Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T02:28:54.242Z Has data issue: false hasContentIssue false

15 - Demographic Senescence in Herbaceous Plants

from Part III - Senescence in Plants

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ally, D., Ritland, K. & Otto, S. P. (2010). Ageing in a long-lived clonal tree. PLoS Biology, 8, 18.CrossRefGoogle Scholar
Antonovics, J. (1972). Population dynamics of the grass Anthoxanthum odoratum on a zinc mine. Journal of Ecology, 60, 351–66.CrossRefGoogle Scholar
Baudisch, A. & Vaupel, J. W. (2012). Getting to the root of ageing. Science, 338, 618–19.CrossRefGoogle Scholar
Baudisch, A., Salguero-Gómez, R., Jones, O. R., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101, 596606.CrossRefGoogle Scholar
Borges, R. M. (2009). Phenotypic plasticity and longevity in plants and animals: cause and effect? Journal of Biosciences, 34, 605–11.CrossRefGoogle ScholarPubMed
Canfield, R. H. (1957). Reproduction and life span of some perennial grasses of southern Arizona. Journal of Range Management, 10, 199203.CrossRefGoogle Scholar
Caswell, H. (2001). Matrix Population Models: Construction, Analysis and Interpretation (2nd edn.) (Sunderland, MA: Sinauer Associates).Google Scholar
Caswell, H. & Salguero-Gómez, R. (2013). Age, stage and senescence in plants. Journal of Ecology, 101, 585–95.CrossRefGoogle ScholarPubMed
Childs, D. Z., Rees, M., Rose, K. E., et al. (2003). Evolution of complex flowering strategies: an age- and size-structured integral projection model. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 1829–38.CrossRefGoogle ScholarPubMed
Chu, C. & Adler, P. B. (2014). When should plant population models include age structure? Journal of Ecology, 102, 531–43.CrossRefGoogle Scholar
Cook, R. E. (1983). Clonal plant populations. American Scientist, 71, 244–53.Google Scholar
Dahlgren, J. P., Garcia, M. B. & Ehrlén, J. (2011). Nonlinear relationships between vital rates and state variables in demographic models. Ecology 92, 1181–7.CrossRefGoogle ScholarPubMed
de Witte, L. C. & Stöcklin, J. (2010). Longevity of clonal plants: why it matters and how to measure it. Annals of Botany, 106, 859–70.CrossRefGoogle Scholar
Dahlgren, J. P., Rizzi, S., Schweingruber, F. H., Hellmann, L. & Büntgen, U. (2016). Age distributions of Greenlandic dwarf shrubs support concept of negligible actuarial senescence. Ecosphere, 7, e01521.CrossRefGoogle Scholar
Ehlers, B. K. & Olesen, J. M. (2004). Flower production in relation to individual plant age and leaf production among different patches of Corydalis intermedia. Plant Ecology, 174, 71–8.CrossRefGoogle Scholar
Fair, J., Lauenroth, W. K. & Coffin, D. P. (1999). Demography of Bouteloua gracilis in a mixed prairie: analysis of genets and individuals. Journal of Ecology, 87, 233–43.CrossRefGoogle Scholar
Garcia, M. B., Dahlgren, J. P. & Ehrlén, J. (2011). No evidence of senescence in a 300-year-old mountain herb. Journal of Ecology, 99, 1424–30.CrossRefGoogle Scholar
Gardener, S. H. & Mangel, M. (1997). When can a clonal organism escape senescence? American Naturalist, 150, 462–90.Google Scholar
Geber, M. A., de Kroon, H. & Watson, M. A. (1997). Organ preformation in mayapple as a mechanism for historical effects on demography. Journal of Ecology, 85, 211–23.CrossRefGoogle Scholar
Good, T. P. & Tatar, M. (2001). Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. Journal of Insect Physiology, 47, 1467–73.CrossRefGoogle ScholarPubMed
Hadfield, J. D. (2007). Estimating evolutionary parameters when viability selection is operating. Proceedings of the Royal Society of London Series B: Biological Sciences, 275, 723–34.Google Scholar
Hanzawa, F. M. & Kalisz, S. (1993). The relationship between age, size, and reproduction in Trilliu grandiflorum (Liliaceae). American Journal of Botany, 80, 405–10.CrossRefGoogle Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harper, J. L. & White, J. (1974). The demography of plants. Annual Review of Ecology and Systematics, 5, 419–63.CrossRefGoogle Scholar
Hautekèete, N.-C., Piquot, Y. & van Dijk, H. (2002). Life span in Beta vulgaris ssp. maritima: the effects of age at first reproduction and disturbance. Journal of Ecology, 90, 508–16.CrossRefGoogle Scholar
Horvitz, C. C. & Tuljapurkar, S. (2008). Stage dynamics, period survival, and mortality plateaus. American Naturalist, 172, 203–15.CrossRefGoogle ScholarPubMed
Hutchings, M. J. (2010). The population biology of the early spider orchid Ophrys sphegodes Mill: III. Demography over three decades. Journal of Ecology, 98, 867–78.CrossRefGoogle Scholar
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kaplan, H. S. & Robson, A. J. (2009). We age because we grow. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 1837–44.Google ScholarPubMed
Kirkwood, T. B. & Holliday, R. (1979). The evolution of ageing and longevity. Proceedings of the Royal Society of London Series B: Biological Sciences, 205, 531–46.Google ScholarPubMed
Lauenroth, W. K. & Adler, P. B. (2008). Demography of perennial grassland plants: survival, life expectancy and life span. Ecology, 96,1023–32.Google Scholar
Laskowski, M. J., Williams, M. E., Nusbaum, H. C. & Sussex, I. M. (1995). Formation of lateral root meristems is a two-stage process. Development, 121, 3303–10.CrossRefGoogle ScholarPubMed
Law, R., Bradshaw, A. D. & Putwain, P. D. (1977). Life history variation in Poa annua. Evolution, 31, 233–46.CrossRefGoogle ScholarPubMed
Long, J. & Barton, M. K. (2000). Initiation of axillary and floral meristems in Arabidopsis. Developmental Biology, 218, 341–53.CrossRefGoogle ScholarPubMed
Mencuccini, M., Martinez-Vilalta, J., Hamid, H. A., et al. (2005). Size-mediated ageing reduces vigour in trees. Ecology Letters, 8, 1183–90.CrossRefGoogle ScholarPubMed
Menges, E. S. & Quintana-Ascencio, F. (2004). Population viability with fire in Eryngium cuneifolium: deciphering a decade of demographic data. Ecological Monographs, 74, 7999.CrossRefGoogle Scholar
Metcalf, J. C., Rose, K. E. & Rees, M. (2003). Evolutionary demography of monocarpic perennials. Trends in Ecology and Evolution, 18, 471–80.CrossRefGoogle Scholar
Miller, T. E. X., Williams, J. L., Jongejans, E., et al. (2012). Evolutionary demography of iteroparous plants: incorporating non-lethal costs of reproduction into integral projection models. Proceedings of the Royal Society of London Series B: Biological Sciences, 279, 2831–40.Google ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Monaghan, P., Charmantier, A., Nussey, D. H. & Ricklefs, R. E. (2008). The evolutionary ecology of senescence. Functional Ecology, 22, 371–8.CrossRefGoogle Scholar
Morales, M., Oñate, M. Garcia, M. B. and Munné-Bosch, S. (2013). Photo-oxidative stress markers reveal absence of physiological deterioration with ageing in Borderea pyrenaica, an extraordinarily long-lived herb. Journal of Ecology, 101, 555–65.CrossRefGoogle Scholar
Mossberg, B. & Stenberg, L. (2003). Den nya nordiska floran (Stockholm: Wahlström & Widstrand).Google Scholar
Münzbergova, Z., Krivanek, M., Bucharova, A., et al. (2005). Ramet performance in two tussock plants: do the tussock-level parameters matter? Flora, 200, 275–84.CrossRefGoogle Scholar
Nobis, M. P. & Schweingruber, F. H. (2013). Adult age of vascular plant species along an elevational land-use and climate gradient. Ecography, 36, 1076–85.CrossRefGoogle Scholar
Noodén, L. D. (1988). Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany, 52, 2151–9.Google Scholar
Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J.-M. (2008). Measuring senescence in wild animal populations: towards a longitudinal approach. Functional Ecology, 22, 393406.CrossRefGoogle Scholar
Obeso, J. R. (2002). The costs of reproduction in plants. New Phytologist, 155, 321–48.CrossRefGoogle ScholarPubMed
Oñate, M., García, M. B. & Munné-Bosch, S. (2012). Age and sex-related changes in cytokinins, auxins and abscisic acid in a centenarian relict herbaceous perennial. Planta, 235, 349–58.CrossRefGoogle Scholar
Orive, M. E. (1995). Senescence in organisms with clonal reproduction and complex life histories. American Naturalist, 145, 90108.CrossRefGoogle Scholar
Pedersen, B. (1999). Senescence in plants. In Life History Evolution in Plants (pp. 239–74) (Dordrecht: Kluwer).Google Scholar
Perkins, D. L., Parks, C. G., Dwire, K. A., et al. (2006). Age structure and age-related performance of sulfur cinquefoil (Potentilla recta). Weed Science, 54, 8793.CrossRefGoogle Scholar
Pico, F. X. & Retana, J. (2008). Age-specific, density-dependent and environment-based mortality of a short-lived perennial herb. Plant Biology, 10, 374–81.CrossRefGoogle ScholarPubMed
Pino, J. & Roa, E. (2007). Population biology of Kosteletzkya pentacarpos (Malvaceae) in the Llobregat delta (Catalonia, NE of Spain). Plant Ecology, 188, 116.CrossRefGoogle Scholar
Pujol, B., Marrot, P. & Pannell, J. R. (2014). A quantitative genetic signature of senescence in a short-lived perennial plant. Current Biology, 24, 744–7.CrossRefGoogle Scholar
Roach, D. A. (1993). Evolutionary senescence in plants. Genetica, 91, 5364.CrossRefGoogle Scholar
Roach, D. A. (2003). Age-specific demography in Plantago: variation among cohorts in a natural plant population. Ecology, 84, 749–56.CrossRefGoogle Scholar
Roach, D. A. (2012). Age, growth and size interact with stress to determine life span and mortality. Experimental Gerontology, 47, 782–6.CrossRefGoogle ScholarPubMed
Roach, D. A. & Gampe, J. (2004). Age-specific demography in Plantago: uncovering age dependent mortality in a natural population. American Naturalist, 164, 60–9.CrossRefGoogle Scholar
Roach, D. A, Ridley, C. E. & Dudycha, J. L. (2009). Longitudinal analysis of Plantago: age by environment interactions reveal aging. Ecology, 90, 1427–33.CrossRefGoogle ScholarPubMed
Rose, R. J., Clarke, R. T. & Chapman, S. B. (1998). Individual variation and the effects of weather, age and flowering history on survival and flowering of the long-lived perennial Gentiana pneumonanthe. Ecography, 21, 317–26.CrossRefGoogle Scholar
Sarukhán, J. & Harper, J. L. (1973). Studies on plant demography: Ranunculus repens L., R. bulbosus L. and R. acris L.: I. Population flux and survivorship. Journal of Ecology, 61, 675716.CrossRefGoogle Scholar
Schweingruber, F. H. & Poschlod, P. (2005). Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow and Landscape Research, 79(3), 195415.Google Scholar
Seymour, R. M. & Doncaster, C. P. (2007). Density dependence triggers runaway selection of reduced senescence. PLoS Computational Biology, 3, e256.CrossRefGoogle ScholarPubMed
Shefferson, R. P. & Roach, D. A. (2013). Longitudinal analysis in Plantago: strength of selection and reverse age analysis reveal age-indeterminate senescence. Journal of Ecology, 101, 577–84.CrossRefGoogle ScholarPubMed
Shefferson, R. P., Warren, R. J., II & Pulliam, H. R. (2014). Life history costs make perfect sprouting maladaptive in two herbaceous perennials. Journal of Ecology 102:1318–28.CrossRefGoogle Scholar
Silvertown, J. & Charlesworth, D. (2001). Introduction to Plant Population Biology (Oxford: Blackwell Science).Google Scholar
Silvertown, J, Franco, M. & Perez-Ishiwara, R. (2001). Evolution of senescence in iteroparous perennial plants. Evolutionary Ecology Research, 3, 393412.Google Scholar
Solbrig, O. T., Newell, S. J. & Kincaid, D. T. (1980). The population biology of the genus Viola: I. The demography of Viola sororia. Journal of Ecology, 68, 521–46.CrossRefGoogle Scholar
Tamm, C. O. (1956). Further observations on the survival and flowering of some perennial herbs, part I. Oikos, 7, 273–92.CrossRefGoogle Scholar
Tamm, C. O. (1972a). Survival and flowering of perennial herbs: II. The behaviour of some orchids on permanent plots. Oikos, 23, 23–8.Google Scholar
Tamm, C. O. (1972b). Survival and flowering of perennial herbs: III. The behavior of Primula veris on permanent plots. Oikos, 23, 23–8.Google Scholar
Thomas, H. (2013). Senescence, ageing and death of the whole plant. New Phytologist, 197, 696711.CrossRefGoogle ScholarPubMed
Tuomi, J., Crone, E. E., Gremer, J. R., et al. (2013). Prolonged dormancy interacts with senescence for two perennial herbs. Journal of Ecology, 101, 566–76.CrossRefGoogle Scholar
van Dijk, H. (2009). Ageing effects in an iteroparous plant species with a variable life span. Annals of Botany, 104, 115–24.CrossRefGoogle Scholar
Vaupel, J. W., Baudisch, A., Dolling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Vaupel, J. W. & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population dynamics. American Statistician, 39, 176–85.Google ScholarPubMed
Wachter, K. W., Evans, S. N. & Steinsaltz, D. (2013). The age-specific force of natural selection and biodemographic walls of death. Proceedings of the National Academy of Sciences of the United States of America, 110, 10141–6.Google ScholarPubMed
Watkinson, A. (1992). Plant senescence. Trends in Ecology and Evolution, 7, 417–20.CrossRefGoogle ScholarPubMed
Watson, J. & Riha, K. (2010). Telomeres, ageing, and plants: from weeds to Methuselah – a mini-review. Gerontology, 57, 129–36.Google ScholarPubMed
Wensink, M. J., Wrycza, T. F. & Baudisch, A. (2014). No senescence despite declining selection pressure: Hamilton’s result in broader perspective. Journal of Theoretical Biology, 347, 176–81.CrossRefGoogle ScholarPubMed
Willems, J. H. & Dorland, E. (2000). Flowering frequency and plant performance and their relation to age in the perennial orchid Spiranthes spiralis (L.) Chevall. Plant Biology, 2, 344–9.CrossRefGoogle Scholar
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Young, T. P. & Augspurger, C. K. (1991). Ecology and evolution of long-lived semelparous plants. Trends in Ecology and Evolution, 6, 285–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×