Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T02:29:34.230Z Has data issue: false hasContentIssue false

13 - The muscles of mastication in rodents and the function of the medial pterygoid

Published online by Cambridge University Press:  05 August 2015

Philip G. Cox
Affiliation:
University of York
Nathan Jeffery
Affiliation:
University of Liverpool
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Mastication is a fundamental activity undertaken by mammals and the extent of oral food processing distinguishes them from other vertebrate groups. In order to break down food effectively, the mammals have evolved a complex set of masticatory muscles (Turnbull, 1970). Mammalian jaw-closing musculature comprises three distinct muscle groups: the temporalis, running from the temporal region of the skull posterior to the orbit to the coronoid process of the mandible; the masseter, which originates on the zygomatic arch and inserts on the ventrolateral surface of the mandibular ramus; and the pterygoid muscles, which run between the pterygoid region ventral to the orbit and the ventromedial surface of the mandible (Becht, 1953). The relative proportions of these muscles vary amongst mammals in a manner related to their diet and mode of feeding. Carnivores show an arrangement in which the temporalis is considerably larger than the masseter and pterygoids (Maynard Smith and Savage, 1959). Because the temporalis has a posterodorsal line of action and the squamosal is folded over the condyle to form a robust hinge, carnivores are able to produce powerful bite force at the teeth, whilst resisting the forward pull of struggling prey and thus maintaining the structural integrity of the jaw joint. In addition, the small, aborally positioned masseter muscle allows for a large gape and the ingestion of large food items (Becht, 1953). Conversely, herbivores display a configuration of enlarged masseter and pterygoid muscles and a reduced temporalis (Turnbull, 1970). The masseter extends further forward in herbivores and can thus work as a second-order lever and exert considerable masticatory pressure at the molar teeth (a clear advantage for grinding plant material). Furthermore, the complex, layered nature of the masseter and the open morphology of the temporo-mandibular joint allow mediolateral and anteroposterior movements of the mandible (Maynard Smith and Savage, 1959).

The masticatory musculature of rodents represents an extreme version of the herbivore configuration described above. In many rodents, the temporalis has reduced in size and the masseter has become the overwhelmingly dominant muscle, comprising around 70% of the entire masticatory muscle mass (Turnbull, 1970; Cox and Jeffery, 2011).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 350 - 372
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, S. S. and Roth, V. L. (1995). Jaw muscles of New World squirrels. Journal of Morphology, 224, 265–291.CrossRefGoogle ScholarPubMed
Baverstock, H., Jeffery, N. S. and Cobb, S. N. (2013). The morphology of the mouse masticatory musculature. Journal of Anatomy, 223, 46–60.CrossRefGoogle ScholarPubMed
Becht, G. (1953). Comparative biologic-anatomical researcher on mastication in some mammals. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series C, 56, 508–526.Google Scholar
Brandt, J. F. (1855). Beiträge zur nähern Kenntniss der Säugethiere Russlands. Mémoires de l'Academie Imperiale des Sciences de St Pétersbourg, Sixième Série, 9, 1–375.Google Scholar
Bright, J. A. and Rayfield, E. J. (2011). Sensitivity and ex vivo validation of finite element models of the domestic pig cranium. Journal of Anatomy, 219, 456–471.CrossRefGoogle ScholarPubMed
Byrd, K. E. (1981). Mandibular movement and muscle activity during mastication in the guinea pig (Cavia porcellus). Journal of Morphology, 170, 147–169.CrossRefGoogle Scholar
Chen, E.-K. and Herring, S. W. (1986). An unusual function for the medial pterygoid muscle in the guinea pig. Archives of Oral Biology, 31, 781–783.CrossRefGoogle ScholarPubMed
Cooper, G. C. and Schiller, A. L. (1975). Anatomy of the Guinea Pig. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Cox, P. G. and Jeffery, N. (2011). Reviewing the jaw-closing musculature in squirrels, rats and guinea pigs with contrast-enhanced microCT. Anatomical Record, 294, 915–928.CrossRefGoogle ScholarPubMed
Cox, P. G., Fagan, M. J., Rayfield, E. J. and Jeffery, N. (2011). Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity. Journal of Anatomy, 219, 696–709.CrossRefGoogle ScholarPubMed
Cox, P. G.Rayfield, E. J., Fagan, M. J.et al. (2012). Functional evolution of the feeding system in rodents. PLoS ONE, 7(4), e36299.CrossRefGoogle ScholarPubMed
Cox, P. G., Kirkham, J. and Herrel, A. (2013). Masticatory biomechanics of the Laotian rock rat, Laonastes aenigmamus, and the function of the zygomaticomandibularis muscle. PeerJ, 1, e160.CrossRefGoogle ScholarPubMed
Druzinsky, R. E. (1985). Anatomy and EMG of the masseter of Aplodontia rufa. In Functional Morphology in Vertebrates. Forschritte der Zoologie, Band 30, eds. Duncker, H.-R. and Fleisher, G.. Stuttgart and New York: Gustav Fischer Verlag, pp. 281–283.Google Scholar
Druzinsky, R. E. (1995). Incisal biting in the mountain beaver (Aplodontia rufa) and woodchuck (Marmota monax). Journal of Morphology, 226, 79–101.CrossRefGoogle Scholar
Druzinsky, R. E. (2010a). Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents – Part 1: masticatory muscles, skull shape and digging. Cells Tissues Organs, 191, 510–522.CrossRefGoogle ScholarPubMed
Druzinsky, R. E. (2010b). Functional anatomy of incisal biting in Aplondontia rufa and sciuromorph rodents – Part 2: sciuromorphy is efficacious for production of force at the incisors. Cells Tissues Organs, 192, 50–63.CrossRefGoogle Scholar
Druzinsky, R. E. and Greaves, W. S. (1979). A model to explain the posterior limit of the bite point in reptiles. Journal of Morphology, 160, 165–168.CrossRefGoogle ScholarPubMed
Dumont, E. R., Piccirillo, J. and Grosse, I. R. (2005). Finite-element analysis of biting behaviour and bone stress in the facial skeletons of bats. Anatomical Record Part A, 283, 319–330.Google ScholarPubMed
Dumont, E. R., Davis, J. L., Grosse, I. R. and Burrows, A. M. (2011) Finite element analysis of performance in the skulls of marmosets and tamarins. Journal of Anatomy, 218, 151–162.CrossRefGoogle ScholarPubMed
Gorniak, G. C. (1977). Feeding in golden hamsters, Mesocricetus auratus. Journal of Morphology, 154, 427–458.CrossRefGoogle ScholarPubMed
Greaves, W. S. (1978). The jaw lever system in ungulates: a new model. Journal of Zoology, 184, 271–285.Google Scholar
Gröning, F., Fagan, M. J. and O'Higgins, P. (2011).The effects of the periodontal ligament on mandibular stiffness: a study combining finite element analysis and geometric morphometrics. Journal of Biomechanics, 44, 1304–1312.CrossRefGoogle ScholarPubMed
Gröning, F., Jones, M. E. H., Curtis, N.et al. (2013). The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull. Journal of the Royal Society Interface, 10, 20130216.CrossRefGoogle ScholarPubMed
Hautier, L. (2010). Masticatory muscle architecture in the gundi, Ctenodactylus vali (Mammalia: Rodentia). Mammalia, 74, 153–162.CrossRefGoogle Scholar
Hautier, L. and Saksiri, S. (2009). Masticatory muscle architecture in the Laotian rock rat Laonastes aenigmamus (Mammalia: Rodentia): new insights into the evolution of hystricognathy. Journal of Anatomy, 215, 401–410.CrossRefGoogle ScholarPubMed
Herring, S. W. (1975). Adaptations for gape in the hippopotamus and its relatives. Forma et Functio, 8, 85–100.Google Scholar
Herring, S. W. (2007). Masticatory muscles and the skull: a comparative perspective. Archives of Oral Biology, 52, 296–299.CrossRefGoogle ScholarPubMed
Herring, S. W. and Scapino, R. P. (1973). Physiology of feeding in miniature pigs. Journal of Morphology, 141, 427–460.CrossRefGoogle ScholarPubMed
Hiiemae, K. (1971). The structure and function of the jaw muscles in the rat (Rattus norvegicus L.) III. The mechanics of the muscles. Zoological Journal of the Linnean Society, 50, 111–132.Google Scholar
Hiiemae, K. and Ardran, G. M. (1968). A cinefluorographic study of mandibular movement during feeding in the rat (Rattus norvegicus). Journal of Zoology, 154, 139–154.Google Scholar
Hiiemae, K. and Houston, W. J. B. (1971). The structure and function of the jaw muscles in the rat (Rattus norvegicus L.) I. Their anatomy and internal architecture. Zoological Journal of the Linnean Society, 50, 111–132.Google Scholar
Hylander, W. L. (1984). Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. American Journal of Anthropology, 64, 1–46.CrossRefGoogle ScholarPubMed
Hylander, W. L. (1985). Mandibular function and biomechanical stress and scaling. American Zoologist, 25, 315–330.CrossRefGoogle Scholar
Hylander, W. L. and Johnson, K. R. (1994). Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. American Journal of Physical Anthropology, 94, 523–547.CrossRefGoogle ScholarPubMed
Hylander, W. L., Ravosa, M. J., Ross, C. F.et al. (2000). Symphyseal fusion and jaw-adductor muscle force: an EMG study. American Journal of Physical Anthropology, 112, 469–492.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Hylander, W. L., Wall, C. E., Vinyard, C. J.et al. (2005). Temporalis function in anthropoids and strepsirrhines: an EMG study. American Journal of Anthropology, 128, 35–56.CrossRefGoogle Scholar
Jeffery, N. S., Stephenson, R., Gallagher, J. A., Jarvis, J.C. and Cox, P. G. (2011). Micro-computed tomography with iodine staining reveals the arrangement of muscle fibres. Journal of Biomechanics, 44, 189–192.CrossRefGoogle Scholar
Jones, M. E. H., O'Higgins, P., Fagan, M. J., Evans, S. E. and Curtis, N. (2012). Shearing mechanics and the influence of a flexible symphysis during oral food processing in Sphenodon (Lepidosauria: Rhyncocephalia). Anatomical Record, 295, 1075–1091.CrossRefGoogle Scholar
Kallen, F. C. and Gans, C. (1972). Mastication in the little brown bat, Myotis lucifugus. Journal of Morphology, 136, 385–420.CrossRefGoogle ScholarPubMed
Kobayashi, M., Masuda, Y., Fujimoto, Y.et al. (2002a). Electrophysiological analysis of rhythmic jaw movements in the freely moving mouse. Physiology and Behavior, 75, 377–385.CrossRefGoogle ScholarPubMed
Kobayashi, M., Masuda, Y., Kishino, M.et al. (2002b). Characteristics of mastication in the anodontic mouse. Journal of Dental Research, 81, 594–597.CrossRefGoogle ScholarPubMed
Konow, N., Herrel, A., Ross, C.F.et al. (2011). Evolution of muscle activity patterns driving motion of the jaw and hyoid during chewing in gnathostomes. Integrative and Comparative Biology, 51, 235–246.CrossRefGoogle ScholarPubMed
Kupczik, K., Dobson, C. A., Fagan, M. J.et al. (2007). Assessing mechanical function of the zygomatic region in macaques: validation and sensitivity testing of finite element models. Journal of Anatomy, 210, 41–53.CrossRefGoogle ScholarPubMed
Liu, J., Shi, L., Fitton, L. C.et al. (2012). The application of muscle wrapping to voxel-based finite element models of skeletal structures. Biomechanics and Modeling in Mechanobiology, 11, 35–47.CrossRefGoogle ScholarPubMed
Luschei, E. S. and Goodwin, G. M. (1974). Patterns of mandibular movement and jaw muscle activity during mastication in the monkey. Journal of Neurophysiology, 37, 954–966.CrossRefGoogle ScholarPubMed
Maynard Smith, J. and Savage, R. J. G. (1959). The mechanics of mammalian jaws. School Science Review, 40, 289–301.Google Scholar
Offermans, M. and De Vree, F. (1989). Morphology of the masticatory apparatus in the springhare, Pedetes capensis. Journal of Mammalogy, 70, 701–711.CrossRefGoogle Scholar
Offermans, M. and De Vree, F. (1993). Electromyography and mechanics of mastication in the springhare, Pedetes capensis (Rodentia, Pedetidae). Belgian Journal of Zoology, 123, 231–261.Google Scholar
Okayasu, I., Yamada, Y., Kohno, S. and Yoshida, N. (2003). New animal model for studying mastication in oral motor disorders. Journal of Dental Research, 82, 318–321.CrossRefGoogle ScholarPubMed
Okayasu, I., Yamada, Y., Maeda, T.et al. (2004). The involvement of brain-derived neurotrophic factor in the pattern generator of mastication. Brain Research, 1016, 40–47.CrossRefGoogle ScholarPubMed
Panagiotopoulou, O. and Cobb, S. N. (2011). The mechanical significance of morphological variation in the macaque mandibular symphysis during mastication. American Journal of Physical Anthropology, 146, 253–261.CrossRefGoogle ScholarPubMed
Rayfield, E. J. (2007). Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Science, 35, 541–576.CrossRefGoogle Scholar
Sanefuji, K., Zeredo, J. L., Kurose, M.et al. (2008). Possible effects of periodontal inputs on the masticatory function. Journal of Japanese Society of Stomatognathic Function, 14, 89–95.CrossRefGoogle Scholar
Satoh, K. (1997). Comparative functional morphology of mandibular forward movement during mastication of two murid rodents, Apodemus speciosus (Murinae) and Clethrionomys rufocanus (Arvicolinae). Journal of Morphology, 231, 131–142.3.0.CO;2-H>CrossRefGoogle Scholar
Satoh, K. (1998). Balancing function of the masticatory muscles during incisal biting in two murid rodents, Apodemus speciosus and Clethrionomys rufocanus. Journal of Morphology, 236, 49–56.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Satoh, K. (1999). Mechanical advantage of area of origin for the external pterygoid muscle in two murid rodents, Apodemus speciosus and Clethrionomys rufocanus. Journal of Morphology, 240, 1–14.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Satoh, K. and Iwaku, F. (2004). Internal architecture, origin-insertion site, and mass of jaw muscles in Old World hamsters. Journal of Morphology, 267, 987–999.Google Scholar
Satoh, K. and Iwaku, F. (2006). Jaw muscle functional anatomy in northern grasshopper mouse, Onychomys leucogaster, a carnivorous murid. Journal of Morphology, 260, 101–116.Google Scholar
Satoh, K. and Iwaku, F. (2008). Masticatory muscle architecture in a murine murid, Rattus rattus, and its functional significance. Mammal Study, 33, 35–42.CrossRefGoogle Scholar
Satoh, K. and Iwaku, F. (2009). Structure and direction of jaw adductor muscles as herbivorous adaptations in Neotoma mexicana (Muridae, Rodentia). Zoomorphology, 128, 339–348.CrossRefGoogle Scholar
Shi, J., Curtis, N., Fitton, L. C., O'Higgins, P. and Fagan, M. J. (2012). Developing a musculoskeletal model of the primate skull: predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods. Journal of Theoretical Biology, 310, 21–30.CrossRefGoogle ScholarPubMed
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Thorington, R. W. and Darrow, K. (1996). Jaw muscles of Old World squirrels. Journal of Morphology, 230, 145–165.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Turnbull, W. D. (1970). Mammalian masticatory apparatus. Fieldiana (Geology), 18, 147–356.Google Scholar
Utsumi, D., Nakamura, A., Matsuo, K.et al. (2010). Motor coordination of masseter and temporalis muscle during mastication in mice. International Journal of Stomatology and Occlusion Medicine, 3, 187–194.CrossRefGoogle Scholar
Weijs, W. A. (1973). Morphology of the muscles of mastication in the albino rat, Rattus norvegicus (Berkenhout, 1769). Acta Morphologica Neerlando-Scandinavica, 11, 321–340.Google Scholar
Weijs, W. A. (1975). Mandibular movements of the albino rat during feeding. Journal of Morphology, 145, 107–124.CrossRefGoogle ScholarPubMed
Weijs, W. A. and Dantuma, R. (1975). Electromyography and mechanics of mastication in the albino rat. Journal of Morphology, 146, 1–34.CrossRefGoogle ScholarPubMed
Weijs, W. A. and Dantuma, R. (1981). Functional anatomy of the masticatory apparatus of the rabbit (Oryctolagus cuniculus L.). Netherlands Journal of Morphology, 31, 99–147.Google Scholar
Wilson, D. E. and Reeder, D.M. (2005). Mammal Species of the World. Baltimore: Johns Hopkins Press.Google Scholar
Wood, A. E. (1965). Grades and clades among rodents. Evolution, 19, 115–130.CrossRefGoogle Scholar
Wood, S. A., Strait, D. S., Dumont, E. R.et al. (2011). The effects of modelling simplifications on craniofacial finite element analyses: the alveoli (tooth sockets) and periodontal ligaments. Journal of Biomechanics, 44, 1831–1838.CrossRefGoogle Scholar
Woods, C. A. (1972). Comparative myology of jaw, hyoid, and pectoral appendicular regions of New and Old World hystricomorph rodents. Bulletin of the American Museum of Natural History, 147, 115–198.Google Scholar
Woods, C. A. and Hermanson, J. W. (1985). Myology of hystricognath rodents: an analysis of form, function and phylogeny. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 685–712.Google Scholar
Woods, C. A. and Howland, E. B. (1979). Adaptive radiation of capromyid rodents: anatomy of the masticatory apparatus. Journal of Mammalogy, 60, 95–116.CrossRefGoogle Scholar
Wroe, S. (2010). Cranial mechanics of mammalian carnivores: recent advances using a finite element approach. In Carnivoran Evolution. New Views on Phylogeny, Form and Function, eds. Goswami, A. and Friscia, A.. Cambridge: Cambridge University Press, pp. 466–485.Google Scholar
Yamada, M., Koga, Y., Okayasu, I.et al. (2006). Influence of soft diet feeding on development of masticatory function. Journal of Japanese Society of Stomatognathic Function, 12, 118–125.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×