Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T19:50:38.918Z Has data issue: false hasContentIssue false

4 - Classification of electronic states

Published online by Cambridge University Press:  05 June 2012

Andrew M. Ellis
Affiliation:
University of Leicester
Miklos Feher
Affiliation:
Neurocrine Biosciences, San Diego
Timothy G. Wright
Affiliation:
University of Nottingham
Get access

Summary

The partitioning of electrons into molecular orbitals (MOs) provides a useful, albeit not exact, model of the electronic structure in a molecule. The MO picture makes it possible to understand what happens to the individual electrons in a molecule. Taking the electronic structure as a whole, a molecule has a certain set of quantized electronic states available. Electronic spectroscopy is the study of transitions between these electronic states induced by the absorption or emission of radiation. Within the MO model an electronic transition involves an electron moving from one MO to another, but the concept of quantized electronic states applies even if the MO model breaks down.

Different electronic states are distinguished by labelling schemes which, at first sight, can seem rather mysterious. However, understanding such labels is not a difficult task once a few examples have been encountered. We begin by considering the more familiar case of atoms, before moving on to molecules.

Atoms

If we accept the orbital approximation, then the starting point for establishing the electronic state of an atom is the distribution of the electrons amongst the orbitals. In other words the electronic configuration must be determined. Individual atomic orbitals are given quantum numbers to distinguish one from another, leading to labels such as 1s, 3p, 4f, and so on. The number in each of these labels specifies the principal quantum number, which can run from 1 to infinity.

Type
Chapter
Information
Electronic and Photoelectron Spectroscopy
Fundamentals and Case Studies
, pp. 15 - 23
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Quantum Chemistry, I. N. Levine, New Jersey, Prentice Hall, 2000
Molecular Quantum Mechanics, 3rd edn., P. W. Atkins and R. S. Friedman, Oxford, Oxford University Press, 1999
Elementary Atomic Structure, G. K. Woodgate, Oxford, Oxford University Press, 1983
Molecular Symmetry and Spectroscopy, P. R. Bunker and P. Jensen, Ottawa, NRC Research Press, 1998

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×