Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T07:02:39.677Z Has data issue: false hasContentIssue false

5 - Computer modeling of granular rheology

Published online by Cambridge University Press:  05 July 2014

Leonardo E. Silbert
Affiliation:
Southern Illinois University
Jeffrey Olafsen
Affiliation:
Baylor University, Texas
Get access

Summary

Introduction

Granular materials are ubiquitous throughout nature. From the beauty of sand dunes and the rings of Saturn to the destructive power of snow avalanches and mudslides, the flow of ice floes, and the manner in which plate tectonics determine much of the morphology of the Earth [1–4]. These phenomena arise from the interplay between structural and dynamical properties that result in the collective behavior of a vast number of smaller, distinct entities that we call “grains.” From a technological point of view, granular materials play a dominant role in numerous industries, such as mining, agriculture, civil engineering, pharmaceuticals manufacturing, and ceramic component design. Even apparently the most mundane of activities from coffee bean bag filling at the grocery store to pouring salt onto our dinner plates at night involve various aspects of granular matter mechanics that continue to puzzle us. It is estimated that particulate media are second only to water as the most manipulated material for human usage [4], amounting to trillions of dollars per annum in the US alone. The importance of granular materials to our daily lives cannot be overstated.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R. L., Brown and J. C., Richards, Principles of Powder Mechanics (Pergamon Press, Oxford, 1970).Google Scholar
[2] S. B., Savage, “Gravity flow of cohesionless granular materials in chutes and channels,J. Fluid Mech. 92, 53 (1979).Google Scholar
[3] R. M., Iverson, “The physics of debris flows,Rev. Geophys. 35, 245 (1997).Google Scholar
[4] J., Duran, Sands, Powders, and Grains An Introduction to the Physics of Granular Materials (Springer-Verlag, New York, 2000).Google Scholar
[5] R. M., Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, 1992).Google Scholar
[6] Challenges in Granular Physics,T., Halsey and A., Mehta (eds.) (World Scientific, Singapore, 2002).
[7] H. M., Jaeger, S. R., Nagel, and R. P., Behringer, “Granular solids, liquids, and gases,Rev. Mod. Phys. 68, 1259 (1996).Google Scholar
[8] I. S., Aranson and L. S., Tsimring, “Patterns and collective behavior in granular media: theoretical concepts,Rev. Mod. Phys. 78, 641 (2006).Google Scholar
[9] G. D., Scott, A. M., Charlesworth, and M. K., Max, “On the random packing of spheres,J. Chem. Phys. 40, 611 (1964).Google Scholar
[10] J. D., Bernal, “The Bakerian Lecture, 1962: the structure of liquids,Proc. Roy. Soc. London. Series A 280, 299 (1964).Google Scholar
[11] C. S., O'Hern, L. E., Silbert, A. J., Liu, and S. R., Nagel, “Jamming at zero temperature and zero applied stress: the epitome of disorder,Phys. Rev. E 68, 011306 (2003).Google Scholar
[12] L. E., Silbert, A. J., Liu, and S. R., Nagel, “Vibrations and diverging length scales near the unjamming transition,Phys. Rev. Lett. 95, 098301 (2005).Google Scholar
[13] L. E., Silbert, A. J., Liu, and S. R., Nagel, “Structural signatures of the unjamming transition,Phys. Rev. E 73, 041304 (2006).Google Scholar
[14] J. D., Bernal and J., Mason, “Co-ordination of randomly packed spheres,Nature 188, 910 (1960).Google Scholar
[15] G. D., Scott, “Packing of equal spheres,Nature 188, 908 (1960).Google Scholar
[16] J. G., Berryman, “Random close packing of hard spheres and disks,Phys. Rev. A 27, 1053 (1983).Google Scholar
[17] G. Y., Onoda and E. G., Liniger, “Random loose packings of uniform spheres and the dilatancy onset,Phys. Rev. Lett. 64, 2727 (1990).Google Scholar
[18] S., Torquato, T. M., Truskett, and P. G., Debenedetti, “Is random close packing of spheres well defined?,Phys. Rev. Lett. 84, 2064 (2000).Google Scholar
[19] L. E., Silbert, “Jamming of frictional spheres and random close packing,” (to appear in Soft Matter, 2010).Google Scholar
[20] L. E., Silbert, D., Ertaş, G. S., Grest, T. C., Halsey, and D., Levine, “Geometry of frictional and frictionless sphere packings,Phys. Rev. E 65, 031304 (2002).Google Scholar
[21] H. A., Makse, D. L., Johnson, and L. M., Schwartz, “Packing of compressible granular materials,Phys. Rev. Lett. 84, 4160 (2000).Google Scholar
[22] H. P., Zhang and H. A., Makse, “Jamming Transition in emulsions and granular materials,Phys. Rev. E 72, 011301 (2005).Google Scholar
[23] C., Song, P., Wang, and H. A., Makse, “A phase diagram for jammed matter,Nature 453, 629 (2008).Google Scholar
[24] I., Goldhirsch, “Rapid granular flows,Ann. Rev. Fluid Mech. 35, 267 (2003).Google Scholar
[25] K., To, P.-Y., Lai, and H. K., Pak, “Jamming of granular flow in a two-dimensional hopper,Phys. Rev. Lett. 86, 71 (2001).Google Scholar
[26] L. E., Silbert, “Temporally heterogeneous dynamics in granular flows,Phys. Rev. Lett. 94, 098002 (2005).Google Scholar
[27] A., Ferguson and B., Chakraborty, “Spatially heterogeneous dynamics in dense, driven granular flows,Europhys. Lett. 78, 28003 (2007).Google Scholar
[28] L. E., Silbert, G. S., Grest, S. J., Plimpton, and D., Levine, “Boundary effects and self-organization in dense granular flows,Phys. Fluids 14, 2637 (2002).Google Scholar
[29] J., Gollub, G., Voth, and J., Tsai, “Internal granular dynamics, shear induced crystallization, and compaction steps,Phys. Rev. Lett. 91, 064301 (2003).Google Scholar
[30] K. E., Daniels and R. P., Behringer, “Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow,Phys. Rev. Lett. 94, 168001 (2005).Google Scholar
[31] P.-A., Lemieux and D. J., Durian, “From avalanches to fluid flow: a continuous picture of grain dynamics down a heap,Phys. Rev. Lett. 85, 4273 (2000).Google Scholar
[32] L., Bocquet, W., Losert, D., Schalk, T. C., Lubensky, and J. P., Gollub, “Granular shear flow dyanmics and forces: experiment and continuum theory,Phys. Rev. E 65, 011307 (2001).Google Scholar
[33] P. A., Cundall and O. D. L., Strack, “A discrete numerical model for granular assemblies,Geotechnique 29, 47 (1979).Google Scholar
[34] O. R., Walton, “Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres,Mech. Mat. 16, 239 (1993).Google Scholar
[35] M. P., Allen and D. J., Tilldesley, Computer Simulations of Liquids (Oxford University Press, Oxford, 1987).Google Scholar
[36] D. C., Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995).Google Scholar
[37] K. L., Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1987).Google Scholar
[38] L. D., Landau and E. M., Lifshitz, Theory of Elasticity, Vol. 7 of Course of Theoretical Physics, 3rd edn (Elsevier, Oxford, 1986).Google Scholar
[39] J., Schafer, S., Dippel, and D. E., Wolf, “Force schemes in simulations of granular materials,J. Phys. I France 6, 5 (1996).Google Scholar
[40] T., Poschel and T., Schwager, Computational Granular Dynamics (Springer, Berlin, 2005).Google Scholar
[41] D., Ertaş, G. S., Grest, T. C., Halsey, D., Levine, and L. E., Silbert, “Gravity-driven dense granular flows,Europhys. Lett. 56, 214 (2001).Google Scholar
[42] L. E., Silbert, D., Ertaş, G. S., Grest, T. C., Halsey, D., Levine, and S. J., Plimpton, “Granular flow down an inclined plane: Bagnold scaling and rheology,Phys. Rev. E 64, 051302 (2001).Google Scholar
[43] R., Brewster, G. S., Grest, and A. J., Levine, “Effects of cohesion on the surface angle and velocity profiles of granular material in a rotating drum,Phys. Rev. E 79, 011305 (2009).Google Scholar
[44] S. J., Plimpton, “Fast parallel algorithms for short-range molecular dynamics,J. Comp. Phys. 117, 1 (1995).Google Scholar
[45] http://lammps.sandia.gov/.
[46] O., Pouliquen, “Scaling laws in granular flows down rough inclined planes,Phys. Fluids 11, 542 (1999).Google Scholar
[47] C., Ancey, “Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime,Phys. Rev. E 65, 011304 (2001).Google Scholar
[48] E., Azanza, F., Chevoir, and P., Moucheront, “Experimental study of collisional granular flows down an inclined plane,J. Fluid Mech. 400, 199 (1999).Google Scholar
[49] T., Borzsonyi, T. C., Halsey, and R. E., Ecke, “Two scenarios for avalanche dynamics in inclined granular layers,Phys. Rev. Lett. 94, 208001 (2005).Google Scholar
[50] L. E., Silbert, J. W., Landry, and G. S., Grest, “Granular flow down a rough inclined plane: transition between thick and thin piles.,Phys. Fluids 15, 1 (2003).Google Scholar
[51] W. T., Bi, R., Delannay, P., Richard, N., Taberlet, and A., Valance, “Two- and three- dimensional confined granular chute flows: experimental and numerical results,J. Phys.: Condens. Matter 17, S2457 (2005).Google Scholar
[52] P., Mills, D., Loggia, and M., Tixier, “Model for a stationary dense granular flow along an inclined wall,Europhys. Lett. 45, 733 (1999).Google Scholar
[53] C., Ancey and P., Evesque, “Frictional-collisional regime for granular suspension flows down an inclined channel,Phys. Rev. E 62, 8349 (2000).Google Scholar
[54] I. S., Aranson and L. S., Tsimring, “Continuum description of avalanches in granular media,Phys. Rev. E 64, 020301 (2001).Google Scholar
[55] L., Bocquet, J., Errami, and T. C., Lubensky, “Hydrodynamic model for a dynamical jammed-to-flowing transition in gravity driven granular media,Phys. Rev. Lett. 89, 184301 (2002).Google Scholar
[56] A., Lemaître, “Origin of a repose angle: kinetics of rearrangement for granular media,Phys. Rev. Lett. 89, 064303 (2002).Google Scholar
[57] D., Ertas and T. C., Halsey, “Granular gravitational collapse and chute flow,Europhys. Lett. 60, 931 (2002).Google Scholar
[58] M. Y., Louge, “Model for dense granular flows down bumpy inclines,Phys. Rev. E 67, 061303 (2003).Google Scholar
[59] V., Kumaran, “Kinetic theory for the density plateau in the granular flow down an inclined plane,Europhys. Lett. 73, 232 (2006).Google Scholar
[60] J. T., Jenkins, “Dense shearing flows of inelastic disks,Phys. Fluids 18, 103307 (2006).Google Scholar
[61] N., Menon and D. J., Durian, “Diffusing-wave spectroscopy of dyanmics in a three- dimensional granular flow,Science 275, 1920 (1997).Google Scholar
[62] N., Mitarai and H., Nakanishi, “Hard-sphere limit of soft-sphere model for granular materials: stiffness dependence of steady granular flow,Phys. Rev. E 67, 021301 (2003).Google Scholar
[63] D., Volfson, L. S., Tsimring, and I. S., Aranson, “Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations,Phys. Rev. E 68, 021301 (2003).Google Scholar
[64] G., Midi, “On dense granular flows,Eur. Phys. J. E 14, 341 (2004).Google Scholar
[65] F., da Cruz, S., Emam, M., Prochnow, J.-N., Roux, and F., Chevoir, “Rheophysics of dense granular materials: discrete simulation of plane shear flows,Phys. Rev. E 72, 021309 (2005).Google Scholar
[66] R. A., Bagnold, “Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear,Proc. R. Soc. London. Series A 225, 49 (1954).Google Scholar
[67] G., Lois, A., Lemaître, and J. M., Carlson, “Numerical tests of constitutive laws for dense granular flows,Phys. Rev. E 72, 051303 (2005).Google Scholar
[68] C. S., Campbell, “Stress-controlled elastic granular shear flows,J.Fluid Mech. 539, 273 (2005).Google Scholar
[69] N., Mitarai and H., Nakanishi, “Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow,Phys. Rev. Lett. 94, 128001 (2005).Google Scholar
[70] L. E., Silbert, G. S., Grest, R., Brewster, and A. J., Levine, “Rheology and contact lifetimes in dense granular flows,Phys. Rev. Lett. 99, 068002 (2007).Google Scholar
[71] R., Brewster, G. S., Grest, J. W., Landry, and A. J., Levine, “Plug flow and the breakdown of Bagnold scaling in cohesive granular flows,Phys. Rev. E 72, 061301 (2005).Google Scholar
[72] R., Brewster, L. E., Silbert, G. S., Grest, and A. J., Levine, “Relationship between interparticle contact lifetimes and rheology in gravity-driven granular flows,Phys. Rev. E 77, 061302 (2008).Google Scholar
[73] G., Lois, A., Lemaître, and J. M., Carlson, “Emergence of multi-contact interactions in contact dynamics simulations of granular shear flows,Europhys. Lett. 76, 318 (2006).Google Scholar
[74] G., Lois, A., Lemaître, and J. M., Carlson, “Spatial force correlations in granular shear flow, I: numerical evidence,Phys. Rev. E 76, 021302 (2007).Google Scholar
[75] G., Lois, A., Lemaître, and J. M., Carlson, “Spatial force correlations in granular shear flow, II: theoretical implications,Phys. Rev. E 76, 021303 (2007).Google Scholar
[76] C. S., Campbell, “Granular shear flows at the elastic limit,J. Fluid Mech. 465, 261 (2002).Google Scholar
[77] G., Lois and J. M., Carlson, “Force networks and the dynamic approach to jamming in sheared granular media,Europhys. Lett. 80, 58001 (2007).Google Scholar
[78] D. A., McQuarrie, Statistical Mechanics (University Science Books, Sausalito, 2000).Google Scholar
[79] D. L., Blair and A., Kudrolli, “Velocity correlations in dense granular gases,Phys. Rev. E 64, 050301 (2001).Google Scholar
[80] C. S., O'Hern, S. A., Langer, A. J., Liu, and S. R., Nagel, “Force Distributions near jamming and glass transitions,Phys. Rev. Lett. 86, 111 (2001).Google Scholar
[81] E. I., Corwin, H. M., Jaeger, and S. R., Nagel, “Structural signature of jamming in granular media,Nature 435, 1075 (2005).Google Scholar
[82] K. A., Reddy and V., Kumaran, “Applicability of constitutive relations from kinetic theory for dense granular flows,Phys. Rev. E 76, 061305 (2007).Google Scholar
[83] O., Pouliquen, “Velocity correlations in dense granular flows,Phys. Rev. Lett. 93, 248001 (2004).Google Scholar
[84] O., Baran, D., Ertas, T. C., Halsey, G. S., Grest, and J. B., Lechman, “Velocity correlations in dense gravity-driven granular chute flow,Phys. Rev. E 74, 051302 (2006).Google Scholar
[85] L., Pournin, T. M., Liebling, and A., Mocellin, “Molecular-dynamics force models for better control of energy dissipation in numerical simulations of dense granular media,Phys. Rev. E 65, 011302 (2001).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×