Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Print publication year: 2007
  • Online publication date: October 2013

8 - The cellular response to protein unfolding stress

from III - Protein folding and secretion



Yeast and fungi are important for the production of industrial and therapeutic proteins (Tables 8.1 and 8.2). Product titres can reach several g/l, e.g. for human serum albumin expressed in Pichia pastoris (~7 g/l) (Kobayashi et al., 2000) or cellobiohydrolase expressed in Trichoderma reesei (~20 g/l) (Durand, Clanet & Tiraby, 1988; Nakari-Setälä & Penttilä, 1995). However, in most cases product titres are ~1000-fold lower (Archer, Jeenes & Mackenzie, 1994; Penttilä, 1998; Cereghino & Cregg, 2000). Identification and engineering of the bottleneck in these, usually heterologous, protein production processes will increase their cost efficiency and competitiveness.

The first bottlenecks that were identified were gene copy number (Clare et al., 1991; McGrew et al., 1997; Vassileva et al., 2001) and transcription efficiency (Outchkourov, Stiekema & Jongsma, 2002). Both were overcome by increasing gene dosage (Clare et al., 1991; Parekh, Forrester & Wittrup, 1995; McGrew et al., 1997; Vassileva et al., 2001) and optimization of codon usage (Gouka, Punt & van den Hondel, 1997a; Kraševec, van den Hondel & Komel, 2000; Moralejo et al., 2000; Outchkourov et al., 2002; Cardoza et al., 2003). Reports emerged stating that with increased gene copy number protein production decreased (Parekh et al., 1995). Recombinant protein was shown to remain associated with the cell (Hohenblum, Borth & Mattanovich, 2003) and localized to the endoplasmic reticulum (ER) (Kauffman et al., 2002). Thus, protein folding and posttranslational modification in the ER are a major bottleneck for protein secretion.

Al-Sheikh, H., Watson, A. J., Lacey, G. A., Punt, P. J., MacKenzie, D. A., Jeenes, D. J., Pakula, T., Penttilä, M., Alcocer, M. J. & Archer, D. B. (2004). Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Molecular Microbiology, 53, 1731–42.
Archer, D. B., Jeenes, D. J. & Mackenzie, D. A. (1994). Strategies for improving heterologous protein production from filamentous fungi. Antonie Van Leeuwenhoek, 65, 245–50.
Bao, W. G. & Fukuhara, H. (2001). Secretion of human proteins from yeast: stimulation by duplication of polyubiquitin and protein disulfide isomerase genes in Kluyveromyces lactis. Gene, 272, 103–10.
Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology, 2, 326–32.
Blond-Elguindi, S., Cwirla, S. E., Dower, W. J., Lipshutz, R. J., Sprang, S. R., Sambrook, J. F. & Gething, M.-J. (1993). Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell, 75, 717–28.
Bowdish, K. S., Yuan, H. E. & Mitchell, A. P. (1995). Positive control of yeast meiotic genes by the negative regulator UME6. Molecular and Cellular Biology, 15, 2955–61.
Brickner, J. H. & Walter, P. (2004). Gene recruitment of the activated INO1 locus to the nuclear membrane. Public Library of Science Biology, 2, 1–11.
Broekhuijsen, M. P., Mattern, I. E., Contreras, R., Kinghorn, J. R. & Hondel, C. A. M. J. J. (1993). Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. Journal of Biotechnology, 31, 135–45.
Cardoza, R. E., Gutierrez, S., Ortega, N., Colina, A., Casqueiro, J. & Martin, J. F. (2003). Expression of a synthetic copy of the bovine chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnology and Bioengineering, 83, 249–59.
Carman, G. M. & Henry, S. A. (1989). Phospholipid biosynthesis in yeast. Annual Review of Biochemistry, 58, 635–69.
Cereghino, J. L. & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.
Chang, H. J., Jones, E. W. & Henry, S. A. (2002). Role of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae. Genetics, 162, 29–43.
Chapman, R. E. & Walter, P. (1997). Translational attenuation mediated by an mRNA intron. Current Biology, 7, 850–9.
Chen, Y., Pioli, D. & Piper, P. W. (1994). Overexpression of the gene for polyubiquitin in yeast confers increased secretion of a human leucocyte protease inhibitor. Biotechnology (NY), 12, 819–23.
Clare, J. J., Romanos, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., Sreekrishna, K. & Henwood, C. A. (1991). Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 105, 205–12.
Clark, M. W. & Abelson, J. (1987). The subnuclear localization of tRNA ligase in yeast. Journal of Cell Biology, 105, 1515–26.
Conesa, A., Jeenes, D., Archer, D. B., Hondel, C. A. M. J. J. & Punt, P. J. (2002). Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Applied and Environmental Microbiology, 68, 846–51.
Cox, J. S., Chapman, R. E. & Walter, P. (1997). The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Molecular Biology of the Cell, 8, 1805–14.
Dobson, C. M., Sali, A. & Karplus, M. (1998). Protein folding: a perspective from theory and experiment. Angewandte Chemie International Edition in English, 37, 868–93.
Dunn, A., Luz, J. M., Natalia, D., Gamble, J. A., Freedman, R. B. & Tuite, M. F. (1995). Protein disulphide isomerase (PDI) is required for the secretion of a native disulphide-bonded protein from Saccharomyces cerevisiae. Biochemical Society Transactions, 23, 78S.
Durand, H., Clanet, M. & Tiraby, G. (1988). Genetic improvement of Trichoderma reesei for large-scale cellulase production. Enzyme and Microbial Technology, 10, 341–6.
Ellgaard, L. & Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nature Reviews Molecular and Cellular Biology, 4, 181–91.
Flynn, G. C., Pohl, J., Flocco, M. T. & Rothman, J. E. (1991). Peptide-binding specificity of the molecular chaperone BiP. Nature, 353, 726–30.
Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. (2000). A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nature Cell Biology, 2, 379–84.
Fülöp, V. & Jones, D. T. (1999). b propellers: structural rigidity and functional diversity. Current Opinion in Structural Biology, 9, 715–21.
Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. (1992). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell, 68, 1077–90.
Goldmark, J. P., Fazzio, T. G., Estep, P. W., Church, G. M. & Tsukiyama, T. (2000). The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell, 103, 423–33.
Gonzalez, T. N., Sidrauski, C., Dörfler, S. & Walter, P. (1999). Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO Journal, 18, 3119–32.
Gouka, R. J., Punt, P. J. & Hondel, C. A. M. J. J. (1997a). Glucoamylase gene fusions alleviate limitations for protein production in Aspergillus awamori at the transcriptional and (post) translational levels. Applied and Environmental Microbiology, 63, 488–97.
Gouka, R. J., Punt, P. J. & Hondel, C. A. M. J. J. (1997b). Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Applied Microbiology and Biotechnology, 47, 1–11.
Harmsen, M. M., Bruyne, M. I., Raue, H. A. & Maat, J. (1996). Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Applied Microbiology and Biotechnology, 46, 365–70.
Hayano, T., Hirose, M. & Kikuchi, M. (1995). Protein disulfide isomerase mutant lacking its isomerase activity accelerates protein folding in the cell. FEBS Letters, 377, 505–11.
Haynes, C. M., Titus, E. A. & Cooper, A. A. (2004). Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Molecular Cell, 15, 767–76.
Hessing, J. G. M., Rotterdam, C., Verbakel, J. M., Roza, M., Maat, J., Gorcom, R. F. M. & Hondel, C. A. M. J. J. (1994). Isolation and characterization of a 1,4-β-endoxylanase gene of A. awamori. Current Genetics, 26, 228–32.
Hohenblum, H., Borth, N. & Mattanovich, D. (2003). Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. Journal of Biotechnology, 102, 281–90.
Hohenblum, H., Gasser, B., Maurer, M., Borth, N. & Mattanovich, D. (2004). Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnology and Bioengineering, 85, 367–75.
Kadosh, D. & Struhl, K. (1997). Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell, 89, 365–71.
Kadosh, D. & Struhl, K. (1998). Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes and Development, 12, 797–805.
Kauffman, K. J., Pridgen, E. M., Doyle, F. J., 3rd, Dhurjati, P. S. & Robinson, A. S. (2002). Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnology Progress, 18, 942–50.
Kawahara, T., Yanagi, H., Yura, T. & Mori, K. (1997). Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Molecular Biology of the Cell, 8, 1845–62.
Kobayashi, K., Kuwae, S., Ohya, T., Ohda, T., Ohyama, M. & Tomomitsu, K. (2000). High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. Journal of Bioscience and Bioengineering, 90, 280–8.
Krasevec, N., Hondel, C. A. M. J. J. & Komel, R. (2000). Expression of human lymphotoxin alpha in Aspergillus niger. Pflugers Arch, 440, R83–5.
Kron, S. J., Styles, C. A. & Fink, G. R. (1994). Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell, 5, 1003–22.
Kupiec, M., Byers, B., Esposito, R. E. & Mitchell, A. P. (1997). Meiosis and sporulation in Saccharomyces cerevisiae. In The Molecular and Cellular Biology of the Yeast Saccharomyces, Vol. 3, ed. Pringle, J. R., Broach, J. R. & Jones, E. W.. Plainview, NY: Cold Spring Harbor Laboratory Press, pp. 889–1036.
Liu, C. Y., Schröder, M. & Kaufman, R. J. (2000). Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. Journal of Biological Chemistry, 275, 24881–5.
Loewen, C. J., Gaspar, M. L., Jesch, S. A., Delon, C., Ktistakis, N. T., Henry, S. A. & Levine, T. P. (2004). Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science, 304, 1644–7.
Madeo, F., Fröhlich, E. & Fröhlich, K.-U. (1997). A yeast mutant showing diagnostic markers of early and late apoptosis. Journal of Cell Biology, 139, 729–34.
Madeo, F., Fröhlich, E., Ligr, M., Grey, M., Sigrist, S. J., Wolf, D. H. & Fröhlich, K.-U. (1999). Oxygen stress: a regulator of apoptosis in yeast. Journal of Cell Biology, 145, 757–67.
McGrew, J. T., Leiske, D., Dell, B., Klinke, R., Krasts, D., Wee, S. F., Abbott, N., Armitage, R. & Harrington, K. (1997). Expression of trimeric CD40 ligand in Pichia pastoris: use of a rapid method to detect high-level expressing transformants. Gene, 187, 193–200.
Mitchell, A. P. (1994). Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiological Reviews, 58, 56–70.
Molinari, M., Calanca, V., Galli, C., Lucca, P. & Paganetti, P. (2003). Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science, 299, 1397–400.
Moralejo, F. J., Cardoza, R. E., Gutierrez, S., Sisniega, H., Faus, I. & Martin, J. F. (2000). Overexpression and lack of degradation of thaumatin in an aspergillopepsin A-defective mutant of Aspergillus awamori containing an insertion in the pepA gene. Applied Microbiology and Biotechnology, 54, 772–7.
Moralejo, F. J., Watson, A. J., Jeenes, D. J., Archer, D. B. & Martín, J. F. (2001). A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspegillus awamori. Molecular Genetics and Genomics, 266, 246–53.
Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. & Yura, T. (2000). mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 97, 4660–5.
Mulder, H. J., Saloheimo, M., Penttilä, M. & Madrid, S. M. (2004). The transcription factor HACA mediates the unfolded protein response in Aspergillus niger, and up-regulates its own transcription. Molecular Genetics and Genomics, 271, 130–40.
Nakai, K. & Horton, P. (1999). PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends in Biochemical Sciences, 24, 34–6.
Nakari-Setälä, T. & Penttilä, M. (1995). Production of Trichoderma reesei cellulases on glucose-containing media. Applied and Environmental Microbiology, 61, 3650–5.
Ngiam, C., Jeenes, D. J., Punt, P. J., Hondel, C. A. M. J. J. & Archer, D. B. (2000). Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger. Applied and Environmental Microbiology, 66, 775–82.
Nikawa, J., Akiyoshi, M., Hirata, S. & Fukuda, T. (1996). Saccharomyces cerevisiae IRE2/HAC1 is involved in IRE1-mediated KAR2 expression. Nucleic Acids Research, 24, 4222–6.
Nikawa, J. & Yamashita, S. (1992). IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae. Molecular Microbiology, 6, 1441–6.
Niwa, M., Patil, C. K., DeRisi, J. & Walter, P. (2005). Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Genome Biology, 6, R3.
Oda, Y., Hosokawa, N., Wada, I. & Nagata, K. (2003). EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science, 299, 1394–7.
Ogawa, N. & Mori, K. (2004). Autoregulation of the HAC1 gene is required for sustained activation of the yeast unfolded protein response. Genes to Cells, 9, 95–104.
Okushima, Y., Koizumi, N., Yamaguchi, Y., Kimata, Y., Kohno, K. & Sano, H. (2002). Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa. Plant Cellular Physiology, 43, 532–9.
Outchkourov, N. S., Stiekema, W. J. & Jongsma, M. A. (2002). Optimization of the expression of equistatin in Pichia pastoris. Protein Expression and Purification, 24, 18–24.
Pakula, T., Saloheimo, M., Uusitalo, J., Huuskonen, A., Watson, A., Jeenes, D., Archer, D. & Pentilla, M. (2004). Method for production of secreted proteins in fungi. Sughrue Mion, PLLC: Canada. CA 2,438,356 (A1), 1–58.
Pakula, T. M., Laxell, M., Huuskonen, A., Uusitalo, J., Saloheimo, M. & Penttilä, M. (2003). The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. Journal of Biological Chemistry, 278, 45011–20.
Palmiter, R. D. (1975). Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell, 4, 189–97.
Paoli, M. (2001). Protein folds propelled by diversity. Progress in Biophysics and Molecular Biology, 76, 103–30.
Papa, F. R., Zhang, C., Shokat, K. & Walter, P. (2003). Bypassing a kinase activity with an ATP-competitive drug. Science, 302, 1533–7.
Parekh, R., Forrester, K. & Wittrup, D. (1995). Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae. Protein Expression and Purification, 6, 537–45.
Patil, C. K., Li, H. & Walter, P. (2004). Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. Public Library of Science Biology, 2, 1208–23.
Penttilä, M. (1998). Heterologous protein production in Trichoderma. In Trichoderma And Gliocladium, Vol. 2, ed. , H. G. E. & Kubicek, C. P.. London: Taylor & Francis, pp. 365–82.
Ponting, C. P. (2000). Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochemical Journal, 351, 527–35.
Punt, P. J., Gemeren, I. A., Drint-Kuijvenhoven, J., Hessing, J. G. M., Muijlwijk-Harteveld, G. M., Beijersbergen, A., Verrips, C. T. & Hondel, C. A. M. J. J. (1998). Analysis of the role of the gene bipA, encoding the major endoplasmic reticulum chaperone protein in the secretion of homologous and heterologous proteins in black Aspergilli. Applied Microbiology and Biotechnology, 50, 447–54.
Punt, P. J., Veldhuisen, G. & Hondel, C. A. M. J. J. (1994). Protein targeting and secretion in filamentous fungi. A progress report. Antonie Van Leeuwenhoek, 65, 211–16.
Robinson, A. S., Bockhaus, J. A., Voegler, A. C. & Wittrup, K. D. (1996). Reduction of BiP levels decreases heterologous protein secretion in Saccharomyces cerevisiae. Journal of Biological Chemistry, 271, 10017–22.
Robinson, A. S., Hines, V. & Wittrup, K. D. (1994). Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology (NY), 12, 381–4.
Rubin-Bejerano, I., Mandel, S., Robzyk, K. & Kassir, Y. (1996). Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Molecular and Cellular Biology, 16, 2518–26.
Rüegsegger, U., Leber, J. H. & Walter, P. (2001). Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell, 107, 103–14.
Saloheimo, M., Lund, M. & Penttilä, M. E. (1999). The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Molecular and General Genetics, 262, 35–45.
Saloheimo, M., Valkonen, M. & Penttilä, M. (2003). Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Molecular Microbiology, 47, 1149–61.
Schröder, M., Chang, J. S. & Kaufman, R. J. (2000). The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast. Genes and Development, 14, 2962–75.
Schröder, M., Clark, R. & Kaufman, R. J. (2003). IRE1- and HAC1-independent transcriptional regulation in the unfolded protein response of yeast. Molecular Microbiology, 49, 591–606.
Schröder, M., Clark, R., Liu, C. Y. & Kaufman, R. J. (2004). The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase. EMBO Journal, 23, 2281–92.
Schröder, M. & Kaufman, R. J. (2005a). ER stress and the unfolded protein response. Mutation Research, 569, 29–63.
Schröder, M. & Kaufman, R. J. (2005b). The mammalian unfolded protein response. Annual Review of Biochemistry, 74, 739–89.
Schultz, L. D., Markus, H. Z., Hofmann, K. J., Montgomery, D. L., Dunwiddie, C. T., Kniskern, P. J., Freedman, R. B., Ellis, R. W. & Tuite, M. F. (1994). Using molecular genetics to improve the production of recombinant proteins by the yeast Saccharomyces cerevisiae. Annals of the New York Academy of Sciences, 721, 148–57.
Shahinian, S., Dijkgraaf, G. J., Sdicu, A. M., Thomas, D. Y., Jakob, C. A., Aebi, M. & Bussey, H. (1998). Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall β-1,6-glucan of Saccharomyces cerevisiae. Genetics, 149, 843–56.
Shusta, E. V., Raines, R. T., Pluckthun, A. & Wittrup, K. D. (1998). Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nature Biotechnology, 16, 773–7.
Sidrauski, C., Cox, J. S. & Walter, P. (1996). tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell, 87, 405–13.
Spode, I., Maiwald, D., Hollenberg, C. P. & Suckow, M. (2002). ATF/CREB sites present in sub-telomeric regions of Saccharomyces cerevisiae chromosomes are part of promoters and act as UAS/URS of highly conserved COS genes. Journal of Molecular Biology, 319, 407–20.
Steel, G. J., Fullerton, D. M., Tyson, J. R. & Stirling, C. J. (2004). Coordinated activation of Hsp70 chaperones. Science, 303, 98–101.
Stevens, F. J. & Argon, Y. (1999). Protein folding in the ER. Seminars in Cell and Developmental Biology, 10, 443–54.
Strich, R., Surosky, R. T., Steber, C., Dubois, E., Messenguy, F. & Esposito, R. E. (1994). UME6 is a key regulator of nitrogen repression and meiotic development. Genes and Development, 8, 796–810.
Stroobants, A. K., Hettema, E. H., Berg, M. & Tabak, H. F. (1999). Enlargement of the endoplasmic reticulum membrane in Saccharomyces cerevisiae is not necessarily linked to the unfolded protein response via Ire1p. FEBS Letters, 453, 210–14.
Tachibana, C. & Stevens, T. H. (1992). The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Molecular and Cellular Biology, 12, 4601–11.
Tirasophon, W., Lee, K., Callaghan, B., Welihinda, A. & Kaufman, R. J. (2000). The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes and Development, 14, 2725–36.
Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S. & Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell, 101, 249–58.
Valkonen, M., Penttilä, M. & Saloheimo, M. (2003a). Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology, 69, 2065–72.
Valkonen, M., Penttilä, M. & Saloheimo, M. (2004). The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Molecular Genetics and Genomics, 272, 443–51.
Valkonen, M., Ward, M., Wang, H., Penttilä, M. & Saloheimo, M. (2003b). Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Applied and Environmental Microbiology, 69, 6979–86.
Gemeren, I. A., Beijersbergen, A., Hondel, C. A. M. J. J. & Verrips, C. T. (1998). Expression and secretion of defined cutinase variants by Aspergillus awamori. Applied and Environmental Microbiology, 64, 2794–9.
Vassileva, A., Chugh, D. A., Swaminathan, S. & Khanna, N. (2001). Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expression and Purification, 21, 71–80.
Verdoes, J. C., Punt, P. J., Schrickx, J. M., Verseveld, H. W., Stouthamer, A. H. & Hondel, C. A. M. J. J. (1993). Glucoamylase overexpression in Aspergillus niger: molecular genetic analysis of strains containing multiple copies of the glaA gene. Transgenic Research, 2, 84–92.
Wang, H. & Ward, M. (2000). Molecular characterization of a PDI-related gene prpA in Aspergillus niger var. awamori. Current Genetics, 37, 57–64.
Washburn, B. K. & Esposito, R. E. (2001). Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Molecular and Cellular Biology, 21, 2057–69.
Welihinda, A. A., Tirasophon, W., Green, S. R. & Kaufman, R. J. (1997). Gene induction in response to unfolded protein in the endoplasmic reticulum is mediated through Ire1p kinase interaction with a transcriptional coactivator complex containing Ada5p. Proceedings of the National Academy of Sciences of the United States of America, 94, 4289–94.
Welihinda, A. A., Tirasophon, W., Green, S. R. & Kaufman, R. J. (1998). Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Ire1p kinase. Molecular and Cellular Biology, 18, 1967–77.
Welihinda, A. A., Tirasophon, W. & Kaufman, R. J. (2000). The transcriptional co-activator ADA5 is required for HAC1 mRNA processing in vivo. Journal of Biological Chemistry, 275, 3377–81.
Zillmann, M., Gorovsky, M. A. & Phizicky, E. M. (1991). Conserved mechanism of tRNA splicing in eukaryotes. Molecular and Cellular Biology, 11, 5410–16.