Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T13:08:57.562Z Has data issue: false hasContentIssue false

5 - Doliodus and Pucapampellids

Contrasting Perspectives on Stem Chondrichthyan Morphology

Published online by Cambridge University Press:  31 December 2018

Zerina Johanson
Affiliation:
Natural History Museum, London
Charlie Underwood
Affiliation:
Birkbeck, University of London
Martha Richter
Affiliation:
Natural History Museum, London
Get access

Summary

In several recently published phylogenetic analyses, two Lower Devonian taxa, Doliodus and Pucapampella, both fall on the chondrichthyan stem, very close to the base of ‘conventionally defined chondrichthyans’ (i.e., forms possessing tessellated mineralization of the cartilaginous endoskeleton). These two taxa nevertheless exhibit strongly discordant morphologies from each other. A summary of the anatomical data concerning these taxa is presented here, including new, as well as previously published, findings. A new family Pucapampellidae is erected, containing Pucapampella and a newly recognized genus from South Africa. Morphological evidence is summarized for the monophyly of crown elasmobranchs (sharks and rays), holocephalans (chimaeras) and other chondrichthyans. Based on these data, Doliodus and pucapampellids both fall outside the chondrichthyan crown, but their relative phylogenetic positions on the chondrichthyan stem are unclear. Pucapampellid interrelationships are particularly hard to assess because little is known beyond their cranial and visceral arch morphology and also because pucapampellids possess a suite of ontogenetically primitive (and thus potentially neotenic) features. By contrast, the phylogenetic position of Doliodus seems less elusive; it possessed an ‘acanthodian-like’ complex of dermal spines, including pectoral fin spines, prepectoral, admedian, and prepelvic spines, and possibly dorsal and pelvic fin spines, in conjunction with numerous ‘chondrichthyan-like’ endoskeletal features and a heterodont ‘sharklike’ dentition. Doliodus can be viewed as a quintessential component of the evolutionary transition between ‘acanthodians’ and ‘conventionally defined chondrichthyans’, leaving little doubt that the chondrichthyan total group includes ‘acanthodians’ (now widely perceived to be a paraphyletic group, populating the basal part of the chondrichthyan stem). Although Doliodus has been resolved as a basal member of the ‘conventionally defined chondrichthyans’, it could occupy a more basal position on the chondrichthyan stem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, ME, Almond, JE, Evans, FJ, Long, JA. 1999. Devonian (Emsian–Eifelian) fishes from the Lower Bokkeveld Group (Ceres Subgroup), South Africa. J Afr Earth Sci 29:179194.Google Scholar
Andreev, PS, Cuny, G. 2012. New Triassic stem selachimorphs (Chondrichthyes, Elasmobranchii) and their bearing on the evolution of dental enameloid in Neoselachii. J Vert Paleo 32:255266.Google Scholar
Bonaparte, CL. 1838. Synopsis vertebratorum systematis. Nuovi Ann Sci Natur Bologna 2:105133.Google Scholar
Botella, H, Donoghue, PCJ, Martínez-Pérez, C. 2009. The enameloid microstructure of the oldest known chondrichthyan teeth. Acta Zool 90 (Suppl. 1):103108.Google Scholar
Brazeau, M. 2009. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature 475:305308.Google Scholar
Brazeau, MD, De Winter, V. 2015. The hyoid arch and braincase anatomy of Acanthodes support chondrichthyan affinity of ‘acanthodians’, Proc R Soc B 282:20152210.Google Scholar
Brazeau, MD, Friedman, M, 2014. The characters of Palaeozoic jawed vertebrates. Zool J Linn Soc 17:779821.Google Scholar
Brazeau, MD, Friedman, M. 2015. The origin and early phylogenetic history of jawed vertebrates. Nature 520:490497.Google Scholar
Burrow, CJ, Davidson, RG, Den Blaauwen, JL, Newman, MJ. 2015. Revision of Climatius reticulatus Agassiz, 1844 (Acanthodii, Climatiidae), from the Lower Devonian of Scotland, based on new histological and morphological data. J Vert Paleo 35:e913421.Google Scholar
Burrow, CJ, Newman, MJ, Davidson, RG, Den Blaauwen, JL. 2013. Redescription of Parexus recurvus, an Early Devonian acanthodian from the Midland Valley of Scotland. Alcheringa 37:392414.Google Scholar
Burrow, C, Den Blaauwen, J, Newman, M, Davidson, R. 2016. The diplacanthid fishes (Acanthodii, Diplacanthiformes, Diplacanthidae) from the Middle Devonian of Scotland. Palaeontologia Electronica 19.1.10A:1–83.Google Scholar
Burrow, CJ, Turner, S, Maisey, JG, Desbiens, S, Miller, RF. 2017. Spines of the stem chondrichthyan Doliodus latispinosus (Whiteaves) comb. nov. from the Lower Devonian of eastern Canada. Can J Earth Sci 54:12481262. https://doi.org/10.1139/cjes-2017–0059Google Scholar
Carvalho, MR. 1996. Higher-level elasmobranch phylogeny, basal squaleans, and paraphyly. In: Stassny, MLJ, Parenti, LR, Johnson, GD, editors. Interrelationships of fishes. San Diego: Academic Press. pp. 3562.Google Scholar
Coates, MI. 2003 The evolution of paired fins. Theory Biosci 122:266287.Google Scholar
Coates, MI, Gess, RW, Finarelli, JA, Criswell, KE, Tietjen, K. 2017. A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature 541:208–211.Google Scholar
Coates, MI, Sequeira, SEK. 2001a. A new stethacanthid chondrichthyan from the Lower Carboniferous of Bearsden, Scotland. J Vert Paleo 21:438459.Google Scholar
Coates, MI, Sequeira, SEK. 2001b. Early sharks and primitive gnathostome interrelationships. In: Ahlberg, PE, editor. Major Events in Early Vertebrate Evolution. London: Taylor and Francis. pp. 241262.Google Scholar
Compagno, LJV. 1973. Interrelationships of living elasmobranchs. Zool J Linn Soc 53:1561.Google Scholar
Compagno, LJV. 1977. Phyletic relationships of living sharks and rays. Amer Zool 17:303322.Google Scholar
Criswell, KE, Coates, MI, Gillis, JA. 2017. Embryonic development of the axial column in the little skate, Leucoraja erinacea. J Morph 78:300320.Google Scholar
Cuny, G, Rieppel, O, Sander, PM. 2001. The shark fauna from the Middle Triassic (Anisian) of north-western Nevada. Zool J Linn Soc 133:285301.Google Scholar
Cuvier, G. 1817. Le Règne Animal distribué d’après son organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Edition 1.2. Paris: Deterville.Google Scholar
Davis, SP, Finarelli, JA, Coates, MI (2012) Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486:247251.Google Scholar
De Beer, GR. 1937. The development of the vertebrate skull. Oxford: Clarendon Press.Google Scholar
De Beer, GR, Moy-Thomas, JA. 1935. On the skull of Holocephali. Phil Trans R Soc Lond, Ser B 224:287312.Google Scholar
Denison, R. 1979. Acanthodii. In: Schultze, HP, editor. Handbook of Paleoichthyology, Vol. 5. Stuttgart: Gustav Fischer. pp. 162.Google Scholar
Dick, JRF. 1978. On the Carboniferous shark Tristychius arcuatus Agassiz from Scotland. Trans R Soc Edinb 70:63109.Google Scholar
Didier, DA. 1995. Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). Amer Mus Novit 3119:186.Google Scholar
Duméril, AMC. 1806. Zoologie analytique, ou méthode naturelle de classification des animaux, rendue plus facile à l’aide de tableaux synoptiques. Paris: Allais.Google Scholar
Dupret, V, Sanchez, S, Goujet, D, Tafforeau, P, Ahlberg, PE. 2014. A primitive placoderm sheds light on the origins of the jawed vertebrate face. Nature 507:500503.Google Scholar
Enault, S, Cappetta, H, Adnet, S. 2013. Simplification of the enameloid microstructure of large stingrays (Chondrichthyes: Myliobatiformes): A functional approach. Zool J Linn Soc 69:144155.Google Scholar
Finarelli, JA, Coates, MI. 2014. Chondrenchelys problematica (Traquair, 1888) redescribed: A Lower Carboniferous, eel-like holocephalan from Scotland. Trans R Soc Edinb 105:3559.Google Scholar
Fournier, G, Pruvost, P. 1922. Découverte d’un poisson nouveau dans le marbre noir de Denée. Bull. Acad. Sci. Belgique 7: 213218.Google Scholar
Friedman, M, Brazeau, MA. 2010. Reappraisal of the origin and basal radiation of the Osteichthyes. J. Vert Paleo 30:3656.Google Scholar
Gagnier, PY, Paris, F, Racheboeuf, P, Janvier, P, Suárez-Riglos, M. 1989. Les vertébrés de Bolivie: Données biostratigraphiques et anatomiques complémentaires. Bull Inst Fr Etud And 18:7593.Google Scholar
Gaudin, TJ. 1991. A re-examination of elasmobranch monophyly and chondrichthyan phylogeny. N Jb Geol Pal Abh 182:133160.Google Scholar
Giles, S, Friedman, M, Brazeau, MD. 2015. Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature 520:8285.Google Scholar
Ginter, M, Hampe, O, Duffin, C. 2010. Chondrichthyes. Paleozoic Elasmobranchii: Teeth. In: Schultze, HP, editor. Handbook of Paleoichthyology, Vol. 3D. Munich: Friedrich Pfeil. pp. 168.Google Scholar
Goodrich, ES. 1909. Cyclostomes and Fishes. In Lancaster, ER, editor. A Treatise on Zoology, Vol. 9. London: A and C Black.Google Scholar
Goodrich, ES. 1930. Studies of the Structure and Development of Vertebrates. London: Macmillan.Google Scholar
Grogan, ED, Lund, R. 2000. Debeerius ellefseni (fam. nov., gen. nov., spec. nov.), an autodiastylic chondrichthyan from the Mississippian Bear Gulch Limestone of Montana (USA), the relationships of the Chondrichthyes, and comments on gnathostome evolution. J Morph 243:219245.Google Scholar
Hanke, GF, Davis, SP. 2012. A re-examination of Lupopsyrus pygmaeus Bernacsek and Dineley, 1977 (Pisces, Acanthodii). Geodiversitas 34:469487.Google Scholar
Hanke, GF, Davis, SP, Wilson, MVH. 2001. New species of the acanthodian genus Tetanopsyrus from Northern Canada, and comments on related taxa. J Vert Paleo 21:740753.Google Scholar
Hanke, GF, Wilson, MVH, Saurette, FJ. 2013. Partial articulated specimen of the Early Devonian putative chondrichthyan Polymerolepis whitei Karatajūtė-Talimaa, 1968, with an anal fin spine. Geodiversitas 35:529543.Google Scholar
Hay, OP. 1902. Bibliography and catalogue of the fossil vertebrata of North America. Bull US Geol Surv 179:1868.Google Scholar
Heinicke, MP, Naylor, JP, Hedges, SB. 2009. Cartilaginous fishes (Chondrichthyes). In: Hedges, SB, Kumar, S, editors. The Timetree of Life. New York: Oxford University Press. pp. 320327.Google Scholar
Holmgren, N. 1940. Studies on the head in fishes. I. Development of the skull in sharks and rays. Acta Zool 21:5167.Google Scholar
Huxley, TH. 1880. A Manual of the Anatomy of the Vertebrated Animals. New York: D. Appleton and Co.Google Scholar
Janvier, P. 1987. Les Vertébrés siluriens et dévoniens de Bolivie: Remarques particulières sur les Chondrichthyens. 4e Congresso Latinoamericano de Paleontologia, Santa Cruz, 1:159–178.Google Scholar
Janvier, P, Maisey, JG. 2010. The Devonian vertebrates of South America and their biogeographical relationships. In: Elliott, DK, Maisey, JG, Yu, X, Miao, D, editors. Morphology, Phylogeny and Biogeography of Fossil Fishes: A Symposium in Honor of Meemann Chang. Munich: Friedrich Pfeil. pp. 431459.Google Scholar
Janvier, P, Suárez-Riglos, M. 1986. The Silurian and Devonian vertebrates of Bolivia. Bull Inst Fr Etud And 5:73114.Google Scholar
Jarvik, E. 1972. Middle and Upper Devonian Porolepiformes from East Greenland with special reference to Glyptolepis groenlandica n. sp. Medd Grønland 187:1295.Google Scholar
Jarvik, E. 1980. Basic structure and evolution of Vertebrates. Vol. 1. London: Academic Press.Google Scholar
King, B, Qiao, T, Lee, MS, Zhu, M, Long, JA. 2016. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol 66:499516.Google Scholar
Koken, E. 1889. Ueber Pleuracanthus Ag. oder Xenacanthus. Sitz Ges Nat Fr 1889:7794.Google Scholar
Lane, JA, Maisey, JG. 2009. Pectoral Anatomy of Tribodus limae (Elasmobranchii: Hybodontiformes), from the Lower Cretaceous of Northeastern Brazil. J Vert Paleo 29:2538.Google Scholar
Long, JA, Burrow, CJ, Ginter, M, Maisey, JG, Trinajstic, KM, Coates, MI. 2015. First shark from the Late Devonian (Frasnian) Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage. PLoS ONE 10: e0126066.Google Scholar
Long, JA, Mark-Kurik, E, Johanson, Z, Lee, MSY, Young, GC, Min, Z, Ahlberg, PE, Newman, M, Jones, R, den Blaauwen, J, Choo, B, Trinajstic, K. 2015. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature 517:196199.Google Scholar
Lund, R, Grogan, ED. 1997. Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes. Rev Fish Biol Fish 7:65123.Google Scholar
Lund, R, Grogan, ED. 2004a. Two tenaculum-bearing Holocephalimorpha (Chondrichthyes) from the Bear Gulch Limestone Chesterian, Serpukhovian) of Montana, U.S.A. In: Arratia, G, Wilson, MVH, Cloutier, R, editors. Recent Advances in the Origin and Early Radiation of Vertebrates. Munich: Friedrich Pfeil. pp. 171187.Google Scholar
Lund, R, Grogan, E. 2004b. Five new euchondrocephalan Chondrichthyes from the Bear Gulch Limestone (Sepukhovian, Namurian E2b) of Montana, USA. In: Arratia, G, Wilson, MVH, Cloutier, R, editors. Recent Advances in the Origin and Early Radiation of Vertebrates. Munich: Friedrich Pfeil. pp. 505531.Google Scholar
Maisey, JG. 1975. The interrelationships of phalacanthous selachians. Neues Jahrb Geol Palaont 9:553567.Google Scholar
Maisey, JG. 1978. Growth and form of fin spines in hybodont sharks. Palaeontology 21:657666.Google Scholar
Maisey, JG. 1979. Finspine morphogenesis in squalid and heterodontid sharks. Zool J Linn Soc 66:161183.Google Scholar
Maisey, JG. 1982. The anatomy and interrelationships of Mesozoic hybodont sharks. Am Mus Novit 2724:148.Google Scholar
Maisey, JG. 1983. Cranial anatomy of Hybodus basanus Egerton from the Lower Cretaceous of England. Amer Mus Novit 2758:164.Google Scholar
Maisey, JG. 1984a. Chondrichthyan phylogeny: A look at the evidence. J Vert Paleo 4:359371.Google Scholar
Maisey, JG. 1984b. Higher elasmobranch phylogeny and biostratigraphy. Zool J Linn Soc 82:3354.Google Scholar
Maisey, JG. 1985. Cranial morphology of the fossil elasmobranch Synechodus dubrisiensis. Am Mus Novit 2804:128.Google Scholar
Maisey, JG. 1987. Cranial anatomy of the Lower Jurassic shark Hybodus reticulates (Chondrichthyes: Elasmobranchii), with comments on hybodontoid systematics. Amer Mus Novit 2878:139.Google Scholar
Maisey, JG. 1989a. Visceral skeleton and musculature of a late Devonian shark. J Vert Paleo 9:174190.Google Scholar
Maisey, JG. 1989b. Hamiltonichthys mapesi, g. and sp. nov. (Chondrichthyes; Elasmobranchii), from the Upper Pennsylvanian of Kansas. Amer Mus Novit 2931:142.Google Scholar
Maisey, JG. 2001a. Remarks on the inner ear of elasmobranchs and its interpretation from skeletal labyrinth morphology. J Morph 250:236264.Google Scholar
Maisey, JG. 2001b. A primitive chondrichthyan braincase from the Middle Devonian of Bolivia. In: Ahlberg, P, editor. Major Events in Early Vertebrate Evolution. London: Taylor and Francis. pp. 263288.Google Scholar
Maisey, JG. 2004. Endocranial morphology in fossil and recent chondrichthyans. In: Arratia, G, Wilson, M, Cloutier, R, editors. Recent Advances in the Origin and Early Radiation of Vertebrates. Munich: Friedrich Pfeil. pp. 139170.Google Scholar
Maisey, JG. 2005. Braincase of the Upper Devonian shark Cladodoides wildungensis (Chondrichthyes, Elasmobranchii), with observations on the braincase in early chondrichthyans. Bull Amer Mus Nat Hist 288:1103.Google Scholar
Maisey, JG. 2007. The braincase in Paleozoic symmoriiform and cladoselachian sharks. Bull Amer Mus Nat Hist 307:1122.Google Scholar
Maisey, JG. 2008. The postorbital palatoquadrate articulation in elasmobranchs. J Morph 269:10221040.Google Scholar
Maisey, JG 2009. The spine-brush complex in symmoriiform sharks (Chondrichthyes; Symmoriiformes), with comments on dorsal fin modularity. J Vert Paleo 29:1424.Google Scholar
Maisey, JG. 2011. The braincase of the Middle Triassic shark Acronemus tuberculatus (Bassani 1886). Palaeontology 54:417428.Google Scholar
Maisey, JG. 2012. What is an ‘elasmobranch’? The impact of palaeontology in understanding elasmobranch phylogeny and evolution. J Fish Biol 80:918951.Google Scholar
Maisey, JG. 2013. The diversity of tessellated calcification in modern and extinct chondrichthyans. Rev Paléobiol 32:355371.Google Scholar
Maisey, JG, Anderson, ME. 2001. A primitive chondrichthyan braincase from the early Devonian of South Africa. J Vert Paleo 21:702713.Google Scholar
Maisey, JG, Denton, JSS. 2016. Dermal denticle patterning in the Cretaceous hybodont shark Tribodus limae (Euselachii, Hybodontiformes), and its implications for the evolution of patterning in the chondrichthyan dermal skeleton. J Vert Paleo DOI:10.1080/02724634.2016.1179200.Google Scholar
Maisey, JG, Lane, JA. 2010. Labyrinth morphology and the evolution of low frequency phonoreception in elasmobranchs. CR Palevol 9:289309.Google Scholar
Maisey, JG, Miller, R, Turner, S. 2009. The braincase of the chondrichthyan Doliodus from the Lower Devonian Campbellton formation of New Brunswick, Canada. Acta Zool 90 (Suppl.1):109122.Google Scholar
Maisey, JG, Miller, R., Pradel, A, Denton, JSS, Bronson, A, Janvier, P. 2017. Pectoral morphology in Doliodus; bridging the ‘acanthodian’-chondrichthyan divide. Amer Mus Novit 3875:115.Google Scholar
Maisey, JG, Turner, S, Naylor, GJ, Miller, RF. 2014. Dental patterning in the earliest sharks: Implications for tooth evolution. J Morph 275:586596.Google Scholar
Maisey, JG, Naylor, GJP, Ward, DJ. 2004. Mesozoic elasmobranchs, neoselachian phylogeny and the rise of modern elasmobranch diversity. In; Arratia, G, Tintori, A, editors. Mesozoic Fishes, Vol. 3: Systematics, Paleoenvironments and Biodiversity. Munich: Friedrich Pfeil. pp. 1756.Google Scholar
Manzanares, E, Rasskin-Gutman, D, Botella, H. 2016. New insights into the enameloid microstructure of batoid fishes (Chondrichthyes). Zool J Linn Soc 177:621632.Google Scholar
Miller, RF, Cloutier, R, Turner, S. 2003. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425:501504.Google Scholar
Moy-Thomas, JA, Miles, RS. 1971. Palaeozoic Fishes. London: Chapman and Hall.Google Scholar
Naylor, GJP, Ryburn, JA, Fedrigo, O, López, A. 2005. Phylogenetic relationships among the major lineages of modern Elasmobranchs. In: Hamlett, W, Jamieson, B, editors. Reproductive Biology and Phylogeny of Chondrichthyes. Brisbane: University of Queensland Press. pp. 125.Google Scholar
Nelson, G. 1969. Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates. Bull Amer Mus Nat Hist 141:475552.Google Scholar
Patterson, C. 1965. The phylogeny of the chimaeroids. Phil Trans Roy Soc London B 249:101219.Google Scholar
Pradel, A, Didier, D, Casane, D, Tafforeau, P, Maisey, JG. 2013. Holocephalan embryo provides new information on the evolution of the glossopharyngeal nerve, metotic fissure and parachordal plate in gnathostomes. PLoS ONE 8:e66988.Google Scholar
Pradel, A, Maisey, JG, Tafforeau, P, Mapes, RH, Mallatt, J. 2014. A Palaeozoic shark with osteichthyan-like branchial arches. Nature 509:608611.Google Scholar
Pradel, A, Tafforeau, P, Maisey, JG, Janvier, P (2011) A new Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and cladistic analysis of Early Chondrichthyans. PLoS ONE 6:e24938.Google Scholar
Regan, CT. 1906. A classification of the selachian fishes. Proc Zool Soc London 1906:722758.Google Scholar
Reif, WE. 1973. Morphologie und ultrastruktur des Hai-’Schmelzes’. Zool Scrip 2:231250.Google Scholar
Reif, WE. 1977. Tooth enameloid as a taxonomic criterion. I: A new euselachian shark from the Rhaetic–Liassic boundary. N Jb Geol Pal Mh 1977:565576.Google Scholar
Reif, WE. 1978. Types of morphogenesis of the dermal skeleton in fossil sharks. Paläont Z 52:110128.Google Scholar
Reif, WE. 1982. Evolution of dermal skeleton and dentition in vertebrates. Evol Biol 15:287368.Google Scholar
Romer, AS. 1933. Vertebrate Paleontology. Chicago: University of Chicago Press.Google Scholar
Schaeffer, B. 1981. The xenacanth shark neurocranium, with comments on elasmobranch monophyly. Bull Amer Mus Nat Hist 169:366.Google Scholar
Schultze, HP. 1993. Patterns of diversity in the skulls of jawed fishes. In: Hanken, J, Hall, BK, editors. The Skull, Vol. 2: Patterns of Structural and Systematic Diversity. Chicago: University of Chicago Press. pp. 189254.Google Scholar
Sequeira, SEK, Coates, MI. 2000. Reassessment of ‘‘Cladodus’’ neilsoni Traquair: A primitive shark from the Lower Carboniferous of East Kilbride, Scotland. Palaeontology 43:153172.Google Scholar
Shirai, S. 1992. Squalean phylogeny: A new framework of ‘squaloid’ sharks and related taxa. Sapporo, Japan: Hokkaido University Press.Google Scholar
Shirai, S. 1996. Phylogenetic interrelationships of neoselachians (Chondrichthyes: Euselachii). In: Stiassny, MLJ, Parenti, LR, Johnson, GD, editors. Interrelationships of Fishes. San Diego: Academic Press. pp. 934.Google Scholar
Thies, D. 1982. A neoselachian shark tooth from the lower Triassic of the Kocaeli (=Bithynian) Peninsula, W Turkey. N Jb Geol Pal Mh 1982:272278.Google Scholar
Thies, D, Reif, WE. 1985. Phylogeny and evolutionary ecology of Mesozoic Neoselachii. N Jb Geol Pal Mh 1985:331361.Google Scholar
Warren, A, Currie, BP, Burrow, C, Turner, S. 2000. A Redescription and Reinterpretation of Gyracanthides murrayi Woodward 1906 (Acanthodii, Gyracanthidae) from the Lower Carboniferous of the Mansfield Basin, Victoria, Australia. J Vert Paleo 20:225242.Google Scholar
Watson, DMS. 1937. The acanthodian fishes. Phil Trans R Soc B 228:49146.Google Scholar
Whiteaves, JF. 1881. On some fossil fishes, Crustacea and Mollusca from the Devonian rocks at Campbellton, NB, with descriptions of five new species. Can Nat 10:93101.Google Scholar
Woodward, AS. 1889. Acanthodian fishes from the Devonian of Canada. Ann Mag Nat Hist 4:183184.Google Scholar
Woodward, AS. 1891. Catalogue of the fossil fishes in the British Museum (Natural History). Part 2. London: British Museum of Natural History.Google Scholar
Woodward, AS. 1892. On the Lower Devonian fish-fauna of Campbellton, New Brunswick. Geol Mag 9:16.Google Scholar
Zangerl, R. 1981. Chondrichthyes I. Paleozoic Elasmobranchii. In: Schultze, HP, editor. Handbook of Paleoichthyology, vol. 3A. Stuttgart: Gustav Fischer.Google Scholar
Zangerl, R, Case, GR. 1973. Iniopterygia, a new order of chondrichthyan fishes from the Pennsylvanian of North America. Fieldiana: Geol 6:167.Google Scholar
Zhu, M, Yu, X, Ahlberg, PE, Choo, B, Qiao, Q, Zhao, W, Jia, L, Blom, H, Zhu, Y. 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188193.Google Scholar
Zhu, M, Ahlberg, PE, Pan, Z, Zhu, Y, Qiao, T, Zhao, W, Jia, L, Lu, J. 2016. A Silurian maxillate placoderm illuminates jaw evolution. Science 354:334336.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×