Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T05:58:36.697Z Has data issue: false hasContentIssue false

18 - Experimental results in nanotribology

from Part III - Nanotribology

Published online by Cambridge University Press:  05 May 2015

Enrico Gnecco
Affiliation:
Instituto Madrileño de Estudios Avanzados, Madrid
Ernst Meyer
Affiliation:
Universität Basel, Switzerland
Get access

Summary

In this chapter we will discuss a selection of experimental observations of friction on the nanoscale, obtained by atomic force microscopy and related techniques. After presenting high resolution friction maps on different materials, we will compare the load, velocity and temperature dependence of friction detected in the experiments to the predictions of the Prandtl–Tomlinson model. The comparison will be extended to simple experiments showing the effect of contact vibrations and friction anisotropy on crystalline samples.

Friction measurements on the atomic scale

The first lattice resolved maps of stick–slip were acquired by Mate et al. [206] just one year after the atomic force microscope was invented [24]. In their experiment, Mate et al. used a tungsten wire as a probing tip and detected lateral forces on a graphite surface using non-fiber interferometry. Since graphite is stable, chemically inert and easy to cleave along atomic planes, it is an ideal material for this kind of measurement. The pioneer work by Mate et al. was followed by experiments on ionic crystals (NaCl, KBr etc.), metals (Cu, Au, Al, W, Pt, Pd and Ag) and covalent materials: semiconductors, carbon-based materials (e.g. graphite, diamond, and diamondlike carbon), organic materials and many oxides.

The ultra-high vacuum (UHV) environment reduces the influence of contaminants on the sample surfaces and results in more precise and reproducible results. An atomic-scale friction map, acquired with a silicon tip sliding on a NaCl(001) cleavage surface in UHV (lattice constant a = 0. 564 nm), is shown in Fig. 18.1(a). The spring force F grows up to a maximum value, corresponding to the static friction Fs ≈ 0.4 nN at which the tip suddenly slips. After that, the tip quickly rebinds to a neighboring unit cell on the crystal surface. The process is repeated several times along each scan line, reproducing the structure of the surface lattice.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×