. L., and Pinsonneault, M. H. 2013. Fast star, slow star; old star, young star: Subgiant rotation as a population and stellar physics diagnostic. ApJ, 776(Oct.), 67.Google Scholar
VandenBerg, D. A., Gustafsson, B., Edvardsson, B., Eriksson, K., and Ferguson, J. 2007. A constraint on Zsolar from fits of isochrones to the color-magnitude diagram of M67. ApJ, 666(Sept.), L105–L108.Google Scholar
Veverka, J., Thomas, P., Harch, A., et al., 1999. NEAR encounter with asteroid 253 Mathilde: Overview. Icarus, 140(1), 3–16.
Veverka, J., Robinson, M., and Thomas, P., et al. 2000. NEAR at Eros: Imaging and spectral results. Science, 289(5487), 2088–2097.Google Scholar
Vinnik, L., Chenet, H., Gagnepain-Beyneix, J., and Lognonné, P. 2001. First seismic receiver functions on the Moon. Geophys. Res. Lett., 28, 3031–3034.Google Scholar
Virieux, J., 1984. Sh-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 49, 1933–1942.Google Scholar
Virieux, J., and Operto, S. 2009. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74, WCC1–WCC26.Google Scholar
Vögler, A., Shelyag, S., Schüssler, M., et al. 2005. Simulations of magneto-convection in the solar photosphere: Equations, methods, and results of the MURaM code. A&A, 429(Jan.), 335–351.Google Scholar
Vorontsov, S. V. 1989. The inverse problem of helioseismology: The speed of sound in the solar interior. Pisma Astron. Zh., 15(Jan.), 48–60.Google Scholar
Vorontsov, S. V., and Jefferies, S. M. 2013. Modeling solar oscillation power spectra. II. Parametric model of spectral lines observed in Doppler-velocity measurements. ApJ, 778(Nov.), 75.Google Scholar
Vorontsov, S. V., and Zharkov, V. N. 1981. The natural oscillations of giant planets: Effects of rotation and ellipticity. AZh, 58(Oct.), 1101–1114.Google Scholar
Vorontsov, S. V., Zharkov, V. N., and Lubimov, V. M. 1976. The free oscillations of Jupiter and Saturn. Icarus, 27(Jan.), 109–118.Google Scholar
Vorontsov, S. V., Gudkova, T. V., and Zharkov, V. N. 1989. Jovian seismology. Soviet Astron. Lett., 15(July), 278.Google Scholar
Vorontsov, S. V., Baturin, V. A., and Pamiatnykh, A. A. 1991. Seismological measurement of solar helium abundance. Nature, 349(Jan.), 49–51.Google Scholar
Vorontsov, S. V., Baturin, V. A., Ayukov, S. V., and Gryaznov, V. K. 2013. Helioseismic calibration of the equation of state and chemical composition in the solar convective envelope. MNRAS, 430(Apr.), 1636–1652.Google Scholar
Vostreys, R. W. 1980. Data User's Note: Apollo Seismological Investigations. National Space Science Data Center/World Data Center A for Rockets and Satellites, NASA Goddard Space Flight Center, Greenbelt, Maryland.
Wagoner, R. V. 1999. Relativistic diskoseismology. Phys. Rep., 311(Apr.), 259–269.Google Scholar
Wagoner, R. V. 2012. Diskoseismology and QPOs confront black hole spin. ApJ, 752(June), L18.Google Scholar
Wagoner, R. V., Silbergleit, A. S., and Ortega-Rodríguez, M. 2001. “Stable” quasi-periodic oscillations and black hole properties from diskoseismology. ApJ, 559(Sept.), L25L28.Google Scholar
Walker, J. D. 2003. Loading sources for seismological investigation of asteroids and comets. Int. J. Impact Engng, 29, 757–769.Google Scholar
Walker, J. D., and Huebner, W. F. 2004. Seismological investigation of asteroid and comet interiors. Pages 234–265 of Belton, M. J. S., Morgan, T. H., Samarasinha, N. H., and Yeomans, D. K. (eds), Mitigation of Hazardous Comets and Asteroids. Cambridge: Cambridge University Press.
Walker, J. D., Sagebiel, E. J., and Huebner, W. F. 2006. A preliminary analysis of seis-mological techniques to study Eros and other asteroids. Adv. Space Res., 37, 142152.Google Scholar
Walker, J. D., Chocron, S., Durda, D. D., et al. 2013. Scale size effect in momentum enhancement. Proc. Eng., 58(0), 240–250. Proceedings of the 12th Hypervelocity Impact Symposium.Google Scholar
Walter, C. M., Marley, M. S., Hunten, D. M., et al. 1996. A search for seismic waves from the impact of the SL/9 R fragment. Icarus, 121(June), 341–350.Google Scholar
Walterscheid, R. L., Brinkman, D. G., and Schubert, G. 2000. Wave disturbances from the comet SL-9 impacts into Jupiter's atmosphere. Icarus, 145, 140–146.
Wang, Y., Noyes, R. W., Tarbell, T. D., and Title, A. M. 1995. Vorticity and divergence in the solar photosphere. ApJ, 447(July), 419.Google Scholar
Warner, M. R., Ratcliffe, A., Nangoo, T., et al. 2013. Anisotropic 3-D full-waveform inversion. Geophysics, 78, R59–R80.Google Scholar
Watkins, J. S., and Kovach, R. L. 1973. Seismic investigation of the lunar regolith, Proceedings of the 4th Lunar Science Conference (Supplement 4, Geochim. Cosmochim. Acta), 3, 2561–2564.Google Scholar
Weber, R. C., and Knapmeyer, M. 2012. Deep moonquake focal mechanisms: Recovery and implications. Page 1466 of Lunar and Planetary Science Conference, vol. 43.Google Scholar
Weber, R. C., Bills, B. G., and Johnson, C. L. 2009. Constraints on deep moonquake focal mechanisms through analyses of tidal stress. J. Geophys. Res. (Planets), 114(May), 5001.Google Scholar
Weber, R. C., Garcia, R., Johnson, C. L., et al. 2010a. The use of deep moonquakes for constraining the internal structure of the Moon. AGU Fall Meeting Abstracts, U51B0037.Google Scholar
Weber, R. C., Bills, B. G., and Johnson, C. L. 2010b. A simple physical model for deep moonquake occurrence times. Phys. Earth Planet. Inter., 182, 152–160.Google Scholar
Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q., and Lognonné, P. 2011. Seismic detection ofthe lunar core. Science, 331(Jan.), 309–312.Google Scholar
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., and Holweger, H. 2004. Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere. A&A, 414(Feb.), 1121–1137.Google Scholar
Wegler, U., and Sens-Schönfelder, C. 2007. Fault zone monitoring with passive image interferometry. Geophys. J. Int., 168(Mar.), 1029–1033.Google Scholar
Whitaker, E. A. 1972. Artificial lunar impact craters: Four new identifications. In Apollo 16 Preliminary Science Report, NASA Scientific and Technical Information Office, NASA SP-315, Washington, D.C., 29-39-29-45.
White, T. R., Bedding, T. R., Stello, D., et al. 2011. Calculating asteroseismic diagrams for solar-like oscillations. ApJ, 743(Dec.), 161.Google Scholar
White, T. R., Bedding, T. R., Gruberbauer, M., et al. 2012. Solving the mode identification problem in asteroseismology of F stars observed with Kepler. ApJ, 751(June), L36.Google Scholar
White, T. R., Huber, D., Maestro, V., et al. 2013. Interferometric radii of bright Kepler stars with the CHARA Array: theta Cygni and 16 Cygni A and B. MNRAS, 433(Aug.), 1262–1270.Google Scholar
Wieczorek, M. A., Jolliff, B. L., Khan, A., et al. 2006. The constitution and structure of the lunar interior. Rev. Mineral. Geochem., 60, 221–364.Google Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F., et al. 2013. The crust of the Moon as seen by GRAIL. Science, 339, 671–675.Google Scholar
Williams, J. P. 2001. Acoustic environment of the martian surface. J. Geophys. Res., 106, 5033–5041.Google Scholar
Williamson, P., and Worthington, M. 1993. Resolution limits in ray tomography due to wave behavior: Numerical experiments. Geophysics, 58, 727–735.Google Scholar
Willson, R. C. 1984. Measurements of solar total irradiance and its variability. Space Sci. Rev., 38(Aug.), 203–242.Google Scholar
Wilson, O. C. 1978. Chromospheric variations in main-sequence stars. ApJ, 226(Dec.), 379–396.Google Scholar
Winget, D. E., Nather, R. E., Clemens, J. C., et al. 1991. Asteroseismology of the DOV star PG 1159-035 with the Whole Earth Telescope. ApJ, 378(Sept.), 326–346.Google Scholar
Winget, D. E., Nather, R. E., Clemens, J. C., et al. 1994. Whole Earth Telescope observations of the DBV white dwarf GD 358. ApJ, 430(Aug.), 839–849.Google Scholar
Wolff, C. L. 1972. Free oscillations of the Sun and their possible stimulation by solar flares. ApJ, 176(Sept.), 833.Google Scholar
Woodard, M., and Hudson, H. 1983. Solar oscillations observed in the total irradiance. Sol. Phys., 82(Jan.), 67–73.Google Scholar
Woodard, M. F. 1997. Implications of localized, acoustic absorption for heliotomographic analysis of sunspots. ApJ, 485(Aug.), 890–894.Google Scholar
Woodard, M. F. 2002. Solar subsurface flow inferred directly from frequency-wavenumber correlations in the seismic velocity field. ApJ, 565(Jan.), 634–639.Google Scholar
Woodard, M. F. 2009. Helioseismic measurement of large-scale solar flows. Page 15 of Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., and Hill, F. (eds), Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21. Astronomical Society of the Pacific Conference Series, vol. 416.
Woodard, M. F., and Noyes, R. W. 1985. Change of solar oscillation eigenfrequencies with the solar cycle. Nature, 318(Dec.), 449–450.Google Scholar
Yamada, R., Garcia, R. F., Lognonne, P., et al. 2011. Optimisation of seismic network design: Application to a geophysical international lunar network. Planet. Space Sci., 59, 343–354.Google Scholar
Yamada, R., Garcia, R. F., Lognonné, P., et al. 2013. On the possibility of lunar core phase detection using new seismometers for soft-landers in future lunar missions. Planet. Space Sci., 81, 18–31.Google Scholar
Yates, M. T. 1967. The Use of Spent Stages as Seismic Sources for Lunar Seismological Experiments. Bellcom, Inc., technical memorandum TM-67-1012-11, 21.
Yeomans, D. K., Antreasian, P. G., and Barriot, J.-P., et al. 2000. Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros. Science, 289(5487), 2085–2088.Google Scholar
Young, A. T. 1967. Photometric error analysis: VI. Confirmation of Reiger's theory of scintillation. AJ, 72(Aug.), 747.Google Scholar
Zaatri, A., Corbard, T., Roth, M., González Hernández, I., and von der Luhe, O. 2008. Comparison of geometrical mapping for ring diagram analysis. J. Phys. Confer. Ser., 118(1), 012090.Google Scholar
Zahn, J.-P. 1992. Circulation and turbulence in rotating stars. A&A, 265(Nov.), 115–132.Google Scholar
Zahn, J.-P., Talon, S., and Matias, J. 1997. Angular momentum transport by internal waves in the solar interior. A&A, 322(June), 320–328.Google Scholar
Zahn, J.-P., Brun, A. S., and Mathis, S. 2007. On magnetic instabilities and dynamo action in stellar radiation zones. A&A, 474(Oct.), 145–154.Google Scholar
Zanni, C., and Ferreira, J. 2013. MHD simulations of accretion onto a dipolar magnetosphere: II. Magnetospheric ejections and stellar spin-down. A&A, 550(Feb.), A99.Google Scholar
Zhao, H., and Chou, D.-Y. 2013. Mode conversion between different radial orders for solar acoustic waves scattered by sunspots. ApJ, 778(Nov.), 4.Google Scholar
Zhao, J. 2007. Time-distance imaging of solar far-side active regions. ApJ, 664(Aug.), L139–L142.Google Scholar
Zhao, J., Kosovichev, A. G., and Duvall, Jr., T. L. 2001. Investigation of mass flows beneath a sunspot by time-distance helioseismology. ApJ, 557(Aug.), 384–388.Google Scholar
Zhao, J., Georgobiani, D., Kosovichev, A. G., et al. 2007. Validation of time-distance helioseismology by use of realistic simulations of solar convection. ApJ, 659(Apr.), 848–857.Google Scholar
Zhao, J., Parchevsky, K. V., and Kosovichev, A. G. 2012a (Sept.). Interaction of helioseis-mic waves with sunspots: Observations and numerical MHD simulations. Page 277 of Shibahashi, H., Takata, M., and Lynas-Gray, A. E. (eds), Progress in Solar/Stellar Physics with Helio- and Asteroseismology. Astronomical Society of the Pacific Conference Series, vol. 462.
Zhao, J., Nagashima, K., Bogart, R. S., Kosovichev, A. G., and Duvall, Jr., T. L. 2012b. Systematic center-to-limb variation in measured helioseismic travel times and its effect on inferences of solar interior meridional flows. ApJ, 749(Apr.), L5.Google Scholar
Zhao, J., Couvidat, S., Bogart, R. S., et al. 2012c. Time-distance helioseismology data-analysis pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and its initial results. Sol. Phys., 275(Jan.), 375–390.Google Scholar
Zhao, J., Bogart, R. S., Kosovichev, A. G., Duvall, Jr., T. L., and Hartlep, T. 2013. Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. ApJ, 774(Sept.), L29.Google Scholar
Zhou, C. X., Cai, W., Luo, Y., Schuster, G. T., and Hassanzadeh, S. 1995. Acoustic wave-equation travel-time and wave-form inversion of crosshole seismic data. Geophysics, 60, 765–773.Google Scholar
Zharkov, S., Zharkova, V. V., and Matthews, S. A. 2011. Comparison of seismic signatures of flares obtained by SOHO/Michelson Doppler Imager and GONG instruments. ApJ, 739(Oct.), 70.Google Scholar
Zharkov, V. N., and Trubitsyn, V. P. 1978. Physics of Planetary Interiors. Tucson, AZ: Pachart.
Zumberge, M., Berger, J., Otero, J., and Wielandt, E. 2010. An optical seismometer without force. Bull. Seismol. Soc. Am., 100, 598–605.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Vincent C. H. Tong, Birkbeck College, University of London, Rafael A. García, Centre Commissariat à l'Energie Atomique (CEA), Saclay
  • Book: Extraterrestrial Seismology
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107300668.030
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Vincent C. H. Tong, Birkbeck College, University of London, Rafael A. García, Centre Commissariat à l'Energie Atomique (CEA), Saclay
  • Book: Extraterrestrial Seismology
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107300668.030
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Vincent C. H. Tong, Birkbeck College, University of London, Rafael A. García, Centre Commissariat à l'Energie Atomique (CEA), Saclay
  • Book: Extraterrestrial Seismology
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107300668.030
Available formats
×