Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T10:36:01.268Z Has data issue: false hasContentIssue false

10 - When is a Hox gene not a Hox gene? The importance of gene nomenclature

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

GENE CLASSIFICATION IS AN ESSENTIAL PRECURSOR TO EVO-DEVO

A sensible classification of developmental control genes and an understanding of their phylogeny are essential to any endeavour of molecular evolutionary developmental biology (evo-devo) or comparative genomics, since it is crucial that the structure, expression and function of orthologous genes are being compared between taxa. This is particularly true for the homeobox genes, for which there are confusing and conflicting names and classifications that hinder our investigation and understanding of their evolution and their role in animal evo-devo (I will restrict myself here to consideration of animal homeobox genes). Since these genes are central components of most developmental processes, are important indicators of major transitions in animal genome evolution, and are often found to be targets and/or agents of the evolution of development, then we must continue to improve and coordinate our classifications of these genes as more data become available from a greater array of taxa in this age of genomics.

CONVENTIONS

Animal homeobox genes can be divided, on the basis of their sequence similarities, into two major classes (ANTP and PRD) along with several minor classes (TALE, LIM, POU, ZF, cut, prox, HNF and SIX; Bürglin 2005, Edvardsen et al. 2005, Holland and Takahashi 2005). It is in the ANTP-class that most confusion and discrepancy exists, and so I shall concentrate on this class and attempt to resolve at least some of the confusion.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 175 - 193
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Booth, H. A. F. & Holland, P. W. H. 2004. Eleven daughters of NANOG. Genomics 84, 229–238.CrossRefGoogle ScholarPubMed
Booth, H. A. F. & Holland, P. W. H. 2007. Annotation, nomenclature and evolution of four novel homeobox genes expressed in the human germ line. Gene 7, 7–14.CrossRefGoogle Scholar
Brooke, N. M., Garcia-Fernàndez, J. & Holland, P. W. H. 1998. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392, 920–922.CrossRefGoogle ScholarPubMed
Bürglin, T. R. 1994. A comprehensive classification of homeobox genes. In Duboule, D. (ed.) Guidebook to the Homeobox Genes. Oxford: Oxford University Press, pp. 25–71.Google Scholar
Bürglin, T. R. 2005. Homeodomain proteins. In Meyers, R. A. (ed.) Encyclopedia of Molecular Cell Biology and Molecular Medicine, Weinheim: Wiley-VCH Verlag GmbH & Co., pp. 179–222.Google Scholar
Castro, L. F. C. & Holland, P. W. H. 2003. Chromosomal mapping of ANTP class homeobox genes in amphioxus: piecing together ancestral genomes. Evolution & Development 5, 459–465.CrossRefGoogle ScholarPubMed
Chourrout, D., Delsuc, F., Chourrout, P.et al. 2006. Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442, 684–687.CrossRefGoogle ScholarPubMed
Coghlan, A. & Wolfe, K. H. 2002. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Research 12, 857–867.CrossRefGoogle ScholarPubMed
Coulier, F., Burtey, S., Chaffanet, M., Birg, F. & Birnbaum, D. 2000. Ancestrally duplicated paraHOX gene clusters in humans. International Journal of Oncology 17, 439–444.Google ScholarPubMed
Damen, W. G. 2002. Fushi-tarazu: a Hox gene changes its role. BioEssays 24, 992–995.CrossRefGoogle ScholarPubMed
Damen, W. G. & Tautz, D. 1998. A Hox class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-like fashion. Development Genes & Evolution 208, 586–590.CrossRefGoogle Scholar
Dawes, R. E., Dawson, I., Falciani, F., Tear, G. & Akam, M. E. 1994. Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120, 1561–1572.Google ScholarPubMed
Rosa, R., Grenier, J. K., Andreeva, T.et al. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772–776.CrossRefGoogle ScholarPubMed
Edvardsen, R. B., Seo, H., Jensen, M.et al. 2005. Remodelling of the homeobox gene complement in the tunicate Oikopleura dioica. Current Biology 15, R12–R13.CrossRefGoogle ScholarPubMed
Falciani, F., Hausdorf, B., Schröder, R.et al. 1996. Class 3 Hox genes in insects and the origin of zen. Proceedings of the National Academy of Sciences of the USA 93, 8479–8484.CrossRefGoogle ScholarPubMed
Ferrier, D. E. K. 2006. Evolution of Hox gene clusters. In Papageorgiou, S. (ed.) HOX Gene Expression. Landes Bioscience, pp. 53–67.Google Scholar
Ferrier, D. E. K., Dewar, K., Cook, A.et al. 2005. The chordate ParaHox cluster. Current Biology 15, R820–R822.CrossRefGoogle ScholarPubMed
Ferrier, D. E. K. & Holland, P. W. H. 2001. Ancient origin of the Hox gene cluster. Nature Reviews Genetics 2, 33–38.CrossRefGoogle ScholarPubMed
Garcia-Fernàndez, J. 2005. The genesis and evolution of homeobox gene clusters. Nature Reviews Genetics 6, 881–892.CrossRefGoogle ScholarPubMed
Gauchat, D., Mazet, F., Berney, C.et al. 2000. Evolution of Antp-class genes and differential expression of Hydra Hox/ParaHox genes in anterior patterning. Proceedings of the National Academy of Sciences of the USA 97, 4493–4498.CrossRefGoogle ScholarPubMed
Harvey, R. P. 1996. NK-2 homeobox genes and heart development. Developmental Biology 178, 203–216.CrossRefGoogle ScholarPubMed
Holland, P. W. H. & Takahashi, T. 2005. The evolution of homeobox genes: implications for the study of brain development. Brain Research Bulletin 66, 484–490.CrossRefGoogle Scholar
Jakob, W., Sagasser, S., Dellaporta, S. L.et al. 2004. The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Development Genes & Evolution 214, 170–175.Google Scholar
Kamm, K. & Schierwater, B. 2006. Ancient complexity of the non-Hox ANTP gene complement in the anthozoan Nematostella vectensis: implications for the evolution of the ANTP superclass. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 306, 589–596.CrossRefGoogle ScholarPubMed
Kamm, K., Schierwater, B., Jakob, W., Dellaporta, S. L. & Miller, D. J. 2006. Axial patterning and diversification in the Cnidaria predate the Hox system. Current Biology 16, 920–926.CrossRefGoogle ScholarPubMed
Lander, E. S., Linton, L. M., Birren, B.et al. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860–921.CrossRefGoogle ScholarPubMed
Luke, G. N., Castro, L. F., McLay, K.et al. 2003. Dispersal of NK homeobox gene clusters in amphioxus and humans. Proceedings of the National Academy of Sciences of the USA 100, 5292–5295.CrossRefGoogle ScholarPubMed
Larroux, C., Fahey, B., Degnan, S. M.et al. 2007. The NK homeobox gene cluster predates the origin of Hox genes. Current Biology 17, 706–710.CrossRefGoogle ScholarPubMed
Minguillón, C. & Garcia-Fernàndez, J. 2003. Genesis and evolution of the Evx and Mox genes and the extended Hox and ParaHox gene clusters. Genomic Biology 4, R12.CrossRefGoogle ScholarPubMed
Monteiro, A. S. & Ferrier, D. E. K. 2006. Hox genes are not always colinear. International Journal of Biological Sciences 2, 95–103.CrossRefGoogle Scholar
Monteiro, A. S., Schierwater, B., Dellaporta, S. L. & Holland, P. W. H. 2006. A low diversity of ANTP class homeobox genes in Placozoa. Evolution & Development 8, 174–182.CrossRefGoogle ScholarPubMed
Mulley, J. F., Chiu, C. H. & Holland, P. W. H. 2006. Breakup of a homeobox cluster after genome duplication in teleosts. Proceedings of the National Academy of Sciences of the USA 103, 10369–10372.CrossRefGoogle ScholarPubMed
Pollard, S. L. & Holland, P. W. H. 2000. Evidence for 14 homeobox gene clusters in human genome ancestry. Current Biology 10, 1059–1062.CrossRefGoogle ScholarPubMed
Ranz, J. M., Casals, F. & Ruiz, A. 2001. How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. Genome Research 11, 230–239.CrossRefGoogle ScholarPubMed
Ryan, J. F., Burton, P. M., Mazza, M. E.et al. 2006. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biology 7, R64.CrossRefGoogle ScholarPubMed
Ryan, J. F., Mazza, M. E., Pang, K.et al. 2007. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2(1), e153.CrossRefGoogle ScholarPubMed
Scott, M. P. 1993. A rational nomenclature for vertebrate homeobox (HOX) genes. Nucleic Acids Research 21, 1687–1688.CrossRefGoogle ScholarPubMed
Stauber, M., Jäckle, H. & Schmidt-Ott, U. 1999. The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proceedings of the National Academy of Sciences of the USA 96, 3786–3789.CrossRefGoogle ScholarPubMed
Telford, M. J. & Thomas, R. H. 1998. Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Development Genes & Evolution 208, 591–594.CrossRefGoogle Scholar
Auken, K., Weaver, D. C., Edgar, L. G. & Wood, W. B. 2000. Caenorhabditis elegans embryonic axial patterning requires two recently discovered posterior-group Hox genes. Proceedings of the National Academy of Sciences of the USA 97, 4499–4503.CrossRefGoogle ScholarPubMed
Venter, J. C., Adams, M. D., Myers, E. W.et al. 2001. The sequence of the human genome. Science 291, 1304–1351.CrossRefGoogle ScholarPubMed
Wada, S., Tokuoka, M., Shoguchi, E.et al. 2003. A genomewide survey of developmentally relevant genes in Ciona intestinalis II. Genes for homeobox transcription factors. Development Genes & Evolution 213, 222–235.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×