Skip to main content Accessibility help
  • Print publication year: 2007
  • Online publication date: October 2013

7 - The role of microtubules and motors for polarized growth of filamentous fungi

from III - Protein folding and secretion



Polarized growth is the mechanism by which filamentous fungi extend their hyphae. Microtubules (MT) and filamentous actin (F-actin), in combination with their corresponding motor proteins, kinesins, dynein and myosins, play crucial roles in this process. The exact contribution of the MT cytoskeleton, however, is still under debate. In this review we will summarize recent advances in understanding the role of MTs and MT-dependent motor proteins in fungi with special emphasis on Aspergillus nidulans. Genetic, biochemical and cell biological approaches in A. nidulans and other fungi led to a modified view of many aspects within the past few years. There is increasing evidence that MT strings, which are visualized by immunostaining or GFP-tagging, consist of several MTs and their dynamics appears to be different in fast-growing hyphal tips as compared with young germlings. Whereas the spindle pole bodies were considered as the only or the main microtubule organizing centres (MTOCs) in filamentous fungi, it appears that several additional MTOCs are responsible for the generation of the MT array. In addition to new insights into the MT network and its dynamics, the roles of several kinesins have been elucidated recently and their interplay with dynein investigated. It became clear that MT functions are interwoven with those of the actin cytoskeleton and that three main structures are required for polarized growth, the Spitzenkörper (vesicle supply centre), the polarisome and probably cell end markers at the cortex. We propose a model for polarized growth, where the actin cytoskeleton and the polarisome are crucial for hyphal extension and the MT cytoskeleton continuously provides the building material within vesicles to the Spitzenkörper and determines growth directionality by delivery of cell end marker proteins.

Akhmanova, A. & Hoogenraad, C. C. (2005). Microtubule plus-end-tracking proteins: mechanisms and functions. Current Opinions in Cell Biology, 17, 47–54.
Aldaz, H., Rice, L. M., Stearns, T. & Agard, D. A. (2005). Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature, 435, 523–7.
Baas, P. W., Pienkowski, T. P., Cimbalnik, K. A., Toyama, K., Bakalis, S., Ahmad, F. J. & Kosik, K. S. (1994). Tau confers drug stability but not cold stability to microtubules in living cells. Journal of Cell Science, 107, 135–43.
Baas, P. W. & Qiang, L. (2005). Neuronal microtubules: when the MAP is the roadblock. Trends in Cell Biology, 15, 183–7.
Bartnicki-Garcia, S., Bartnicki, D. D., Gierz, G., Lopez-Franco, R. & Bracker, C. E. (1995). Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Experimental Mycology, 19, 153–9.
Browning, H., Hayles, J., Mata, J., Aveline, L., Nurse, P. & McIntosh, J. R. (2000). Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. Journal of Cell Biology, 151, 15–27.
Browning, H., Hackney, D. D. & Nurse, P. (2003). Targeted movement of cell end factors in fission yeast. Nature Cell Biology, 5, 812–18.
Brunswick, H. (1924). Untersuchungen über die Geschlechts und Kernverhältnisse bei der Hymenomyzetengattung Corpinus. Jena: Gustav Fisher.
Busch, K. E., Hayles, J., Nurse, P. & Brunner, D. (2004). Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Developmental Cell, 16, 831–43.
Carazo-Salas, R., Antony, C. & Nurse, P. (2005). The kinesin Klp2 mediates polarization of interphase microtubules in fission yeast. Science, 309, 297–300.
Carminati, J. L. & Stearns, T. (1997). Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. Journal of Cell Biology, 138, 629–41.
Carvalho, P., Gupta, M. L. J., Hoyt, M. A. & Pellman, D. (2004). Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Developmental Cell, 6, 815–29.
Cassimeris, L. & Spittle, C. (2001). Regulation of microtubule-associated proteins. International Review of Cytology, 210, 163–226.
Crampin, H., Finley, K., Gerami-Nejad, M., Court, H., Gale, C., Berman, J. & Sudbery, P. (2005). Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. Journal of Cell Science, 118, 2935–47.
Ding, D. Q., Chikashige, Y., Haraguchi, T. & Hiraoka, Y. (1998). Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. Journal of Cell Science, 111, 701–12.
Doxsey, S., McCollum, D. & Theurkauf, W. (2005). Centrosomes in cellular regulation. Annual Review of Cell and Developmental Biology, 21, 411–34.
Efimov, V., Zhang, J. & Xiang, X. (2006). CLIP-170 homologue and NUDE play overlapping roles in NUDF localization in Aspergillus nidulans. Molecular Biology of the Cell, 17, 2021–34.
Enos, A. P. & Morris, N. R. (1990). Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell, 60, 1019–27.
Eshel, D., Urrestarazu, L. A., Vissers, S., Jauniaux, J. C., Vliet-Reedijk, J. C., Planta, R. J. & Gibbons, I. R. (1993). Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proceedings of the National Academy of Sciences USA, 90, 11172–6.
Fischer, R. & Timberlake, W. E. (1995). Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein necessary for nuclear positioning and completion of asexual development. Journal of Cell Biology, 128, 485–98.
Freitag, M., Hickey, P. C., Raju, N. B., Selker, E. U. & Read, N. D. (2004). GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genetics and Biology, 41, 897–910.
Fuchs, F., Prokisch, H., Neupert, W. & Westermann, B. (2002). Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. Journal of Cell Science, 115, 1931–7.
Fuchs, F. & Westermann, B. (2005). Role of Unc104/KIF1-related motor proteins in mitochondrial transport in Neurospora crassa. Molecular Biology of the Cell, 16, 153–61.
Girbardt, M. (1957). Der Spitzenkörper von Polystictus versicolor. Planta, 50, 47–59.
Hagan, I. M. (1998). The fission yeast microtubule cytoskeleton. Journal of Cell Science, 111, 1603–12.
Han, G., Liu, B., Zhang, J., Zuo, W., Morris, N. R. & Xiang, X. (2001). The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Current Biology, 11, 19–24.
Harris, S. D. & Momany, C. (2004). Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genetics and Biology, 41, 391–400.
Harris, S. D., Read, N. D., Roberson, R. W., Shaw, B., Seiler, S., Plamann, M. & Momany, M. (2005). Polarisome meets Spitzenkörper: Microscopy, genetics, and genomics converge. Eukaryotic Cell, 4, 225–9.
Heath, I. B. (1981). Nucleus-associated organelles in fungi. International Review of Cytology, 69, 191–221.
Hestermann, A., Rehberg, M. & Gräf, R. (2002). Centrosomal microtubule plus end tracking proteins and their role in Dictyostelium cell dynamics. Journal of Muscle Research and Cell Motility, 23, 621–30.
Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 279, 519–26.
Hoepfner, D., Brachat, A. & Philippsen, P. (2000). Time-lapse video microscopy analysis reveals astral microtubule detachment in the yeast spindle pole mutant cnm67v. Molecular Biology of the Cell, 11, 1197–211.
Horio, T. & Oakley, B. R. (2005). The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Molecular Biology of the Cell, 16, 918–26.
Jaspersen, S. L. & Winey, M. (2004). The budding yeast spindle pole body: structure, duplication, and function. Annual Review of Cell and Developmental Biology, 20, 1–28.
Job, D., Valiron, O. & Oakley, B. R. (2003). Microtubule nucleation. Current Opinion in Cell Biology, 15, 111–17.
Jung, M. K., May, G. S. & Oakley, B. R. (1998). Mitosis in wild-type and β-tubulin mutant strains of Aspergillus nidulans. Fungal Genetics and Biology, 24, 146–60.
Kapitein, L. C., Peterman, E. J., Kwok, B. H., Kim, J. H., Kapoor, T. M. & Schmidt, C. F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 435, 114–18.
Knechtle, P., Dietrich, F. & Philippsen, P. (2003). Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus Ashbya gossypii. Molecular Biology of the Cell, 14, 4140–54.
Konzack, S., Rischitor, P., Enke, C. & Fischer, R. (2005). The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Molecular Biology of the Cell, 16, 497–506.
Lehmler, C., Steinberg, G., Snetselaar, K. M., Schliwa, M., Kahmann, R. & Bölker, M. (1997). Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO Journal, 16, 3464–73.
Maekawa, H., Usui, T., Knop, M. & Schiebel, E. (2003). Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO Journal, 22, 438–49.
Maekawa, H. & Schiebel, E. (2004). Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes and Development, 18, 1709–24.
Martin, R., Walther, A. & Wendland, J. (2004). Deletion of the dynein heavy-chain gene DYN1 leads to aberrant nuclear positioning and defective hyphal development in Candida albicans. Eukaryotic Cell, 3, 1574–88.
Martin, S. G. & Chang, F. (2003). Cell polarity: a new mod(e) of anchoring. Current Biology, 13, R711–730.
Martin, S. G. & Chang, F. (2005). New end take off: regulating cell polarity during the fission yeast cell cycle. Cell Cycle, 4(8), 1046–9.
Mata, J. & Nurse, P. (1997). tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell, 89, 939–49.
McDaniel, D. P. & Roberson, R. W. (1998). γ-tubulin is a component of the Spitzenkörper and centrosomes in hyphal-tip cells of Allomyces macrogynus. Protoplasma, 203, 118–23.
McGoldrick, C. A., Gruver, C. & May, G. S. (1995). myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. Journal of Cell Biology, 128, 577–87.
Miller, R. K., Heller, K. K., Frisèn, L., Wallack, D. L., Loayza, D., Gammie, A. E. & Rose, M. D. (1998). The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Molecular Biology of the Cell, 9, 2051–68.
Morris, N. R. (1976). Mitotic mutants of Aspergillus nidulans. Genetical Research, 26, 237–54.
Mouriño-Pérez, R. R., Roberson, R. W. & Bartnicki-Garcia, S. (2006). Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genetics and Biology, 43(6), 389–400.
O'Connell, M. J., Meluh, P. B., Rose, M. D. & Morris, N. R. (1993). Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. Journal of Cell Biology, 120, 153–62.
Oakley, B. R., Oakley, C. E., Yoon, Y. & Jung, K. M. (1990). γ-Tubulin is a component of the spindle pole body in Aspergillus nidulans. Cell, 61, 1289–301.
Oakley, B. R. (1995). A nice ring to the centrosome. Nature, 378, 555–6.
Oakley, B. R. (2000). An abundance of tubulins. Trends in Cell Biology, 10, 537–42.
Oakley, B. R. (2004). Tubulins in Aspergillus nidulans. Fungal Genetics and Biology, 41, 420–7.
Oakley, C. E. & Oakley, B. R. (1989). Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature, 338, 662–4.
Ovechkina, Y., Maddox, P., Oakley, C. E., Xiang, X., Osmani, S. A., Salomon, E. D. & Oakley, B. R. (2003). Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Molecular Biology of the Cell, 14, 2192–200.
Pereira, G. & Schiebel, E. (1997). Centrosome-microtubule nucleation. Journal of Cell Science, 110, 295–300.
Philippsen, P., Kaufmann, A. & Schmitz, H.-P. (2005). Homologues of yeast polarity genes control the development of multinucleated hyphae in Ashbya gossypii. Current Opinions in Microbiology, 8, 370–7.
Prigozhina, N. L., Walker, R. A., Oakley, C. E. & Oakley, B. R. (2001). Gamma-tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans. Molecular Biology of the Cell, 12, 3161–74.
Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y. & Bretscher, A. (2004). Mechanisms of polarized growth and organelle segregation in yeast. Annual Review of Cell and Developmental Biology, 20, 559–91.
Requena, N., Alberti-Segui, C., Winzenburg, E., Horn, C., Schliwa, M., Philippsen, P., Liese, R. & Fischer, R. (2001). Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Molecular Microbiology, 42, 121–32.
Riquelme, M., Reynaga-Peña, C. G., Gierz, G. & Bartnicki-García, S. (1998). What determines growth direction in fungal hyphae?Fungal Genetics and Biology, 24, 101–9.
Riquelme, M., Fischer, R. & Bartnicki-Garcia, S. (2003). Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma, 222, 211–15.
Riquelme, M. & Bartnicki-Garcia, S. (2004). Key differenences between lateral and apical branching in hyphae of Neurospora crassa. Fungal Genetics and Biology, 41, 842–51.
Rischitor, P., Konzack, S. & Fischer, R. (2004). The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryotic Cell, 3, 632–45.
Sagot, I., Klee, S. K. & Pellman, D. (2002). Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biology, 4, 42–50.
Sampson, K. & Heath, I. B. (2005). The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology, 151, 1543–55.
Sawin, K. E., Lourenco, P. C. C. & Snaith, H. A. (2004). Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Current Biology, 14, 763–75.
Sawin, K. E. & Snaith, H. A. (2004). Role of microtubules and tea1p in establishment and maintenance of fission yeast cell polarity. Journal of Cell Science, 117, 689–700.
Schliwa, M. & Woehlke, G. (2003). Molecular motors. Nature, 422, 759–65.
Schuyler, S. C. & Pellman, D. (2001a). Search, capture and signal: games microtubules and centrosomes play. Journal of Cell Science, 114, 247–55.
Schuyler, S. C. & Pellman, D. (2001b). Microtubule ‘plus-end-tracking proteins’: The end is just the beginning. Cell, 105, 421–4.
Seiler, S., Nargang, F. E., Steinberg, G. & Schliwa, M. (1997). Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO Journal, 16, 3025–34.
Seiler, S., Plamann, M. & Schliwa, M. (1999). Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Current Biology, 9, 779–85.
Sharpless, K. E. & Harris, S. D. (2002). Functional characterization and localization of the Aspergillus nidulans formin SEPA. Molecular Biology of the Cell, 13, 469–79.
Sheeman, B., Carvalho, P., Sagot, I., Geiser, J., Kho, D., Hoyt, M. A. & Pellman, D. (2003). Determinants of S. cerevisiae dynein localization and activation: Implications for the mechanism of spindle positioning. Current Biology, 13, 364–72.
Snaith, H. A. & Sawin, K. E. (2003). Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips. Nature, 423, 647–51.
Snell, V. & Nurse, P. (1994). Genetic analysis of cell morphogenesis in fission yeast – a role for casein kinase II in the establishment of polarized growth. EMBO Journal, 13, 2066–74.
Steinberg, G., Wedlich-Söldner, R., Brill, M. & Schulz, I. (2001). Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. Journal of Cell Science, 114, 609–22.
Straube, A., Enard, W., Berner, A., Wedlich-Söldner, R., Kahmann, R. & Steinberg, G. (2001). A split motor domain in a cytoplasmic dynein. EMBO Journal, 20, 5091–100.
Straube, A., Brill, M., Oakley, B. R., Horio, T. & Steinberg, G. (2003). Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Molecular Biology of the Cell, 14, 642–57.
Suelmann, R. & Fischer, R. (2000). Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motility and the Cytoskeleton, 45, 42–50.
Veith, D., Scherr, N., Efimov, V. P. & Fischer, R. (2005). Role of the spindle-pole body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. Journal of Cell Science, 118, 3705–16.
Venkatram, S., Jennings, J. L., Link, A. & Gould, K. L. (2005). Mto2p, a novel fission yeast protein required for cytoplasmic microtubule organization and anchoring of the cytokinetic actin ring. Molecular Biology of the Cell, 16, 3052–63.
Wendland, J. & Walther, A. (2005). Ashbya gossypii: a model for fungal developmental biology. Nature Reviews. Microbiology, 3, 421–9.
West, R. R., Malmstrom, T. & McIntosh, J. R. (2002). Kinesins klp5+ and klp6+ are required for normal chromosome movement in mitosis. Journal of Cell Science, 115, 931–40.
Woehlke, G. & Schliwa, M. (2000). Walking on two heads: The many talents of kinesin. Nature Reviews. Molecular Cell Biology, 1, 50–8.
Wu, Q., Sandrock, T. M., Turgeon, B. G., Yoder, O. C., Wirsel, S. G. & Aist, J. R. (1998). A fungal kinesin required for organelle motility, hyphal growth, and morphogenesis. Molecular Biology of the Cell, 9, 89–101.
Xiang, X., Beckwith, S. M. & Morris, N. R. (1994). Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proceedings of the National Academy of Sciences USA, 91, 2100–4.
Xiang, X. & Fischer, R. (2004). Nuclear migration and positioning in filamentous fungi. Fungal Genetics and Biology, 41, 411–19.
Yamamoto, A. & Hiraoka, Y. (2003). Cytoplasmic dynein in fungi: insights from nuclear migration. Journal of Cell Science, 116, 4501–12.
Yildiz, A. & Selvin, P. R. (2005). Kinesin: walking, crawling or sliding along?Trends in Cell Biology, 15, 112–20.
Zhang, J., Han, G. & Xiang, X. (2002). Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Molecular Microbiology, 44, 381–92.
Zhang, J., Li, S., Fischer, R. & Xiang, X. (2003). The accumulation of cytoplasmic dynein and dynactin at microtubule plus-ends is kinesin dependent in Aspergillus nidulans. Molecular Biology of the Cell, 14, 1479–88.
Zheng, X. D., Wang, Y. M. & Wang, Y. (2003). CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Molecular Microbiology, 49, 1391–405.