Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: September 2009

2 - An introduction to extended defects

Related content

Powered by UNSILO
References
Allen, J. W. (1959). On a new mode of deformation in indium antimonide. Philosophical Magazine, 4, 1046–54.
Anderson, R. L. (1960). Germanium-gallium arsenide heterojuctions. IBM Journal of Research and Development, 4, 283–7.
Anderson, R. L. (1962). Experiments on Ge-GaAs heterojunctions. Solid-State Electronics, 5, 341–51.
Bauer, E. and Poppa, H. (1972). Recent advances in epitaxy. Thin Solid Films, 12, 167–85.
Bauer, E. and Merwe, J. H. (1986). Structure and growth of crystalline superlattices: from monolayer to superlattice. Physical Review, B 33, 3657–71.
Bilby, B. A. (1950). Static models of dislocations. Journal of the Institute of Metals, 76, 613–27.
Brantley, W. A. and Harrison, D. A. (1973). Localized plastic deformation of GaP and GaAs generated by thermocompression bonding. Journal of the Electrochemical Society, 120, 1281–4.
Chaudhuri, A. R., Patel, J. R. and Rubin, L. G. (1962). Velocities and densities of dislocations in germanium and other semiconductor crystals. Journal of Applied Physics, 33, 2736.
Churchman, A. T., Geach, G. A. and Winton, J. (1956). Deformation twinning in materials of the A4 (diamond) structure. Proceedings of the Royal Society, A 238, 194–203.
Cottrell, A. H. (1953). Dislocations and Plastic Flow in Crystals. London: Oxford University Press.
Cottrell, A. H. and Bilby, B. A. (1949). Dislocation theory of yielding and strain ageing. Proceedings of the Physical Society, A 62, 49–62.
Dash, W. C. (1957). The observation of dislocations in silicon. In Dislocations and Mechanical Properties of Crystals, eds. Fisher, J. C., Johnston, W. G., Thomson, R. and Vreeland, T. Jr (New York: Wiley), pp. 57–68.
Dash, W. C. (1958). The growth of silicon crystals free from dislocations. In Growth and Perfection of Crystals, eds. Doremus, R. H., Roberts, B. W. and Turnbull, D. (New York: Wiley), pp. 361–85.
Dash, W. C. (1960). Gold-induced climb of dislocations in silicon. Journal of Applied Physics, 31, 2275–83.
Davies, G. J. and Williams, R. H. (eds.) (1994). Semiconductor Growth, Surfaces and Interfaces. London: Chapman & Hall.
Frank, F. C. (1949). Answer by Frank in discussion of a paper by N. F. Mott that introduced what became known as Frank's rule. Physica, 15, 131–3.
Frank, F. C. and Merwe, J. H. (1949a). One-dimensional dislocations. I Static theory. Proceedings of the Royal Society, A 198, 205–16.
Frank, F. C. and Merwe, J. H. (1949b). One-dimensional dislocations. II Misfitting monolayers and oriented overgrowth. Proceedings of the Royal Society, A 198, 216–25.
Frank, F. C. and Read, W. T. (1950). Multiplication processes for slow moving dislocations. Physical Review, 79, 722–3.
Friedel, G. (1926). Lecons de Cristallographie (Paris: Berger Levrault), pp. 250–2.
Gilman, J. J. (1969). Micromechanics of Flow in Solids. New York: McGraw-Hill.
Haasen, P. and Alexander, H. (1968). Dislocations and plastic flow in the diamond structure. Solis State Physics, 22, 27–158.
Hah, S. R. and Fischer, T. E. (1998). Tribochemical polishing of silicon nitride. Journal of the Electrochemical Society, 145, 1708–14.
Heydenreich, J. (1985). Electron microscopical characterization of electronic materials. In Crystal Growth of Electronic Materials, ed. Kaldis, E. (Amsterdam: North-Holland), pp. 325–41.
Hill, M. J. and Rowcliffe, D. J. (1974). Deformation of silicon at low temperatures. Journal of Materials Science, 9, 1569–76.
Hirsch, P. B. (1985). Dislocations in semiconductors. Materials Science and Technology, 1, 666–77.
Hirth, J. P. and Lothe, J. (1968). Theory of Dislocations. New York: McGraw-Hill.
Holt, D. B. (1966). Misfit dislocations in semiconductors. Journal of Physics and Chemistry of Solids, 27, 1053–67.
Holt, D. B. (1984). Polarity reversal and symmetry in semiconducting compounds with the sphalerite and wurtzite structures. Journal of Materials Science, 19, 439–46.
Hornstra, J. (1958). Dislocations in the diamond lattice. Phys. Chem. Solids, 5, 129–41.
Hornstra, J. (1959). Models of grain boundaries in the diamond lattice I. Tilt about 〈110〉. Physica, 25, 409–22.
Hornstra, J. (1960). Models of grain boundaries in the diamond lattice. II. Tilt about 〈001〉 and theory. Physica, 26, 198–208.
Hull, D. and Bacon, D. J. (1984). Introduction to Dislocations. 3rd edn. Oxford: Pergamon.
Kabler, M. N. (1963). Dislocation mobility in germanium. Physical Review, 131, 54.
Mahajan, S. and Sree Harsha, K. S. (1999). Principles of Growth and Processing of Semiconductors. New York: McGraw-Hill.
Matthews, J. W. (1975). Coherent interfaces and misfit dislocations. In Epitaxial Growth Part B, ed. Matthews, J. W. (New York: Academic Press), pp. 559–609.
Matthews, J. W. (1979). Misfit dislocations. In Dislocations in Solids, Vol. 2, ed. Nabarro, F. R. N. (Amsterdam: North-Holland), pp. 461–545.
Muratov, V. A. and Fischer, T. E. (2000). Tribochemical polishing. Annual Review of Materials Science, 30, 27–51.
Nabarro, F. R. N., Holt, D. B. and Basinski, Z. S. (1964). Plasticity of pure single crystals. Advances in Physics, 13, 193.
Nolder, R. and Cadoff, I. (1965). Heteroepitaxial silicon–aluminium oxide interface. Part II – orientation relations of single-crystal silicon on alpha aluminium oxide. Transactions of the Metallurgical Society of AIME, 233, 549–56.
Oldham, W. G. and Milnes, A. G. (1964). Interface states in semiconductor heterojunctions. Solis State Electronics, 7, 153–65.
Ossipiyan, Yu. A., Petrenko, V. F., Zaretskii, A. V. and Whitworth, R. W. (1986). Properties of II-VI semiconductors associated with moving dislocations. Advances in Physics, 35, 115–88.
Pashley, D. W. (1956). The study of epitaxy in thin surface films. Advances in Physics, 5, 173–240 (plus plates 1 to 10).
Pashley, D. W. (1991). The epitaxy of metals. In Processing of Metals and Alloys, ed. Cahn, R. W.. Materials Science and Technology: A Comprehensive Treatment, Vol. 15 (Weinheim: VCH), pp. 289–328.
Peierls, R. E. (1940). The size of a dislocation. Proceedings of the Physical Society of London, 52, 34–7.
Pirouz, P. (1987). Deformation mode in silicon, slip or twinning?Scripta Metallurgica, 21, 1463–8.
Pirouz, P. and Ning, X. J. (1995). Partial dislocations in semiconductors: structure, properties and their role in strain relaxation. In Microscopy of Semiconducting Materials 1995. Conf. Series No. 146 (Bristol: Inst. Phys.), pp. 69–77.
Pirouz, P., Samant, A. V., Hong, M. H., Moulin, A. and Kubin, L. P. (1999). On deformation and fracture of semiconductors. In Microscopy of Semiconducting Materials 1999. Conf. Series No. 164 (Bristol: Inst. Phys.), pp. 61–6.
Read, W. T. (1953). Dislocations in Crystals. New York: McGraw-Hill.
Royer, L. (1928). Recherches experimentales sur l'epitaxie ou orientation mutuele de cristaux d'especes differentes. Bulletin of the French Society of Mineralogy, 51, 7–159.
Schafer, S. (1967). Messung von versetzungsgeschwindigkeiten in germanium. Physica Status Solidi, 19, 297.
Seeger, A. (1957). The origin of the small angle scattering of x-rays in plastically deformed metals. Acta Metallurgica, 5, 24–8.
Sharma, B. L. and Purohit, R. K. (1974). Semiconductor Heterojunctions. Oxford: Pergamon Press.
Shockley, W. (1953). Dislocations and edge states in the diamond crystal structure. Physical Review, 91, 228.
Shockley, W. and Read, W. T. (1949). Quantitative predictions from dislocation models of crystal grain boundaries. Physical Review, 75, 692.
Shockley, W. and Read, W. T. (1950). Dislocation models of crystal grain boundaries. Physical Review, 78, 275–89.
Stickler, R. and Booker, G. R. (1963). Surface damage on abraded silicon specimens. Philosophical Magazine, 8, 859–76.
Thompson, N. (1953). Dislocation nodes in face-centred cubic lattices. Proceedings of the Physical Society of London, B66, 481–92.
Vogel, F. L., Pfann, W. G., Corey, H. E. and Thomas, E. E. (1953). Observations of dislocations in lineage boundaries in germanium. Physical Review, 90, 489–90.
Wessel, K. and Alexander, H. (1977). On the mobility of partial dislocations. Philosophical Magazine, 35, 1523–36.