Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T08:15:28.392Z Has data issue: false hasContentIssue false

9 - The evolution of REM sleep

Published online by Cambridge University Press:  10 March 2010

Patrick McNamara
Affiliation:
Boston University
Robert A. Barton
Affiliation:
University of Durham
Charles L. Nunn
Affiliation:
Max Planck Institute for Evolutionary Anthropology
Get access

Summary

Introduction

Since the dawn of civilization, sleep has fascinated humankind. Myriad treatises and reviews, scientific and nonscientific, have been written in an attempt to explain the phenomenon of sleep, yet none has been comprehensive enough to gain general acceptance. It is now well established that sleep is neither a unitary nor a passive process. Intricate neuronal systems via complex mechanisms are responsible for controlling sleep. This chapter focuses on the evolution of rapid-eye-movement (REM) sleep; for detailed information about other behavioral states, the reader is referred to several comprehensive reviews (Datta & Maclean, 2007; Jones, 2003; Mignot, 2004; Siegel, 2004; Steriade & McCarley, 2005). We begin with a brief description of the discovery of REM sleep and then describe the phylogeny and evolution of REM.

Discovery of REM sleep

The discovery of REM sleep, a major breakthrough, revolutionized the field of sleep research. The process that led to this discovery began in Kleitman's laboratory at the University of Chicago Medical School in 1953. Kleitman and his graduate student Eugene Aserinsky noticed rhythms in eye movements during sleep in humans and linked this to dreaming (Aserinsky & Kleitman, 1953, 1955). Subsequently, Dement and Kleitman (1957) characterized the electroencephalographic (EEG) activity during dreaming in humans, and later Dement (1958) recorded rapid eye movements during sleep in animals. These discoveries established the presence of the non-REM–REM sleep cycle.

Type
Chapter
Information
Evolution of Sleep
Phylogenetic and Functional Perspectives
, pp. 197 - 217
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affanni, J. M., Cervino, C. O., & Marcos, H. J. (2001). Absence of penile erections during paradoxical sleep. Peculiar penile events during wakefulness and slow-wave sleep in the armadillo. Journal of Sleep Research, 10, 219–228.CrossRefGoogle ScholarPubMed
Allison, T., Gerber, S. D., Breedlove, S. M., & Dryden, G. L. (1977). A behavioral and polygraphic study of sleep in the shrews Suncus murinus, Blarina brevicauda, and Cryptotis parva. Behavioral Biology, 20, 354–366.CrossRefGoogle ScholarPubMed
Allison, T., & Twyver, H. (1970). Sleep in the moles, Scalopus aquaticus and Condylura cristata. Experimental Neurology, 27, 564–578.CrossRefGoogle ScholarPubMed
Allison, T., Twyver, H., & Goff, W. R. (1972). Electrophysiological studies of the echidna, Tachyglossus aculeatus. I. Waking and sleep. Archives Italiennes de Biologie, 110, 145–184.Google ScholarPubMed
Amlaner, C. J. (1994). Avian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 81–94). Philadelphia: W. B. Saunders.Google Scholar
Aserinsky, E., & Kleitman, N. (1953). Regularly occurring periods of eye motility and concomitant phenomenon during sleep. Science, 118, 273–274.CrossRefGoogle Scholar
Aserinsky, E., & Kleitman, N. (1955). Two types of ocular motility occurring in sleep. Journal of Applied Physiology, 8, 1–10.CrossRefGoogle ScholarPubMed
Ayala-Guerrero, F., Calderón, A., & Pérez, M. C. (1988). Sleep patterns in a chelonian reptile (Gopherus flavomarginatus). Physiology and Behavior, 44, 333–337.CrossRefGoogle Scholar
Ayala-Guerrero, F., & Huitrón-Reséndiz, S. (1991). Sleep patterns in the lizard Ctenosaura pectinata. Physiology and Behavior, 49, 1305–1307.CrossRefGoogle ScholarPubMed
Ayala-Guerrero, F., Huitrón-Reséndiz, S., & Mexicano, G. (1993). Effect of reserpine on sleep patterns in a chelonian reptile (Gopherous berlandieri). Proceedings of the Western Pharmacology Society, 36, 227–231.Google Scholar
Ayala-Guerrero, F., Huitrón-Reséndiz, S., & Mexicano, G. (1994). Effect of parachlorophenylalanine on sleep spikes in the iguanid lizard (Ctenosaura pectinata). Proceedings of the Western Pharmacology Society, 37, 149–152.Google Scholar
Ayala-Guerrero, F., & Mexicano, G. (2008a). Sleep and wakefulness in the green iguanid lizard (Iguana iguana). Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 151(3), 305–312.CrossRefGoogle Scholar
Ayala-Guerrero, F., & Mexicano, G. (2008b). Topographical distribution of the locus coeruleus and raphe nuclei in the lizard Ctenosaura pectinata: Functional implications on sleep. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 149, 137–141.CrossRefGoogle Scholar
Berger, R. J., & Phillips, N. H. (1994). Constant light suppresses sleep and circadian rhythms in pigeons without consequent sleep rebound in darkness. American Journal of Physiology, 267, R945–R952.Google ScholarPubMed
Blumberg, M. S., & Lucas, D. E. (1996). A developmental and component analysis of active sleep. Developmental Psychobiology, 29, 1–22.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience and Biobehavioral Reviews, 8, 269–300.CrossRefGoogle ScholarPubMed
Datta, S., & Maclean, R. R. (2007). Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: Reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neuroscience and Biobehavioral Reviews, 31, 775–824.CrossRefGoogle ScholarPubMed
Moura Filho, A. G., Huggins, S. E., & Lines, S. G. (1983). Sleep and waking in the three-toed sloth, Bradypus tridactylus. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 76, 345–355.CrossRefGoogle ScholarPubMed
Dement, W. (1958). The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalography and Clinical Neurophysiology, 10(2), 291–296.CrossRefGoogle ScholarPubMed
Dement, W. C. (2000). History of sleep physiology and medicine. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (3rd ed., pp. 1–14). Philadelphia: W. B. Saunders.Google Scholar
Dement, W., & Kleitman, N. (1957). Cyclic variation in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalography and Clinical Neurophysiology, 9, 673–690.CrossRefGoogle Scholar
Eiland, M. M., Lyamin, O. I., & Siegel, J. M. (2001). State-related discharge of neurons in the brainstem of freely moving box turtles, Terrapene Carolina major. Archives Italiennes de Biologie, 139, 23–36.Google ScholarPubMed
Flanigan, W. F. (1973). Sleep and wakefulness in iguanid lizards, Ctenosaura pectinata and Iguana iguana. Brain, Behavior, and Evolution, 8, 401–436.CrossRefGoogle ScholarPubMed
Flanigan, W. F. (1974). Sleep and wakefulness in chelonian reptiles. II. The red-footed tortoise, Geochelone carbonaria. Archives Italiennes de Biologie, 112, 253–277.Google ScholarPubMed
Flanigan, W. F., Knight, C. P., Hartse, K. M., & Rechtschaffen, A. (1974). Sleep and wakefulness in chelonian reptiles. I. The box turtle, Terrapene carolina. Archives Italiennes de Biologie, 112, 227–252.Google ScholarPubMed
Flanigan, W. F., Wilcox, R. H., & Rechtschaffen, A. (1973). The EEG and behavioral continuum of the crocodilian, Caiman sclerops. Electroencephalography and Clinical Neurophysiology, 34, 521–538.CrossRefGoogle ScholarPubMed
Frank, M. G. (1999). Phylogeny and evolution of REM sleep. In Mallick, B. N. & Inouse, S. (Eds.), Rapid eye movement sleep (pp. 17–38). New Delhi: Narosa Publishing House.Google Scholar
Frank, M. G., & Heller, H. C. (1997). Development of REM and slow-wave sleep in the rat. American Journal of Physiology, 272, R1792–R1799.Google ScholarPubMed
Guntheroth, W. G. (1979). Cardiopulmonary changes in kittens during sleep. Science, 205, 1040–1041.CrossRefGoogle ScholarPubMed
Harper, R. M., Leake, B., Miyahara, L., Hoppenbrouwers, T., Sterman, M. B., & Hodgman, J. (1981). Development of ultradian periodicity and coalescence at 1 cycle per hour in electroencephalographic activity. Experimental Neurology, 73, 127–143.CrossRefGoogle ScholarPubMed
Hartse, K. (1994). Sleep in insects and nonmammalian vertebrates. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 95–104). Philadelphia: W. B. Saunders.Google Scholar
Hartse, K. M., & Rechtschaffen, A. (1974). Effect of atropine sulfate on the sleep-related EEG spike activity of the tortoise, Geochelone carbonaria. Brain, Behavior, and Evolution, 9, 81–94.CrossRefGoogle ScholarPubMed
Hartse, K. M., & Rechtschaffen, A. (1982). The effect of amphetamine, nembutal, alphamethyltyrosine, and parachlorophenylalanine on the sleep-related spike activity of the tortoise, Geochelone carbonaria, and on the cat ventral hippocampus spike. Brain, Behavior, and Evolution, 21, 199–222.CrossRefGoogle Scholar
Hediger, H. (1969). Comparative observations on sleep. Proceedings of the Royal Society of Medicine, 62, 153–156.Google Scholar
Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A, et al. (2000). Rest in Drosophila is a sleep-like state. Neuron, 25, 129–138.CrossRefGoogle ScholarPubMed
Hirshkowitz, M., & Schmidt, M. H. (2005). Sleep-related erections: Clinical perspectives and neural mechanisms. Sleep Medicine Reviews, 9, 311–329.CrossRefGoogle ScholarPubMed
Hobson, J. A. (1967). Electrographic correlates of behavior in the frog with special reference to sleep. Electroencephalography and Clinical Neurophysiology, 22, 113–121.CrossRefGoogle ScholarPubMed
Hobson, J. A., Goin, O. B., & Goin, C. J. (1968). Electrographic correlates of behaviour in tree frogs. Nature, 220, 386–387.CrossRefGoogle ScholarPubMed
Huntley, A., Donnely, M., & Cohen, H. B. (1969). Sleep in western toad Bufo boreas. Journal of Sleep Research, 7, 141.Google Scholar
Huntley, A., Friedman, J., & Cohen, H. B. (1977). Sleep in iguanid lizard Dipsosaurus dorsalis. Journal of Sleep Research, 6, 104.Google Scholar
Jones, B. E. (1991). Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience, 40, 637–656.CrossRefGoogle Scholar
Jones, B. E. (2003). Arousal systems. Frontiers in Bioscience, 8, S438–S451.CrossRefGoogle ScholarPubMed
Jouvet, M., & Mounier, D. (1960). Effects des lesions de la formation reticularaire pontique sur le sommeil du chat [Effects of lesions on the “pontique” reticular formation on cat sleep]. Comptes Rendus des Séances et Mémoires de la Société de Biologie et des ses Filiales, 154, 2301–2305.Google Scholar
Jouvet, M., Michel, F., & Courjon, J. (1959). Sur un stade d'activite electrique cerebrale rapide au tours du sommeil physiologique [On rapid cerebral electrical activity around physiological sleep]. Comptes Rendus des Séances et Mémoires de la Société de Biologie et des ses Filiales, 153, 1024–1028.Google Scholar
Kaiser, W., & Steiner-Kaiser, J. (1983). Neuronal correlates of sleep, wakefulness, and arousal in a diurnal insect. Nature, 301, 707–709.CrossRefGoogle Scholar
Karmanova, I. G., & Lazarev, S. G. (1979). Stages of sleep evolution (facts and hypotheses). Waking and Sleeping, 3, 137–147.Google Scholar
Lesku, J. A., Roth, T. C., Amlaner, C. J., & Lima, S. L. (2006). A phylogenetic analysis of sleep architecture in mammals: The integration of anatomy, physiology, and ecology. The American Naturalist, 168, 441–453.CrossRefGoogle ScholarPubMed
Lilly, C. (1964). Animals in aquatic environments: Adaptation of mammals to the ocean. In Dill, D. B., Adolf, E. F, & Wilbur, C. G. (Eds.), Handbook of physiology: Adaptation to the environment (pp. 741–747). Washington, D.C.: American Physiology Society.Google Scholar
Lucas, E., Sterman, M. B., & McGinty, D. J. (1969). The salamander EEG: A model of primitive sleep and wakefulness. Psychophysiology, 6, 230.Google Scholar
Lyamin, O. I., Manger, P. R., Mukhametov, L. M., Siegel, J. M., & Shpak, O. V. (2000). Rest and activity states in a gray whale. Journal of Sleep Research, 9, 261–267.CrossRefGoogle Scholar
Lyamin, O. I., Shpak, O. V., Nazarenko, E. A., & Mukhametov, L. M. (2002). Muscle jerks during behavioral sleep in a beluga whale (Delphinapterus leucas L.). Physiology and Behavior, 76, 265–270.CrossRefGoogle Scholar
Marshall, N. B. (1972). Sleep in fishes. Proceedings of the Royal Society of Medicine, 65, 177.Google ScholarPubMed
Martinez-Gonzalez, D., Lesku, J. A., & Rattenborg, N. C. (2008). Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): Evidence for avian sleep homeostasis. Journal of Sleep Research, 17, 140–153.CrossRefGoogle ScholarPubMed
Mascetti, G. G., Rugger, M., & Vallortigara, G. (1999). Visual lateralization and monocular sleep in the domestic chick. Cognitive Brain Research, 7, 451–463.CrossRefGoogle ScholarPubMed
Mascetti, G. G., & Vallortigara, G. (2001). Why do birds sleep with one eye open? Light exposure of the chick embryo as a determinant of monocular sleep. Current Biology, 11, 971–974.CrossRefGoogle ScholarPubMed
Mather, J. A. (2008). Cephalopod consciousness: Behavioural evidence. Consciousness and Cognition, 17, 37–48.CrossRefGoogle ScholarPubMed
McCarley, R. W., Greene, R. W., Rainnie, D. G., & Portas, C. M. (1995). Brainstem neuromodulation and REM sleep. Seminars in Neurosciences, 7, 341–354.CrossRefGoogle Scholar
McCormick, J. G. (1969). Relationship of sleep, respiration, and anesthesia in the porpoise: A preliminary report. Proceedings of the National Academy of Sciences of the United States of America, 62, 697–703.CrossRefGoogle ScholarPubMed
McGinty, D. J., Stevenson, M., Hoppenbrouwers, T., Harper, R. M., Sterman, M. B., & Hodgman, J. (1977). Polygraphic studies of kitten development: Sleep state patterns. Developmental Psychobiology, 10, 455–469.CrossRefGoogle ScholarPubMed
Mignot, E. (2004). Sleep, sleep disorders, and hypocretin (orexin). Sleep Medicine, 5(1), S2–S8.CrossRefGoogle Scholar
Monnier, M. (1980). Comparative electrophysiology of sleep in some vertebrates. Experientia, 36, 16–19.CrossRefGoogle ScholarPubMed
Mukhametov, L. M. (1987). Unihemispheric slow-wave sleep in the Amazonian dolphin, Inia geoffrensis. Neuroscience Letters, 79, 128–132.CrossRefGoogle ScholarPubMed
Mukhametov, L. M., & Lyamin, O. I. (1994). Rest and active states in bottlenose dolphins (Tursiops truncatus). Journal of Sleep Research, 3, 174.Google Scholar
Mukhametov, L. M., Lyamin, O. I., Chetyrbok, I. S., Vassilyev, A. A., & Diaz, R. P. (1992). Sleep in an Amazonian manatee, Trichechus inunguis. Experientia, 48, 417–419.CrossRefGoogle Scholar
Mukhametov, L. M., Supin, A. Y., & Polyakova, I. G. (1977). Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Research, 134, 581–584.CrossRefGoogle ScholarPubMed
Newman, S. M., Paletz, E. M., Rattenborg, N. C., Obermeyer, W. H., & Benca, R. M. (2008). Sleep deprivation in the pigeon using the disk-over-water method. Physiology and Behavior, 93, 50–58.CrossRefGoogle ScholarPubMed
Nicol, S. C., Andersen, N. A., Phillips, N. H., & Berger, R. J. (2000). The echidna manifests typical characteristics of rapid eye movement sleep. Neuroscience Letters, 283, 49–52.CrossRefGoogle ScholarPubMed
Oleksenko, A. I. (1992). Unihemispheric sleep deprivation in bottlenose dolphins. Journal of Sleep Research, 1, 40–44.CrossRefGoogle ScholarPubMed
Oleksenko, A. I., Chetyrbok, I. S., Polyakova, I. G., & Mukhametov, L. M. (1994). Rest and active states in Amazonian dolphins. Journal of Sleep Research, 3, 185.Google Scholar
Ookawa, T. (1972). Avian wakefulness and sleep on the basis of recent electroencephalographic observations. Poultry Science, 51, 1565–1574.CrossRefGoogle ScholarPubMed
Ookawa, T., & Gotoh, J. (1965). Electroencephalogram of the chicken recorded from the skull under various conditions. Journal of Comparative Neurology, 124, 1–14.CrossRefGoogle ScholarPubMed
Prudom, A. E., & Klemm, W. R. (1973). Electrographic correlates of sleep behavior in a primitive mammal, the armadillo Dasypus novemcinctus. Physiology and Behavior, 10, 275–282.CrossRefGoogle Scholar
Ramon, F., Hernandez-Falcon, J., Nguyen, B., & Bullock, T. H. (2004). Slow-wave sleep in crayfish. Proceedings of the National Academy of Sciences of the United States of America, 101, 11857–11861.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Obermeyer, W. H., Vacha, E., & Benca, R. M. (2005). Acute effects of light and darkness on sleep in the pigeon (Columba livia). Physiology and Behavior, 84, 635–640.CrossRefGoogle Scholar
Rattenborg, N. C., Voirin, B., Vyssotski, A. L., Kays, R. W., Spoelstra, K., Kuemmeth, F., et al. (2008). Sleeping outside the box: Electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biology Letters, 4(4), 402–405.CrossRefGoogle ScholarPubMed
Reebs, S. G. (2007). Sleep in fishes. Unpublished manuscript, Université de Moncton, Moncton, New Brunswick, Canada.
Ridgway, S., Carder, D., Finneran, J., Keogh, M., Kamolnick, T., Todd, M., et al. (2006). Dolphin continuous auditory vigilance for five days. Journal of Experimental Biology, 209, 3621–3628.CrossRefGoogle ScholarPubMed
Roth, T. C., Lesku, J. A., Amlaner, C. J., & Lima, S. L. (2006). A phylogenetic analysis of the correlates of sleep in birds. Journal of Sleep Research, 15, 395–402.CrossRefGoogle ScholarPubMed
Schlehuber, C. J., Flaming, D. G., Lange, G. D., & Spooner, C. E. (1974). Paradoxical sleep in the chick (Gallus domesticus). Behavioral Biology, 11, 537–546.CrossRefGoogle Scholar
Schmidt, M. H., Valatx, J. L., Schmidt, H. S., Wauquier, A., & Jouvet, M. (1994). Experimental evidence of penile erections during paradoxical sleep in the rat. NeuroReport, 5, 561–564.CrossRefGoogle ScholarPubMed
Segura, E. T., & Juan, A. (1966). Electroencephalographic studies in toads. Electroencephalography and Clinical Neurophysiology, 21, 373–380.CrossRefGoogle ScholarPubMed
Serafetinides, E. A., Shurley, J. T., & Brooks, R. E. (1972). Electroencephalogram of the pilot whale, Globicephala scammoni, in wakefulness and sleep: Lateralization aspects. International Journal of Psychobiology, 2, 129–135.Google Scholar
Shapiro, C. M., & Hepburn, H. R. (1976). Sleep in a schooling fish, Tilapia mossambica. Physiology and Behavior, 16, 613–615.CrossRefGoogle Scholar
Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287, 1834–1837.CrossRefGoogle ScholarPubMed
Shurley, J. T., Serafetinides, E. A., & Brooks, R. E. (1969). Sleep in cetaceans: I. The pilot whale, Globicephala scammoni. Psychophysiology, 6, 230.Google Scholar
Siegel, J. M. (1995). Phylogeny and the function of REM sleep. Behavioral Brain Research, 69, 29–34.CrossRefGoogle ScholarPubMed
Siegel, J. M. (1999). The evolution of REM sleep. In Lydic, R. & Bagdoyan, H. (Eds.), Handbook of behavioral state control (pp. 87–100). Boca Raton, FL: CRC Press.Google Scholar
Siegel, J. M. (2004). The neurotransmitters of sleep. Journal of Clinical Psychiatry, 65(16), 4–7.Google Scholar
Siegel, J. M. (2008). Do all animals sleep?Trends in Neuroscience, 31, 208–213.CrossRefGoogle ScholarPubMed
Siegel, J. M., Manger, P. R., Nienhuis, R., Fahringer, H. M., & Pettigrew, J. D. (1996). The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: Implications for the evolution of sleep. Journal of Neuroscience, 16, 3500–3506.CrossRefGoogle Scholar
Siegel, J. M., Manger, P. R., Nienhuis, R., Fahringer, H. M., Shalita, T., & Pettigrew, J. D. (1999). Sleep in the platypus. Neuroscience, 91, 391–400.CrossRefGoogle ScholarPubMed
Stephenson, R., Chu, K. M., & Lee, J. (2007). Prolonged deprivation of sleep-like rest raises metabolic rate in the Pacific beetle cockroach, Diploptera punctata (Eschscholtz). Journal of Experimental Biology, 210, 2540–2547.CrossRefGoogle Scholar
Steriade, M., & McCarley, R. W. (2005). Brain control of sleep and wakefulness. New York: Kluwer-Elsevier.Google Scholar
Strumwasser, F. (1971). The cellular basis of behavior in Aplysia. Journal of Psychiatric Research, 8, 237–257.CrossRefGoogle ScholarPubMed
Susic, V. (1972). Electrographic and behavioral correlation of rest-activity cycle in the sea turtle Caretta caretta. Journal of Experimental Marine Biology and Ecology, 10, 81–87.CrossRefGoogle Scholar
Tauber, E. S., Roffwarg, H. P., & Weitzman, E. D. (1966). Eye movements and electroencephalogram activity during sleep in diurnal lizards. Nature, 212, 1612–1613.CrossRefGoogle ScholarPubMed
Tauber, E. S., Rojas-Ramírez, J., & Hernández Peón, R. (1968). Electrophysiological and behavioral correlates of wakefulness and sleep in the lizard, Ctenosaura pectinata. Electroencephalography and Clinical Neurophysiology, 24(5), 424–433.CrossRefGoogle ScholarPubMed
Tauber, E., Weitzman, E., & Korey, S. (1969). Eye movements during behavioral inactivity in certain Bermuda reef fish. Communications in Behavioral Biology, Part A, 3, 131–135.Google Scholar
Tobler, I. (1992). Behavioral sleep in the Asian elephant in captivity. Sleep, 15, 1–12.Google ScholarPubMed
Tobler, I. (1997, September 15). What do we know about the evolution of sleep–when it arose and why? Bacteria surely don't sleep, do they? Scientific American. Retrieved November 5, 2008, from http://www.sciam.com/article.cfm?id=what-do-we-know-about-the-1997-09-15.
Tobler, I., & Borbély, A. A. (1985). Effect of rest deprivation on motor activity of fish. Journal of Comparative Physiology, Series A, 157, 817–822.CrossRefGoogle ScholarPubMed
Tobler, I., & Neuner-Jehle, M. (1992). 24-h variation of vigilance in the cockroach Blaberus giganteus. Journal of Sleep Research, 1, 231–239.CrossRefGoogle ScholarPubMed
Tobler, I., & Schwierin, B. (1996). Behavioural sleep in the giraffe (Giraffa camelopardalis) in a zoological garden. Journal of Sleep Research, 5, 21–32.CrossRefGoogle Scholar
Tradardi, V. (1966). Sleep in the pigeon. Archives italiennes de biologie, 104, 516–521.Google ScholarPubMed
Luijtelaar, E. L. J. M., Grinten, C. P. M., Blokhuis, H. J., & Coenen, A. M. L. (1987). Sleep in the domestic hen (Gallus domesticus). Physiology and Behavior, 41, 409–414.CrossRefGoogle Scholar
Twyver, H. (1973). Polygraphic studies of the American alligator. Sleep Research, 2, 87.Google Scholar
Twyver, H., & Allison, T. (1972). A polygraphic and behavioral study of sleep in the pigeon (Columba livia). Experimental Neurology, 35, 138–153.CrossRefGoogle Scholar
Vasilescu, E. (1982). Sleep induced by electrical stimulation of the optic nerves in tortoise (Emys orbicularis). Neurologie et Psychiatrie, 20, 119–124.Google Scholar
Vasilescu, E. (1983). Phylogenetic and general remarks on sleep. Physiologie, 20, 17–25.Google Scholar
Walker, J. M., & Berger, R. J. (1972). Sleep in the domestic pigeon (Columba livia). Behavioral Biology, 7, 195–203.CrossRefGoogle Scholar
Walker, J. M., & Berger, R. J. (1973). A polygraphic study of the tortoise (Testudo denticulata). Absence of electrophysiological signs of sleep. Brain, Behavior, and Evolution, 8, 453–467.CrossRefGoogle Scholar
Warner, B., & Huggins, S. (1978). An electrographic study of sleep in young caimans in a colony. Comparative Biochemistry and Physiology, Part A, 59, 139–144.CrossRefGoogle Scholar
Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang, J., et al. (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. Public Library of Science Biology, 5, 2379–2397.Google ScholarPubMed
Zepelin, H. (1989). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (1st ed., pp. 30–49). Philadelphia: W. B. Saunders.Google Scholar
Zepelin, H. (1994). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 69–80). Philadelphia: W. B. Saunders.Google Scholar
Zepelin, H. (2000). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (3rd ed., pp. 69–80). Philadelphia: W. B. Saunders.Google Scholar
Zepelin, H., & Rechtschaffen, A. (1974). Mammalian sleep, longevity, and energy metabolism. Brain, Behavior, and Evolution, 10, 425–470.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×