Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T17:11:50.327Z Has data issue: false hasContentIssue false

3 - Brain Embodiment of Category-Specific Semantic Memory Circuits

Published online by Cambridge University Press:  05 June 2012

Gün R. Semin
Affiliation:
Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam
Eliot R. Smith
Affiliation:
Indiana University, Bloomington
Friedemann Pulvermüller
Affiliation:
Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK
Get access

Summary

At present, abstract symbolic and embodied theories of semantic and conceptual processing compete for the minds of cognitive scientists. Are concepts built in interaction with the world, from perceptual information? Or are they inborn and only in a very distant relationship with the “reality,” which contacts the thinking organs (if at all) only via long axons and unreliable sensory organs? Can an abstract thought be built from sensory experience – or would there rather be need for other ingredients to construct abstraction? These are questions that heated the debate in ancient Greece – (cf. Plato's and Aristotle's positions) – and are being warmed up in contemporary cognitive and brain science. Can we add anything new? We have a vast number of nice brain pictures to show – pictures that indicate brain parts active when people think, speak, listen, and understand. But a colored picture is not always easily converted into a thousand words, let alone a new insight. Here, the embodiment question will be addressed on the basis of new evidence from cognitive neuroscience in the hope that the brain pictures, especially the dynamic ones, might speak to the issues – or more modestly, might make a significant contribution to the cognitive debate.

Type
Chapter
Information
Embodied Grounding
Social, Cognitive, Affective, and Neuroscientific Approaches
, pp. 71 - 97
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bak, T. H., O'Donovan, D. G., Xuereb, J. H., Boniface, S., & Hodges, J. R. (2001). Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the Motor Neurone Disease-Dementia-Aphasia syndrome. Brain, 124, 103–120.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral & Brain Sciences, 22(4), 577–609; discussion, 610–560.Google ScholarPubMed
Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 358(1435), 1177–1187.CrossRefGoogle ScholarPubMed
Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17(6), 905–917.CrossRefGoogle ScholarPubMed
Bird, H., Lambon-Ralph, M. A., Patterson, K., & Hodges, J. R. (2000). The rise and fall of frequency and imageability: Noun and verb production in semantic dementia. Brain and Language, 73(1), 17–49.CrossRefGoogle ScholarPubMed
Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188.CrossRefGoogle ScholarPubMed
Borghi, A. M., Glenberg, A. M., & Kaschak, M. P. (2004). Putting words in perspective. Memory & Cognition, 32(6), 863–873.CrossRefGoogle Scholar
Boulenger, V., Roy, A. C., Paulignan, Y., Deprez, V., Jeannerod, M., & Nazir, T. A. (2006). Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. Journal of Cognitive Neuroscience, 18(10), 1607–1615.CrossRefGoogle Scholar
Braitenberg, V., & Pulvermüller, F. (1992). Entwurf einer neurologischen Theorie der Sprache. Naturwissenschaften, 79, 103–117.CrossRefGoogle Scholar
Braitenberg, V., & Schüz, A. (1998). Cortex: statistics and geometry of neuronal connectivity (2 ed.). Berlin: Springer.CrossRefGoogle Scholar
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G., & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13(2), 400–404.Google Scholar
Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Cognitive Brain Research, 24(3), 355–363.CrossRefGoogle ScholarPubMed
Cappa, S. F., Perani, D., Schnur, T., Tettamanti, M., & Fazio, F. (1998). The effects of semantic category and knowledge type on lexical-semantic access: a PET study. Neuroimage, 8(4), 350–359.CrossRefGoogle ScholarPubMed
Caramazza, A., & Mahon, B. Z. (2003). The organization of conceptual knowledge: The evidence from category-specific semantic deficits. Trends in Cognitive Science, 7(8), 354–361.CrossRefGoogle ScholarPubMed
Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2(10), 913–919.CrossRefGoogle ScholarPubMed
Coles, M. G. H., & Rugg, M. D. (1995). Event-related brain potentials. In Rugg, M. D. & Coles, M. G. H. (Eds.), Electrophysiology of mind. Event-related brain potentials and cognition (pp. 1–26). Oxford: Oxford University Press.Google Scholar
Damasio, A. R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences, USA, 90, 4957–4960.CrossRefGoogle ScholarPubMed
Daniele, A., Giustolisi, L., Silveri, M. C., Colosimo, C., & Gainotti, G. (1994). Evidence for a possible neuroanatomical basis for lexical processing of nouns and verbs. Neuropsychologia, 32, 1325–1341.CrossRefGoogle ScholarPubMed
Vega, M., Robertson, D. A., Glenberg, A. M., Kaschak, M. P., & Rinck, M. (2004). On doing two things at once: Temporal constraints on actions in language comprehension. Memory & Cognition, 32(7), 1033–1043.CrossRefGoogle ScholarPubMed
Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93, 283–321.CrossRefGoogle ScholarPubMed
Devlin, J. T., Russell, R. P., Davis, M. H., Price, C. J., Moss, H. E., Fadili, M. J., & Tyler, L. K. (2002). Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI. Neuropsychologia, 40(1), 54–75.CrossRefGoogle ScholarPubMed
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305–307.CrossRefGoogle ScholarPubMed
Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15(2), 399–402.CrossRefGoogle ScholarPubMed
Frege, G. (1966). Der Gedanke. In Patzig, G. (Ed.), Logische Untersuchungen (pp. 30–53). Göttingen: Huber. (First published 1918–1920).Google Scholar
Gentilucci, M., Benuzzi, F., Bertolani, L., Daprati, E., & Gangitano, M. (2000). Language and motor control. Experimental Brain Research, 133(4), 468–490.CrossRefGoogle ScholarPubMed
Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558–565.CrossRefGoogle ScholarPubMed
González, J., Barros-Loscertales, A., Pulvermüller, F., Meseguer, V., Sanjuán, A., Belloch, V., & Ávila, C. (2006). Reading cinnamon activates olfactory brain regions. Neuroimage, 32(2), 906–912.CrossRefGoogle ScholarPubMed
Graziano, M. S., Taylor, C. S., & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34(5), 841–851.CrossRefGoogle ScholarPubMed
Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage, 30(4), 1383–1400.CrossRefGoogle ScholarPubMed
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in the motor and premotor cortex. Neuron, 41, 301–307.CrossRefGoogle ScholarPubMed
Hauk, O., & Pulvermüller, F. (2004). Neurophysiological distinction of action words in the fronto-central cortex. Human Brain Mapping, 21(3), 191–201.CrossRefGoogle ScholarPubMed
He, S. Q., Dum, R. P., & Strick, P. L. (1993). Topographic organization of corticospinal projections from the frontal lobe: Motor areas on the lateral surface of the hemisphere. Journal of Neuroscience, 13(3), 952–980.CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.CrossRefGoogle ScholarPubMed
Holcomb, P. J., & Neville, H. J. (1990). Auditory and visual semantic priming in lexical decision: A comparision using event-related brain potentials. Language and Cognitive Processes, 5, 281–312.CrossRefGoogle Scholar
Humphreys, G. W., & Forde, E. M. (2001). Hierarchies, similarity, and interactivity in object recognition: “Category-specific” neuropsychological deficits. Behavioral and Brain Sciences, 24(3), 453–509.Google ScholarPubMed
Humphreys, G. W., & Riddoch, M. J. (1987). On telling your fruit from your vegetables – a consideration of category-specific deficits after brain-damage. Trends in Neurosciences, 10, 145–148.CrossRefGoogle Scholar
Jeannerod, M., & Frak, V. (1999). Mental imaging of motor activity in humans. Current Opinion in Neurobiology, 9(6), 735–739.CrossRefGoogle ScholarPubMed
Kiefer, M. (2001). Perceptual and semantic sources of category-specific effects: Event-related potentials during picture and word categorization. Memory & Cognition, 29, 100–116.CrossRefGoogle ScholarPubMed
Kintsch, W. (1974). The representation of meaning in memory. Hillsdale, NJ: Erlbaum.Google Scholar
Kintsch, W. (1998). Comprehension: A paradigm for cognition. New York: Cambridge University Press.Google Scholar
Kintsch, W. (2002). The potential of latent semantic analysis for machine grading of clinical case summaries. Journal of Biomedical Informatics, 35(1), 3–7.CrossRefGoogle ScholarPubMed
Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In Shannon, C. E. & McCarthy, J. (Eds.), Automata studies (pp. 3–41). Princeton, NJ: Princeton University Press.Google Scholar
Knoblauch, A., Markert, H., & Palm, G. (2005). An associative cortical model of language understanding and action planning. In Mira, J. & Alvarez, J. R. (Eds.), International work-conference on the interplay between natural and artificial computation 2005 (Vol. 3562, pp. 405–414). Berlin: Springer.Google Scholar
Lakoff, G. (1987). Women, fire, and dangerous things. What categories reveal about the mind. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: the Latent Semantic Analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.CrossRefGoogle Scholar
Lichtheim, L. (1885). On aphasia. Brain, 7, 433–484.CrossRefGoogle Scholar
Maher, L. M., Kendall, D., Swearengin, J. A., Rodriguez, A., Leon, S. A., Pingel, K., Holland, A., & Rothi, L. J. (2006). A pilot study of use-dependent learning in the context of Constraint Induced Language Therapy. Journal of the International Neuropsychological Society, 12(6), 843–852.Google ScholarPubMed
Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: structure and processes. Current Oppinion in Neurobiology, 11(2), 194–201.CrossRefGoogle ScholarPubMed
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270, 102–105.CrossRefGoogle Scholar
Matelli, M., Camarda, R., Glickstein, M., & Rizzolatti, G. (1986). Afferent and efferent projections of the inferior area 6 in the macaque monkey. Journal of Comparative Neurology, 251(3), 281–298.CrossRefGoogle ScholarPubMed
McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.CrossRefGoogle Scholar
Meinzer, M., Djundja, D., Barthel, G., Elbert, T., & Rockstroh, B. (2005). Long-term stability of improved language functions in chronic aphasia after constraint-induced aphasia therapy. Stroke, 36(7), 1462–1466.CrossRefGoogle ScholarPubMed
Martin, Moscoso Del Prado F., Hauk, O., & Pulvermüller, F. (2006). Category specificity in the processing of color-related and form-related words: An ERP study. Neuroimage, 29(1), 29–37.CrossRefGoogle Scholar
Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’ in the auditory cortex. Trends in Neurosciences, 24(5), 283–288.CrossRefGoogle Scholar
Neininger, B., & Pulvermüller, F. (2001). The right hemisphere's role in action word processing: a double case study. Neurocase, 7(4), 303–317.CrossRefGoogle ScholarPubMed
Neininger, B., & Pulvermüller, F. (2003). Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia, 41(1), 53–70.CrossRefGoogle ScholarPubMed
Obleser, J., Lahiri, A., & Eulitz, C. (2003). Auditory-evoked magnetic field codes place of articulation in timing and topography around 100 milliseconds post syllable onset. Neuroimage, 20(3), 1839–1847.CrossRefGoogle ScholarPubMed
Page, M. (2000). Connectionist modelling in psychology: a localist manifesto. Behavioral & Brain Sciences, 23(4), 443–467; discussion, 467–512.CrossRefGoogle ScholarPubMed
Patterson, K., & Hodges, J. R. (2001). Semantic dementia. In Thompson, R. F. & McClelland, J. L. (Eds.), International encyclopaedia of the social and behavioural sciences. Behavioral and cognitive neuroscience section (pp. 3401–3405). New York: Pergamon Press.Google Scholar
Penfield, W., & Boldrey, E. (1937). Somatic sensory and motor representation in the cerebral cortex as studied by electrical stimulation. Brain, 60, 389–443.CrossRefGoogle Scholar
Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man. New York: Macmillan.Google Scholar
Posner, M. I., & Pavese, A. (1998). Anatomy of word and sentence meaning. Proceedings of the National Academy of Sciences, USA, 95, 899–905.CrossRefGoogle ScholarPubMed
Preissl, H., Pulvermüller, F., Lutzenberger, W., & Birbaumer, N. (1995). Evoked potentials distinguish nouns from verbs. Neuroscience Letters, 197, 81–83.CrossRefGoogle ScholarPubMed
Price, C. J. (2000). The anatomy of language: contributions from functional neuroimaging. Journal of Anatomy, 197 Pt 3, 335–359.CrossRefGoogle ScholarPubMed
Pulvermüller, F. (1996). Hebb's concept of cell assemblies and the psychophysiology of word processing. Psychophysiology, 33, 317–333.CrossRefGoogle ScholarPubMed
Pulvermüller, F. (1999). Words in the brain's language. Behavioral & Brain Sciences, 22, 253–336.CrossRefGoogle ScholarPubMed
Pulvermüller, F. (2001). Brain reflections of words and their meaning. Trends in Cognitive Sciences, 5(12), 517–524.CrossRefGoogle ScholarPubMed
Pulvermüller, F. (2002). A brain perspective on language mechanisms: From discrete neuronal ensembles to serial order. Progress in Neurobiology, 67, 85–111.CrossRefGoogle ScholarPubMed
Pulvermüller, F. (2003). The neuroscience of language. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576–582.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Härle, M., & Hummel, F. (2000). Neurophysiological distinction of verb categories. Neuroreport, 11(12), 2789–2793.CrossRefGoogle ScholarPubMed
Pulvermüller, F., & Hauk, O. (2006). Category-specific processing of color and form words in left fronto-temporal cortex. Cerebral Cortex, 16(8), 1193–1201.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. European Journal of Neuroscience, 21(3), 793–797.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Lutzenberger, W., & Preissl, H. (1999). Nouns and verbs in the intact brain: evidence from event-related potentials and high-frequency cortical responses. Cerebral Cortex, 9, 498–508.Google ScholarPubMed
Pulvermüller, F., & Mohr, B. (1996). The concept of transcortical cell assemblies: a key to the understanding of cortical lateralization and interhemispheric interaction. Neuroscience and Biobehavioral Reviews, 20, 557–566.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Mohr, B., & Schleichert, H. (1999). Semantic or lexico-syntactic factors: What determines word-class specific activity in the human brain?Neuroscience Letters, 275, 81–84.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Neininger, B., Elbert, T., Mohr, B., Rockstroh, B., Koebbel, P., & Taub, E. (2001). Constraint-induced therapy of chronic aphasia following stroke. Stroke, 32(7), 1621–1626.CrossRefGoogle Scholar
Pulvermüller, F., & Preissl, H. (1991). A cell assembly model of language. Network: Computation in Neural Systems, 2, 455–468.CrossRefGoogle Scholar
Pulvermüller, F., & Shtyrov, Y. (2006). Language outside the focus of attention: The mismatch negativity as a tool for studying higher cognitive processes. Progress in Neurobiology, 79(1), 49–71.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Shtyrov, Y., & Ilmoniemi, R. J. (2003). Spatio-temporal patterns of neural language processing: An MEG study using Minimum-Norm Current Estimates. Neuroimage, 20, 1020–1025.CrossRefGoogle Scholar
Pulvermüller, F., Shtyrov, Y., & Ilmoniemi, R. J. (2005). Brain signatures of meaning access in action word recognition. Journal of Cognitive Neuroscience, 17(6), 884–892.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Luppino, G. (2001). The cortical motor system. Neuron, 31(6), 889–901.CrossRefGoogle ScholarPubMed
Rogers, T. T., Ralph, Lambon M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., & Patterson, K. (2004). Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychology Review, 111(1), 205–235.CrossRefGoogle ScholarPubMed
Roy, D. (2005). Grounding words in perception and action: Computational insights. Trends in Cognitive Science, 9(8), 389–396.CrossRefGoogle ScholarPubMed
Schnelle, H. (1996). Approaches to computational brain theories of language – a review of recent proposals. Theoretical Linguistics, 22, 49–104.Google Scholar
Scott, S. K., & Johnsrude, I. S. (2003). The neuroanatomical and functional organization of speech perception. Trends in Neurosciences, 26(2), 100–107.CrossRefGoogle ScholarPubMed
Searle, J. R. (1990). Minds, brains, and programs. Behavioral & Brain Sciences, 3(3), 417–457.Google Scholar
Sereno, S. C., Rayner, K., & Posner, M. I. (1998). Establishing a time line for word recognition: evidence from eye movements and event-related potentials. NeuroReport, 13, 2195–2200.CrossRefGoogle ScholarPubMed
Seidenberg, M. S., Plaut, D. C., Petersen, A. S., McClelland, J. L., & McRae, K. (1994). Nonword pronunciation and models of word recognition. Journal of Experimental Psychology: Human Perception and Performance, 20(6), 1177–1196.Google ScholarPubMed
Shastri, L., Grannes, D., Narayana, S., & Feldman, J. (2005). A connectionist encoding of parameterized schemas and reactive plans. In Kraetzschmar, G. K. & Palm, G. (Eds.), Hybrid information processing in adaptive autonomous vehicles. Berlin: Springer.Google Scholar
Shtyrov, Y., Hauk, O., & Pulvermüller, F. (2004). Distributed neuronal networks for encoding category-specific semantic information: The mismatch negativity to action words. European Journal of Neuroscience, 19(4), 1083–1092.CrossRefGoogle ScholarPubMed
Shtyrov, Y., Pihko, E., & Pulvermüller, F. (2005). Determinants of dominance: Is language laterality explained by physical or linguistic features of speech?Neuroimage, 27(1), 37–47.CrossRefGoogle ScholarPubMed
Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45(12), 2802–2810.CrossRefGoogle ScholarPubMed
Skrandies, W. (1999). Early effects of semantic meaning on electrical brain activity. Behavioral & Brain Sciences, 22, 301.CrossRefGoogle Scholar
Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F., & Perani, D. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17(2), 273–281.CrossRefGoogle ScholarPubMed
Tomasello, M., & Kruger, A. C. (1992). Joint attention on actions: Acquiring verbs in ostensive and non-ostensive contexts. Journal of Child Language, 19, 311–333.CrossRefGoogle ScholarPubMed
Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 5(6), 244–252.CrossRefGoogle ScholarPubMed
Tyler, L. K., Moss, H. E., Durrant-Peatfield, M. R., & Levy, J. P. (2000). Conceptual structure and the structure of concepts: A distributed account of category-specific deficits. Brain & Language, 75(2), 195–231.CrossRefGoogle ScholarPubMed
Tyler, L. K., Russell, R., Fadili, J., & Moss, H. E. (2001). The neural representation of nouns and verbs: PET studies. Brain, 124(Pt 8), 1619–1634.CrossRefGoogle ScholarPubMed
Tyler, L. K., Stamatakis, E. A., Bright, P., Acres, K., Abdallah, S., Rodd, J. M., & Moss, H. E. (2004). Processing objects at different levels of specificity. Journal of Cognitive Neuroscience, 16(3), 351–362.CrossRefGoogle ScholarPubMed
Warrington, E. K., & McCarthy, R. A. (1983). Category specific access dysphasia. Brain, 106, 859–878.CrossRefGoogle ScholarPubMed
Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829–854.CrossRefGoogle ScholarPubMed
Wermter, S., Weber, C., Elshaw, M., Gallese, V., & Pulvermüller, F. (2005). Neural grounding of robot language in action. In Wermter, S. & Palm, G. & Elshaw, M. (Eds.), Biomimetic neural learning for intelligent robots (pp. 162–181). Berlin: Springer.CrossRefGoogle Scholar
Wermter, S., Weber, C., Elshaw, M., Panchev, C., Erwin, H., & Pulvermüller, F. (2004). Towards multimodal neural network robot learning. Robotics and Autonomous Systems, 47, 171–175.CrossRefGoogle Scholar
Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701–702.CrossRefGoogle ScholarPubMed
Young, M. P., Scannell, J. W., Burns, G., & Blakemore, C. (1994). Analysis of connectivity: Neural systems in the cerebral cortex. Review in Neuroscience, 5, 227–249.Google ScholarPubMed
Zatorre, R. J., Evans, A. C., Meyer, E., & Gjedde, A. (1992). Lateralization of phonetic and pitch discremination in speech processing. Science, 256, 846–849.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×